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Dynamic Tension Spectroscopy and Strength of Biomembranes
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ABSTRACT Rupturing fluid membrane vesicles with a steady ramp of micropipette suction produces a distribution of
breakage tensions governed by the kinetic process of membrane failure. When plotted as a function of log(tension loading rate),
the locations of distribution peaks define a dynamic tension spectrum with distinct regimes that reflect passage of prominent
energy barriers along the kinetic pathway. Using tests on five types of giant phosphatidylcholine lipid vesicles over loading
rates(tension/time) from 0.01–100 mN/m/s, we show that the kinetic process of membrane breakage can be modeled by
a causal sequence of two thermally-activated transitions. At fast loading rates, a steep linear regime appears in each spectrum
which implies that membrane failure starts with nucleation of a rare precursor defect. The slope and projected intercept of this
regime are set by defect size and frequency of spontaneous formation, respectively. But at slow loading rates, each spectrum
crosses over to a shallow-curved regime where rupture tension changes weakly with rate. This regime is predicted by the
classical cavitation theory for opening an unstable hole in a two-dimensional film within the lifetime of the defect state. Under
slow loading, membrane edge energy and the frequency scale for thermal fluctuations in hole size are the principal factors that
govern the level of tension at failure. To critically test the model and obtain the parameters governing the rates of transition
under stress, distributions of rupture tension were computed and matched to the measured histograms through solution of the
kinetic master (Markov) equations for defect formation and annihilation or evolution to an unstable hole under a ramp of tension.
As key predictors of membrane strength, the results for spontaneous frequencies of defect formation and hole edge energies
were found to correlate with membrane thicknesses and elastic bending moduli, respectively.

INTRODUCTION

An unstressed fluid-lipid membrane in the form of a solid

supported film or closed vesicle can survive for a very long

period of time. However, when stressed, some level of

membrane tension will cause an unstable hole to open

rapidly and rupture the membrane, which is usually an

extremely fast and invisible event on the scale of light

microscopy. Thus, the challenge is to identify and quantify

the molecular-scale factors that govern dynamics of mem-

brane rupture and thereby determine membrane strength.

Held together by hydrophobic interactions, one might

naively expect lipid membranes to rupture at tensions near

hydrocarbon-water surface tension (so/w ; 40 mN/m) by

analogy to the disappearance of surface pressure in a lipid

monolayer under large expansion at an oil/water interface.

However, it has been known for some time that biomem-

branes rupture at much lower tensions in a range from;1 to

25 mN/m and that rupture strength depends prominently on

lipid composition (Evans and Needham, 1987; Needham and

Nunn, 1990; Bloom et al., 1991; Hallett et al., 1993; Mui et

al., 1993; Olbrich et al., 2000). Although viewed tradition-

ally as material constants, we will show here that rupture

strength of a biomembrane is a dynamical property and that

the level of strength depends on the time frame for breakage.

Many innovative methods have been designed to observe

transient permeation and opening of membrane holes. In the

majority of experiments, planar membrane films subject to

constant tension have been permeated using transmembrane

voltages often sufficient to cause capacitive breakdown

(Abidor et al., 1979; Harbich and Helfrich, 1979; Cherno-

mordik et al., 1985, 1987; Glaser et al., 1988; Barnett and

Weaver, 1991; Zhelev and Needham, 1993; Melikov et al.,

2001). Recently, holes in giant membrane vesicles have been

opened by adhesion-driven tension and slowed through

viscous thickening of the aqueous environment to enable

observation by video microscopy (Sandre et al., 1999;

Brochard-Wyart et al., 2000). Complementary to these

studies, but linked more directly to the determinants of

mechanical strength, we show here that rupturing vesicle or

cell membranes under ramps of tension (s ¼<st) over many

decades in timescale provides a straightforward method to

explore the kinetic process of hole nucleation. If tested over

a sufficient range of loading rate <s, the spectrum of rupture

tension versus log(<s) can reveal the principal nano-to-

mesoscale energy barriers along the tension-driven pathway

that impede the failure process. These barriers are the

determinants of membrane strength and the relative heights

of these barriers lead to changes in strength on different

timescales. As a demonstration of this ‘‘dynamic tension

spectroscopy’’ (DTS), we present results from rupture tests

on five types of giant phosphatidylcholine (PC) vesicles over

a span of four orders in magnitude of loading rate (tension/
time ;0.01–100 mN/m/s). We will show that the loading

rate dependence of rupture events implies a kinetic process

that begins with nucleation of a molecular-scale defect,

which then either vanishes or evolves to become an unstable

hole. Correlation of the histograms for rupture tension to the

distributions predicted by theory yields the size and

frequency of initial defect formation plus the attempt rate
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and hole edge energy that govern passage of the final barrier

to catastrophic failure.

