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Molecular Dynamics Simulation of Protein Folding by Essential Dynamics
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ABSTRACT A new method for simulating the folding process of a protein is reported. The method is based on the essential
dynamics sampling technique. In essential dynamics sampling, a usual molecular dynamics simulation is performed, but only
those steps, not increasing the distance from a target structure, are accepted. The distance is calculated in a configurational
subspace defined by a set of generalized coordinates obtained by an essential dynamics analysis of an equilibrated trajectory.
The method was applied to the folding process of horse heart cytochrome c, a protein with ;30008 of freedom. Starting from
structures, with a root-mean-square deviation of ;20 Å from the crystal structure, the correct folding was obtained, by utilizing
only 106 generalized degrees of freedom, chosen among those accounting for the backbone carbon atoms motions, hence not
containing any information on the side chains. The folding pathways found are in agreement with experimental data on the
same molecule.

INTRODUCTION

The characterization of the protein folding process represents

one of the major challenges in molecular biology. Large

theoretical and experimental research efforts have been

devoted to this end (Onuchic et al., 1997; Dill and Chan,

1997; Dobson and Karplus, 1999; Alm and Baker, 1999).

Computer simulations have been largely used, coupled to

theoretical approaches, to address this question and molec-

ular dynamics (MD) simulations is one of the most used

computational methods. The major problem with MD

simulations is due to the conformational sampling efficiency;

in fact even in the 1-ms simulation of a 36-residue protein

(Duan and Kollman, 1998), one of the longest simulations so

far afforded, the sampled space explored represents a small

fraction of the available conformational space. For this

reason different techniques have been proposed to overcome

this limit. Three kinds of MD techniques can be identified:

the common approach is to unfold starting from the native

state under denaturing conditions, mainly high temperature

(Mayor et al., 2000; Alonso and Daggett, 2000; Pan and

Daggett, 2001). However, the unfolding process is not

necessarily the reverse of the folding process and therefore

the issue of whether unfolding simulations are representative

for the folding process is still open (Finkelstein, 1997).

Another way of addressing this problem is the so-called

biased-sampling free-energy method (Boczko and Brooks

III, 1995; Sheinermann and Brooks III, 1998; Shea and

Brooks III, 2001), in which high temperature unfolding

simulations are followed by the calculation of the free energy

of a folding process at 300 K, along the previously de-

termined path. Also this elegant, but time-consuming,

method is based on the hypothesis that the unfolding process

at high temperature and the folding process at 300 K follow

the same path. The third method is the targeted molecular

dynamics, in which an additional time-dependent harmonic

restraint, applied on each atom, continuously decreases the

all-atom root-mean-square deviation from the native state

(Ferrara et al., 2000). Targeted molecular dynamics has been

previously used to calculate reaction paths between two

conformations of a molecule (Schlitter et al., 1993; Diaz

et al., 1997; Ma and Karplus, 1997).

In this article we present a different computational

approach to the folding problem, based on the essential

dynamics sampling (EDS) (Amadei et al., 1996; de Groot

et al., 1996). In the essential dynamics (ED) (Amadei et al.,

1993), or principal component (Garcı́a, 1992), analysis a new

Cartesian reference system is obtained; each new axis

(eigenvector), obtained by the diagonalization of the co-

variance matrix of positional fluctuations, corresponds to

a collective motion of the system and after sorting the

eigenvectors, according to the displacement involved in each

one (eigenvalues), the first ones correspond to the large

concerted motions of the system and the last ones represent

the collective quasiconstraint (usually referred to as near-

constraint) vibrations. The EDS technique was introduced to

increase (or decrease) the distance from a reference structure.

To this end, the distance is calculated in the new reference

system (obtained by the previously described ED analysis

of an equilibrated trajectory) using only a subset of the

generalized degrees of freedom of the system, i.e., a subset of

the eigenvectors. As reported in the Methods section, with

EDS a usual MD simulation is performed in each step; the

new position is accepted if the step does not decrease (or

does not increase) the distance from the reference structure in

the chosen subspace. Otherwise the current structure is

projected onto the closest configuration, with the same

distance of the previous one in the chosen subspace. Al-

though proposed in 1996, this technique was never used to

follow the folding process of a protein. It has to be pointed
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out that with this biased MD simulation no deterministic

force is added to the system and the correct folding can be

obtained by using a small fraction of the degrees of freedom

of the protein to bias the simulation. In the present case these

degrees of freedom were chosen among those accounting for

backbone carbon atoms motions, hence not containing any

information on the side chains.

Here we present the results obtained in the EDS folding

simulation of cytochrome c (cyt c). Cyt c is a globular protein

of 104 amino acids, whose folding dynamics has been

subjected to extensive experimental investigations (Akiyama

et al., 2000, 2002, Segel et al., 1999; Ohgushi and Wada;

1983; Xu et al., 1998; Shastry et al., 1998; Hagen and Eaton,

2000). In particular, fluorescent data (Shastry et al., 1998;

Pollack et al., 1999) from Trp-59 suggested an early collapse

of the main chain structure within 100 ms; time-resolved

circular dichroism (Akiyama et al., 2000) and small-angle

x-ray scattering, SAXS (Akiyama et al., 2002) suggested

thepresenceof two folding intermediates having;0.5-ms and

;7-ms lifetimes. The SAXS measurements also suggested,

in agreement with theoretical investigations on different

proteins (Brooks III, 2002; Guo et al., 1997; Alonso and

Daggett, 2000), that after an initial decrease of the radius

of gyration, the main-chain collapse of the structure and

the secondary structure formation are mostly concerted.