MATERIALS AND METHODS

Lipids and vesicle preparation

Fluid membrane vesicles were made from five diacyl PC lipids: saturated

1,2-tridecanoyl-sn-glycero-3-phosphocholine (diC13:0) DTPC; cis unsatu-
rated 1-stearoyl-2-oleoyl-sn-glycero-3- phosphocholine (C18:0/1) SOPC;

1,2-dioleoyl-sn-glycero-3-phosphocholine (diC18:1) DOPC; 1,2-dilinoleo-

yl-sn-glycero-3-phosphocholine (diC18:2) DLnOPC; and 1,2-dierucoyl-sn-
glycero-3-phosphocholine (diC22:1) DEPC. These synthetic species of

diacyl PC lipids were purchased from Avanti Polar Lipids (Alabaster, AL) in

chloroform and used without further purification. The solutions were stored

in amber glass screw cap vials with Teflon-lined silicone septa, wrapped in

aluminum foil, and kept at �208C under argon. To create giant bilayer

vesicles (;20-mm diameter), lipid films were first dried from chloroform:-

methanol (2:1) onto the surface of a roughened Teflon disk (Needham et al.,

1988). After deposition of the lipid film and evaporation of the organic

solvent in vacuo, the Teflon disk was covered with a film of warm (378C)

sucrose solution (200 mM) and allowed to prehydrate before swelling in

excess buffer. The final aliquot of giant vesicles was obtained by manifold

dilution of the prehydrated lipid in an equi-osmolar glucose or salt buffer.

The difference of inner and outer solutes created differences in both

refractive index and density, which significantly enhanced optical

discrimination of the vesicle contour (compare to Fig. 1) and sedimented

vesicles to the floor of the microscope chamber.

Measurement of rupture strength

Micropipette pressurization was used to increase membrane tension and lyse

single vesicles. A steady ramp of pipette suction P(t) ¼ cpt was produced

with a motorized ground-glass syringe pump connected to the micropipette

assembly. Tension was calculated from the pressure using the well-known

relation, s(t) ¼ P(t)Rp/2(1 � Rp/Rs), for a fluid membrane vesicle (Kwok

and Evans, 1981), as defined through measurement of the inner pipette

radius Rp and radius Rs of the vesicle segment exterior to the pipette. Both

the vesicle projection length Lp inside the pipette and the radius Rs of the

vesicle segment exterior to the pipette were monitored continuously

throughout each test up to rupture. The loading rate <s was determined

directly from the slope of tension versus time. High speed video-image

analysis was used to track the vesicle boundaries along the axis of symmetry

at framing rates of at least 100/s as shown by the intensity profiles in Fig. 1.

Vesicle rupture resulted in disappearance of its projection inside the pipette

within a single video scan of 0.005–0.010 s, which provided accurate

definition of rupture tension within 0.01 s 3 <s (mN/m/s). Hydrodynamic

impedance of the pipette system limited inflow of the exterior vesicle

volume after rupture, which could only be observed for vesicles that broke at

very low suction pressures (e.g., diC13:0). The transient disappearance of

diC13:0 vesicles yielded an approximate suction-dependent inflow rate of

DV/Dt;100 (mm3/s) P/(N/m2) for the typical pipette radius of 3 mm. Optical

measurement of pipette radius contributed a random uncertainty of SD ;

6 5% in the magnitude of tension and tension loading rate.

RESULTS

The results obtained with the method of dynamic tension

spectroscopy are a set of rupture tension distributions for

several loading rates and a DTS spectrum defined by the

plot of the distribution peaks as a function of log(loading
rate). In the tests described here, histograms of rupture

tensions for each type of lipid were collected at six loading

rates in the range from 0.01 to 100 mN/m/s. Fig. 2 shows

sample tension histories for two vesicles made from the

same lipid tested under a slow and fast loading rate up to

failure. The generic evolution in shape of rupture

distributions from slow to fast loading rates is demonstrated

in Fig. 3 with histograms for three of the lipids from

weakest to strongest. Superposed on the histograms are

probability densities for failure predicted by the kinetic

theory for rupture to be developed in the following section.

Immediately apparent in Fig. 3, positions of histograms

shift to higher tensions with increase in loading rate.

Moreover, the shapes of distributions begin to narrow at

FIGURE 1 (Top) Video microscope image of a 20-mm (C18:0/1) PC

bilayer vesicle aspirated into a micropipette. (Bottom) Intensity scans taken

along the axis of symmetry before (solid curve) and the next video step 0.01

s after (dotted curve) vesicle rupture.

FIGURE 2 Membrane tension as function of time for two vesicles made

from diC18:2 PC; one loaded at slow rate and the other at fast rate up to

rupture (noted by asterisks).
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slow rates and broaden asymmetrically on approach to fast

rates; the spreads observed in rupture tension are signifi-

cantly greater than experimental error at all loading rates.

As we will show in the Theory section, the generic changes

in distribution shape, width, and location with loading rate

reveal a switch in impedance to rupture from one kinetic

barrier to another. The parameters that characterize these

dominant energy barriers can be estimated directly from

analysis of the DTS spectrum defined by most frequent

rupture tension versus log(loading rate) which is plotted for

all five lipids in Fig. 4. The fits of the kinetic model to these

spectra were used with a set of statistical master equations

to predict the probability distributions superposed in Fig. 3.

Coincident with evolution in distribution width from narrow

to broad, the spectra in Fig. 4 begin with a shallow rise in

strength at slow loading rates that crosses over to a steep

increase in strength with rate under fast loading. The

crossover signifies a switch in dominance by one kinetic

barrier to another. Finally, from the perspective of material

properties, the DTS plots in Fig. 4 show that the charac-

teristic level of membrane strength increases with lipid

chain length and drops dramatically for polyunsaturated

chains.

THEORY

The major increase in rupture tension at fast rate compared

to slow rate in Fig. 2 clearly demonstrates the intrinsic

dynamical connection between membrane strength and

FIGURE 3 Comparative histograms of rupture tensions collected at slow (top row) and fast (bottom row) loading rates for vesicles made from (left) diC13:0
PC, (middle) C18:0/1 PC, and (right) diC22:1 PC. Superposed on each distribution is the probability density for failure predicted by the kinetic model for

membrane rupture and the parameters listed in Table 1.

FIGURE 4 Dynamic tension spectra defined by the plots of most frequent

rupture tension as a function of log(tension loading rate). Superposed are

continuous curves predicted by the kinetic model for membrane rupture and

the parameters listed in Table 1.
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survival time. Reduction in the likelihood of membrane

survival under stress was appreciated almost a half century

ago by Deryagin and Gutop (1962). Building on the classical

nucleation theory of Zeldovich (1943) for cavitation in three-

dimensional liquids, they theorized that the random—but

limited—lifetime of a thin fluid film stems from thermally

activated nucleation of an unstable hole. In their mesoscopic

theory, Deryagin and Gutop used the mechanics of opening

a hole in a two-dimensional continuum to describe the

energy landscape governing cavitation. Here, the energy of

cohesion is defined by the product of a material edge energy,

e (energy/length), and the hole perimeter, 2pr. Under mech-

anical tension, s, the total energy, E(r), is lowered through

the potential for mechanical work of expansion, E(r)� (2pr)
e� (pr2) s, which becomes the dominant term at large radii.

Thus, a maximum in energy occurs at a critical radius, rc¼ e/

s, and defines the height of the cavitation barrier, Ec ¼ pe2/

s. Both height and radial position of this barrier diminish

reciprocally under a ramp of tension in the course to rupture.

Consequently, as we will show below, the thermally-

activated frequency for hole opening (i.e., passage of the

cavitation barrier) is expected to rise rapidly under a tension

ramp on a scale defined and bounded by sc ¼ pe2/kBT.
In more recent times, observations of electrical conduc-

tance and transient permeation through solvent-spread

membranes (Abidor et al., 1979; Chernomordik et al.,

1985, 1987; Glaser et al., 1988) have revealed that a more

complex energy landscape governs dynamics of membrane

permeation. In particular, fluctuations of voltage-dependent

conductance showed that molecular-scale defects arise and

vanish spontaneously in membranes. Initially, these tran-

sient structures were imagined to be very small hydrophobic

pores that quickly round into hydrophilic structures lined

with lipid headgroups. Consistent with concepts described

earlier by Helfrich (1974), it was expected that rimming the

edge with hydrophilic headgroups should diminish the large

perimeter energy associated with exposure of hydrocarbon

to water and lower the cavitation energy barrier. But

perhaps most significant, it was recently demonstrated from

careful study of transient bursts in membrane conductance

that the spikes in conductance represented sequences of

metastable nanopore states originating within the lifetime of

a closed metastable defect labeled as a pre-pore state

(Melikov et al., 2001). Surprisingly, the results also implied

that no more than one defect was likely to exist in the

membrane at any time (Melikov et al., 2001). Although the

molecular-scale structures of such defects and open holes

in membranes remain unknown, these electrical conduc-

tance measurements have shown clearly that some type of

precursor state must be introduced into the classical theory

of cavitation. Hence, in the idealized concept of config-

urations represented by a radius space, the energy landscape

for open holes would commence from an intermediate state

following a defect nucleation barrier as schematized in

Fig. 5.

Kinetic model for membrane failure

Implicit in the energy landscape sketched in Fig. 5 is the

assumption that an unstable hole is linked causally to

a particular defect, which is supported by the recent studies

of fluctuations in membrane conductance. Thus, although

defects may arise anywhere on the membrane, they remain

rare, isolated events, that either vanish or occasionally evolve

to an unstable hole. Easily understood, membrane rupture is

most likely to occur when tension rises above the level where

the time needed for passage of the cavitation barrier falls to

within the lifetime of a defect. Formulated into a hierarchy of

master equations that simulates the stochastic process of

failure, our model requires analytical prescriptions for each

kinetic rate of barrier passage. Beginning with defect

formation, we assume that the energy rises steeply from the

ground state and is capped by a sharply-curved barrier at an

energy level of Ep defined initially as Ed in the unstressed

state. For a sharp barrier, the height Ep will diminish under

tension in proportion to the effective area of the defect, i.e.,

Ep(s) � Ed � (prd
2)s. Thus, for a thermally-activated rate

of transition ;exp(�Ep/kBT), the frequency of defect for-

mation no!*
will grow exponentially on a scale of tension

defined by sd ¼ kBT/prd
2, i.e.,

no!� ¼ nod expðs=sdÞ: (1)

where the rate prefactor nod scales as exp(�Ed/kBT ). Given
a sharp defect barrier, the energy E* of the metastable state

that follows will drop from its initial level Eo by effectively

the same amount under tension, i.e., E* � Eo � (prd
2)s.

Hence, the rate of defect annihilation no � would remain

approximately constant as expressed by

no � � nod expðEo=kBTÞ: (2)

Finally, rising from the defect state at energy E*, the energy

FIGURE 5 Schematic of the energy landscape in hole radius space used to

model the kinetic process of membrane rupture. The precursor barrier Ed at

rd governs creation of a molecular-scale defect that then either vanishes or

passes over the outer cavitation barrier to catastrophic failure. The height Ec

of the cavitation barrier above the metastable state at energy E* is set by hole

edge energy, e, and mechanical tension, s; i.e., Ec – E* ¼ pe2/s.
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landscape is modeled by the mesoscopic mechanics of open-

ing a hole in a continuous material as described above and

sketched in Fig. 5. Beyond the cavitation barrier defined by

Ec¼E*1pe2/s, an unstable hole opens to cause catastrophic

failure of the membrane. Scaling barrier height by thermal

energy defines the characteristic tension, sc ¼ pe2/kBT, for
thermal activation, i.e., rate ; exp(�sc/s). Because the

outer barrier is inversely proportional to tension in this

mesoscopic model, we see that a defect cannot become an

unstable hole at zero tension and that some level of tension

is needed to rupture the membrane. As found by Deryagin

and Gutop (albeit expressed in a much less organized

relation than given here; Deryagin and Gutop, 1962), the

frequency of opening an unstable hole n
*!hole is predicted

to increase dramatically with application of tension up to

the level defined by sc,

v�!hole ¼ vdcðs=scÞ1=2expð�sc=sÞ fs\scg: (3)

The origin (via Zeldovich) of Eq. 3 comes from Kramers’

Brownian-dynamics theory (Kramers, 1940; Hanggi et al.,

1990) for thermally-activated escape from a deeply-bound

state. Deceptively simple, Kramers’ result in the overdamped

limit can be summarized in a generic expression for

transition (escape) rate, i.e., n! ¼ (D/lolts)exp[�Eb/kBT ].
The major factor is exponential dependence on height of

the barrier Eb, which for two-dimensional cavitation is

exp(�sc/s). The Brownian-diffusive dynamics are embod-

ied in an attempt frequency, D/lolts, which is governed by

a coefficient of damping z ([kBT/D) and the product of two

length scales lolts. The length lo is defined by the thermal

spread in bound state local to the minimum. In the context of

hole dynamics, fluctuations in bound state are confined by

the perimeter-edge energy and thus the thermal spread is

approximated by, lo � kBT/(2pe). The other length, lts, is the
energy-weighted width of the transition state. Governed by

the fall in energy away from the top of the cavitation barrier,

�p(r � rc)
2s, the thermal barrier width can be estimated by

the Gaussian approximation, lts � (kBT/s)
1/2. As a conse-

quence of the variable barrier width, the attempt frequency in

Eq. 3 is modulated by a weak tension-dependent function

(s/sc)
1/2. Taken together, these approximations predict an

attempt frequency prefactor ndc that depends on the ratio of

the tension scale to damping coefficient, ndc � 2p1/2sc/z.

Continuing with the perspective of Kramers’ theory, it

follows that the frequency nod for spontaneous nucleation of

defects should vary as nod ; [kBT/(zrd
2)]exp(�Ed/kBT), if

rd
2 is used to approximate the product lolts. As above, a ratio

of thermal tension scale to damping coefficient sets the scale

for attempt frequency and we obtain the expression, nod
; (psd/z)exp(�Ed/kBT). Thus, if a common factor z

characterizes damping of Brownian fluctuations over the

entire energy landscape, the attempt frequency ndc for

passage of the cavitation barrier should be directly related to

the spontaneous frequency nod of defect formation through

the height of the defect barrier, i.e., ndc/nod� (sc/sd)exp(Ed/

kBT). Although hypothetical, the assumption of a nearly-

constant damping factor is not unreasonable given the very

small area compressibility of biomembranes (Rawicz et al.,

2000). Very small compressibility implies that changes in

area caused by defect creation/annihilation and fluctuations

in hole size would produce in-plane collective flows at

essentially constant surface density. For simple radial flow,

membrane surface-shear viscosity hm determines the damp-

ing of circular fluctuations (i.e., z � 4phm). Completely

obscure in this type of mesoscopic model, the frequency

scales nod and ndc could involve an unknown prefactor

ascribed to the number of sites Nd for defect formation in

a macroscopic membrane. However, as noted above, careful

study of fluctuations in membrane conductance indicate that

only a single defect state is likely to exist in the membrane at

any time (Melikov et al., 2001). So we neglect the putative

factor Nd, which in any case merely remains a hidden

homogeneous constant that arbitrarily scales time.

Dynamic regimes of membrane strength

The hypothesis is that membrane rupture arises from one

unstable hole and that this hole must evolve during the

lifetime of a particular defect. Hence, with the frequencies

defined by Eqs. 1–3, we employ the following hierarchy of

statistical (Markov) master equations to predict the causal

sequence of defect formation and annihilation or evolution to

an unstable hole:

dSoðtÞ=dt ¼ �no!�SoðtÞ1 no �S�ðtÞ;

dS�ðtÞ=dt ¼ �½no �1 n�!hole�S�ðtÞ1 no!�SoðtÞ;

dSholeðtÞ=dt ¼ n�!holeS�ðtÞ: (4)

So(t), S*(t), and Shole(t) are the probabilities of being in the

defect-free ground state, metastable state, and ruptured state

respectively. The last equation specifies the probability

density for rupture events in a window of time t ! t 1 Dt,
i.e., prup(t) ¼ dShole(t)/dt. Under a ramp of tension s(t) ¼
<st, the distribution of rupture times is transformed by

loading rate <s (¼ ds/dt) into the distribution of rupture

tensions, i.e., prup(s) ¼ n
*!hole S*(s)/<s.

Simple inspection of the energy landscape (Fig. 5) shows

that the outer cavitation barrier will fall below the defect

barrier when tension rises above a level such that (Ed � Eo)/

kBT [ sc/s. As a consequence, the model predicts two

distinct regimes in the spectrum of rupture tension as

a function of loading rate. First, a high strength regime at fast

loading rates arises when rupture is limited by creation of

a defect. Second, a low strength regime at slow loading rates

arises when rupture is limited by opening of a hole (i.e.,

passage of the cavitation barrier) within the lifetime of

a defect. In each regime away from the crossover, the
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statistics of transitions can be approximated by solution to

a single Markov equation using one of the following

expressions for the limiting transition rate n[s(t)]:

Defect-limited: nðsÞ � nod expðs=sdÞ;
Cavitation-limited: nðsÞ � n9dcðs=scÞ1=2 expð�sc=sÞ
fs\scg: (5)

Please note that the passage of the cavitation barrier must

occur within the lifetime of a defect; thus, the effective

frequency scale for the cavitation-limited regime depends on

defect annihilation, i.e., n9dc � ndc expð�Eo= kBTÞ or ;nod
exp(Ed � Eo/kBT). When dominated by one barrier, the

distribution of rupture events in time becomes pðtÞ ¼
nðtÞexpf�

R
o!t

nðt9Þdt9g, and the distribution of rupture

tensions is again obtained through transformation by

the loading rate, pðsÞ ¼ ½nðsÞ=<s�expf�ð1=<sÞ
R
o!s

nðs9Þds9g. The peak in the tension distribution (most

frequent rupture) defines the rupture strength, s, expected at

the loading rate <s. The dependence of expected strength s

on loading rate is easily derived from the maximum of the

probability distribution @p/@s ¼ 0, which yields the generic

relation, n(s) ¼ <sf@ log(n)/@sgs¼s. With this expression

and the frequencies of barrier passage given in Eq. 5, the

regimes of strength dominated by each barrier are predicted

as functions of loading rate:

Defect-limited:s=sd � Logeð<s=nodsdÞ;
Cavitation-limited: �sc=s1Loge½ðs=scÞ5=2=ð11s=2scÞ�
� Logeð<s=ndc9scÞ: (6)

The defect-limited regime is a simple straight line with slope

sd, which extrapolates to a loading rate intercept given by,

<so ¼ nodsd. By comparison, the cavitation-limited regime

is a shallow nonlinear curve that rises very slowly as rate

increases over many orders of magnitude. The distinctly

different shapes of the two limiting regimes result in a

prominent crossover in membrane strength when the loading

rate is fast enough to rapidly suppress the outer cavitation

barrier leaving the defect barrier as the dominant impedance

to rupture. As we will show next, estimates of the parameters

governing strength can usually be obtained by matching Eq.

6 to the appropriate portions of an experimental spectrum.

However, match of the full solution of the Markov process

(Eq. 4) to the measured distributions provides the best

quantification of the kinetic parameters and is also needed to

place a bound on the metastable state energy Eo.

ANALYSIS OF EXPERIMENTS

Analysis of a complete membrane rupture experiment is best

begun by matching the strength regimes in Eq. 6 to appro-

priate segments of a DTS spectrum. The tests of C18:0/1

(SOPC) vesicles are well suited to demonstrate the coarse-

grained methods used to analyze each strength regime.

However, clear identification of both regimes can be difficult

when the frequency of defect formation is either very small

(e.g., diC22:1) or very large (e.g., diC13:0). In such cases,

parameter estimates can be readily obtained for one regime;

but full analysis of the tension distributions at all rates is

needed to accurately specify parameters of the other regime.

As shown with the SOPC spectrum in Fig. 6 top, the first
stepwas tomatch a straight line to the high strength data at fast

loading rates[10 mN/m/s, consistent with the defect-limited

regime of strength shown in Eq. 6. The outcome was

a spontaneous rate for defect formation nod (� 0.18/s) and

a tension scale sd ¼ kBT/rd
2 (� 4 pN) set by defect size. The

next step was to match the cavitation-limited regime to the

lower level of rupture tension at slow loading rates. As seen in

Fig. 6 bottom, fit of the cavitation-limited regime was much

less sensitive to the choice of parameters defined by the edge

FIGURE 6 Demonstration of the initial step in analysis of DTS measure-

ments using the spectrum from tests on C18:0/1 PC vesicles. (Top) A

straight line fit to high strengths at fast loading rates represents defect-limited

kinetics. The intercept and slope of this line reveal the spontaneous frequ-

ency for formation of defects, nod ; 0.18/s, and tension scale for rate ex-

ponentiation, sd ; 4 mN, as set by defect area (i.e., sd ¼ kBT/prd
2).

(Bottom) Three shallow-curved regimes matched to the slowest loading rate

result represent cavitation-limited kinetics. As noted on the figure and

described in the text, each of these curves depends on a second tension scale,

sc, which is set by hole edge energy (i.e., sc ¼ pe2/kBT), and an attempt

frequency, ndc, for passage of the cavitation barrier. To fit the data over an

extended span in loading rate, the parameter values were restricted to sc �
130 mN/m with corresponding rate scale ndc ;107/s.
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energy (tension scale sc ¼ pe2/kBT) and attempt rate n9dc. If

only required to fit the rupture strength at one value, a mere

twofold change of tension scale in a cavitation-limited regime

was accompanied by a many orders-of-magnitude change in

the rate scale (e.g., n9dc; 103–1011/s forsc; 80–200mN/m).

However, extending the fit to cover a large span in loading rate

(e.g., 0.07–3 mN/m/s) significantly narrowed the range of

acceptable values to sc; 120–140 mN/m (i.e., e; 136 0.5

pJ/m) and ndc ;106–107/s. Using these parameter estimates

and the Markov equations (Eq. 4), the final step in data

analysis was to refine the values by matching the probability

densities for failure to all of the histograms at different loading

rates. Examples of tension distributions that result from this

procedure are superposed on the histograms in Fig. 3 and the

continuous spectra of rupture strength are plottedwith the data

formost frequent rupture tension in Fig. 4. Here, fits to tension

distributions measured in the crossover region from the

cavitation-limited to defect-limited regime were particularly

useful for restricting the model parameters in difficult cases

like diC13:0 and diC22:1. The reason is that in the crossover

region, a distribution is narrow and rises steeply on the low

tension side of the peak but is broadened significantly and falls

more gradually on the high tension side. The asymmetry

stems from a major difference in kinetic impedance between

the two cavitation and defect barriers under tension.

In the final step of fitting probability densities to the

measured histograms of tension, the metastable state energy

Eo became an additional parameter. Because of the enormous

difference in timescales between cavitation-limited and

defect-limited kinetics, the kinetics of hole opening are

bounded by the lifetime of the metastable state, which is

effectively determined by the reciprocal of the rate of defect

annihilation, no *
� no exp(Eo/kBT). Hence, the frequency

scale for excitations local to the metastable state depends on

the exponential weight, exp[�(Ed � Eo)/kBT]. In matching

all of the distributions for the five lipids, the only clear

requirement for optimal fit was a lower bound of 0–3 kBT on

the values of Eo relative to the defect-free ground state. As

such, the distributions of rupture tension under slow loading

were indistinguishable for any higher value of Eo given

a commensurate increase in height of the defect barrier Ed.

Signified by the asterisk in Table 1, values of ndc are given

for a lower bound of Eo ; 0 kBT; for Eo ;3 kBT, the values
shift upward by an order of magnitude.

The parameters listed in Table 1 were used to the compute

the final tension distributions for each type of lipid bilayer as

seen in Fig. 3 and the continuous DTS curves in Fig. 4. The

most pronounced variations of parameters in Table 1 are

among the values for spontaneous frequency of defect for-

mation, nod, and edge energy, e. Immediately apparent based

on our previous measurements of membrane elasticity and

thickness properties (Rawicz et al., 2000), the variations in

edge energy, e, and the barrier energy, Ed, that governs

frequency of defect formation, nod, can be correlated to

changes in membrane bending stiffness (Fig. 7 top) and

hydrocarbon thickness (Fig. 7 bottom), respectively. In the

latter case, the barrier energies were calculated from the

ratios of tension and frequency scales in Table 1 according to

the relation, Ed/kBT � Loge(sd/sc) 1 Loge(ndc/nod), which

assumes that a common damping coefficient characterizes

both defect and hole dynamics.

TABLE 1 Material parameters that govern strength

of PC membranes

nod s
�1 sd mN/m rd nm ndc* s�1 sc mN/m e pJ/m

diC13:0 8.0 ;3 0.66 ;1 3 106 30 6.2

diC18:2 2.0 3.5 0.61 ;1 3 106 30 6.3

diC18:1 0.22 4.0 0.57 ;3 3 106 102 11.5

C18:0/1 0.18 4.0 0.57 ;5 3 106 130 13

diC22:1 0.09 4.5 0.54 ;8 3 106 220 17

FIGURE 7 (Top) Correlation of hole edge energy from Table 1 to

membrane elastic-bending stiffness as measured by micromechanical tests

(Rawicz et al., 2000). (Bottom) Correlation of defect barrier energy

estimated from the ratios of tension (sd/sc) and frequency (ndc/no) scales

in Table 1 to membrane core-hydrocarbon thickness as derived from x-ray

diffraction measurements (Rawicz et al., 2000). Described in the text, defect

barrier energy is defined by Ed/kBT � Loge(sd/sc) 1 Loge(ndc /no). The

open circles are values of ndc in Table 1 based on a lower bound of Eo ;

0 kBT. At Eo;3 kBT, values of ndc are increased 10-fold and barrier energies

shift upward correspondingly.
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CONCLUSIONS

For fluid membranes made from five diacyl PCs, we find two

distinct regimes of rupture strength as a function of dynamic

loading. Under very slow ramps of tension, a low strength

regime appears where rupture tension increases weakly with

ramp rate (i.e., only ;1–2 mN/m over at least two orders of

magnitude in rate) and the tension distributions are very

narrow. But under fast ramps of tension, a high strength

regime emerges where rupture tension rises dramatically

(as much as 10 mN/m change for an order-of-magnitude

increase in rate) and the tension distributions are significantly

broadened. In earlier work (Evans and Ludwig, 2000), we

tested rupture strength versus loading rate for three of these

lipids up to ;10 mN/m/s but were puzzled that predictions

of the cavitation theory always failed to curve upward fast

enough to match rupture tensions at the fastest rates as

demonstrated in Fig. 6 bottom. Hence, our experimental

system was redesigned to enable precision detection of

vesicle boundary displacements at 50-fold faster video rates

and to provide fivefold faster pressure ramps. Using the new

apparatus, the original tests were redone with an increase in

statistics from ;40 to ;100 vesicles at each rate and

additional tests were performed at significantly faster loading

rates (i.e.,[20 mN/m/s in Figs. 4 and 6). Since the rupture

strengths continued to depart from the cavitation prediction

at the highest rates in direct proportion to log(loading rate), it
was clear that some type of defect is nucleated before hole

opening. As such, membrane rupture is most likely to occur

when tension rises above the level where the time needed for

passage of the cavitation barrier falls to within the lifetime of

a defect. Based on this model, both the shape and functional

form of each rupture distribution are well predicted by

a Markov sequence where the rupture process begins with

nucleation of a nanoscale defect that then either disappears or

evolves to become an unstable hole.

As emphasized earlier, similar concepts arose from the

early studies on electrical conductance, transient permeation,

and breakdown of solvent-spread membranes under constant

tension (Abidor et al., 1979; Chernomordik et al., 1985,

1987; Glaser et al., 1988; Barnett andWeaver, 1991). But the

most relevant evidence in support of the stochastic events

described by our model comes from the recent detailed study

(Melikov et al., 2001) of fluctuations in membrane

conductance under low voltages. Here, it was found that

bursts of transient, ;1-nm holes open and close within the

lifetime of a pre-pore defect state (Melikov et al., 2001).

Moreover, it was concluded that the pre-pore defect must be

a local-isolated nonconductive state distinct from the closed

ground state. Significantly, our DTS experiments imply that

nucleation begins with a defect of ;1-nm cross-section and

that the defect lifetime ranges from ;0.1 s to 10 s, which is

similar to the survival of the pre-pore state deduced from

bursts in electrical activity. Also consistent with other

experiments, the edge energies in Table 1 are within the span

of ;10–20 pJ/m found in earlier studies using natural

lecithins (Harbich and Helfrich, 1979; Chernomordik et al.,

1985) and ;10 pJ/m found in vesicle electroporation

experiments using synthetic C18:0/1 PC (Zhelev and

Needham, 1993). Given the added complexity of electric

fields plus the presence of organic solvent in the case of the

BLM experiments, the consistency between parameters

obtained from electrical permeation and our mechanical

DTS experiments (Table 1) strongly supports the efficacy of

the simple kinetic model.

In addition to the consistency with electrical conductance

and permeation experiments just described, correlations of

edge energy and defect barrier energy to membrane elasticity

and thickness reinforce basic tenets of the kinetic model and

provide important insights into the material determinants

of strength. First, for reasons noted earlier, edge energy is

expected to depend in some way on membrane bending

rigidity based on the traditional concept of a rounded-

hydrophilic edge lined with lipid headgroups. But more

subtle, the linear correlation between edge energy and

bending stiffness in Fig. 7 top yields a length kc/e� 7 nm that

is much larger than the ;2-nm thickness for a monolayer.

Based on simple energetic concepts, this length should

characterize the effective radius of curvature for the edge. As

such, the large length scale seems to indicate that the edge

shape for a membrane hole is much flatter than a circular

contour. Concomitantly, the acyl chains would deviate

significantly from the surface normal and appear to be

sheared relative to the membrane plane. Moreover, the edge

region would encompass a large number of lipids. Perhaps

coincidental, snapshots of pore formation obtained recently

in molecular dynamics simulations of a membrane under

mechanical stress seem to exhibit similar cusplike shapes

(D. P. Tieleman, H. Leontiadov, A. E. Mark, and S.-J.

Marrink, unpublished results). In addition, although the

range is limited, it is interesting that the estimated heights of

defect barriers increase in proportion to membrane-hydro-

carbon thickness (compare to Fig. 7 bottom). Assuming that

barrier energy vanishes at zero thickness, the proportionality

is estimated to be ;4–5 kBT per nm. This energy per length

is severalfold less than expected for exposure of the acyl

chains to water, which seems consistent with a hole edge

bordered with lipid headgroups. As a corollary to the barrier

heights plotted in Fig. 7 bottom, the ratios sc/ndc of tension

scale to attempt frequency in Table 1 provide an upper bound

on the coefficient for damping of Brownian excitations in

lipid membranes. Because of the weak sensitivity of the

cavitation-limited regime to changes in attempt frequency as

shown in Fig. 6 bottom, the bound on damping coefficient

can only be narrowed to an order-of-magnitude range, i.e., z

; 13 10�4 mN s/m (or;13 10�5 mN s/m for Eo;3 kBT).
In regard to dynamics, our observation that projection

lengths always vanished within one video time step

(;0.005–0.010 s) sets an upper bound to hole opening

time. If we neglect the drag of water on the membrane,
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a simple continuum model predicts the time, thole, for

opening a hole. Under tension rising at rate <s above the

rupture level, srupt, the opening time is easily shown to be

approximately thole ; tm log[srupt/(tm<s)], where the time-

scale, tm, is set by the ratio of surface viscosity to rupture

tension, tm ¼ (2hm/srupt). Based on the damping coefficient

deduced from kinetics of rupture, hm � z/4p ; 10�5 mN s/

nm, we would expect holes to open within;30–100 ms even

at the slowest loading rate of <s ; 0.01 mN/m/s and low

rupture tensions of ;2 mN/m (as for diC13:0). At the same

time, disappearance of the vesicle projection length within

the video observation time sets an upper bound of ;10�3

mN s/m on surface viscosity.

Finally, in related work, Bermudez et al. (2002) reported

interesting measurements of rupture strength under slow

loading rates for polymersome membranes made with

poly(elthyleneoxide)-poly(butadiene) diblock copolymers.

These membranes were two- to fivefold thicker than the

thickest (diC22:1) PC membrane tested here. In their study,

Bermudez et al. (2002) concluded that rupture strength

increased as a modest 1.6 power of polymersome-membrane

thickness. By comparison, we find a much stronger increase

of strength with lipid chain length at slow loading rates for

thin PC bilayers (compare to Fig. 4). Although not a simple

power law, rupture strengths of PC bilayers at slow rates of

loading increase qualitatively as thickness to ;4–5 power,

which is expected from the dependence of the cavitation-

limited regime on square of edge energy and the dependence

of edge energy on square of thickness. However, as indicated

by the results for diC22:1, we expect rupture strength of

thick membranes to shift upward mainly through a shift of

the defect-limited regime to slower loading rates, i.e., an

increase in defect energy barrier. Hence, the observation by

Bermudez and co-workers that the strength of polymersome

membranes increases modestly with thickness would be

consistent with our finding that the defect energy barrier

increases in approximate proportion to thickness.
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