Interestingly, recent fluorescence energy transfer studies on

the iso-cytochrome c folding (Lyubovitski et al., 2002), pro-

viding the distribution of distances between donor- and

acceptor-labeled residues, suggested that only a small

fraction of the collapsed structures correctly folds. In fact,

most of those structures adopt frustrated topologies separated

by large energy barriers from the folding funnel.

METHODS

Molecular dynamics simulations

The starting structure for the simulation at 300 K was taken from the 1.94 Å

resolution refined crystal structure of the protein cyt c (PDB entry is 1hrc)
(Bushnell et al., 1990) (Fig. 1). The simulated system was set up as described

elsewhere (Roccatano et al., 2003). All MD simulations were performed

using the GROMACS software package and the GROMOS87 force field

(van Gunsteren and Berendsen, 1987) was used with modification as

suggested by van Buuren et al. (1993); explicit hydrogen atoms in aromatic

rings were simulated (van Gunsteren et al., 1996). The protein was solvated

with water in a periodic rectangular box of dimensions 67.90 3 63.27 3

72.26 Å. The SHAKE algorithm (Ryckaert and Bellemans, 1975) was used

to constrain all bond lengths, the simple point charge (Berendsen et al.,

1981) water model was used and the temperature was kept constant with the

isokinetic temperature coupling (Brown and Clarke, 1984). A nonbond

pairlist list cutoff of 9.0 Å was used and the pairlist was updated every four

timesteps. The long-range electrostatic interactions were treated with the

particle-mesh Ewald method (Darden et al., 1993) using a 563 533 60 grid

combined with a fourth-order B-spline interpolation to compute the potential

and forces in between gridpoints. A timestep of 2 fs was used for numerical

integration.

Essential dynamics analysis

Amolecular dynamics simulation at 300 K was performed for 2660 ps. From

the equilibrated portion of the trajectory (beyond 160 ps) the covari-

ance matrix, of order 312, of the positional fluctuations of the Ca carbon

atoms was built up and diagonalized. The procedure yielded new axes

(eigenvectors), representing the directions of the concerted motions. The

corresponding eigenvalues gave the mean-square positional fluctuation for

each direction (Amadei et al., 1993).

ED sampling

The ED sampling (EDS) technique (Amadei et al., 1996; de Groot et al.,

1996) is based on a previous essential dynamics analysis and it is used to

increase (expansion procedure) or decrease (contraction procedure) the

distance from a reference structure. For each step a regular MD simulation is

performed and the distance between the current structure and the reference

structure is calculated. The step is accepted if the distance between the

current structure and the reference does not decrease (expansion procedure)

or does not increase (contraction procedure), otherwise the coordinates and

velocities are projected radially onto the hypersphere (in the chosen

subspace) centered in the reference, with radius given by the distance form

the reference in the previous step (Fig. 2). It has to be pointed out that no

additional deterministic forces are added and that, in the present case, the

eigenvectors were obtained by the diagonalization of the matrix of the

positional fluctuations of the backbone carbon atoms (104 carbons, i.e., 312

eigenvectors), so that they do not contain any information on the other

atoms, in particular on the side chains.

FIGURE 1 Crystal structure of cytochrome c.

FIGURE 2 Essential dynamics sampling; example for the contraction

procedure in a bidimensional case. (A) structure at step i; (B) structure at step

i 1 1; (B9) new structure at step i 1 1. The labels ev1 and ev2 represent

eigenvectors 1 and 2, respectively.
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Unfolding/refolding simulations

To produce the starting unfolded structures the EDS technique at 300 K was

used in the expansion mode (Amadei et al., 1996; de Groot et al., 1996),

utilizing all 306 native eigenvectors (the last six eigenvectors represent the

overall rototranslation and have zero eigenvalues). Ten unfolding simu-

lations were performed, starting at different times of the 2660-ps simulation

of the native structure, utilized in the ED analysis. Preliminary EDS folding

simulations were performed with different procedures: a first simulation

used all the 306 native backbone carbon atom eigenvectors to calculate the

distance from the target and apply the bias (EDS procedure). Starting from

the same unfolded structure three additional simulations were performed by

using the EDS procedure with three lower dimensional subspaces:

eigenvectors 1–100, 101–200, and 201–306, respectively. Finally, nine

additional simulations, starting from the nine previously determined

unfolded structures, were performed using the last subspace (eigenvectors

201–306) for the EDS procedure.

Contacts

According to the GROMACS definition, a contact between residues i and j

[ (i 1 3) was considered present if the smallest distance between any two

atoms, belonging to the two residues, was\5.5 Å. The fraction of native

contacts, r, is calculated with respect to the crystal structure.

RESULTS AND DISCUSSION

Starting from the crystal structure, a 2660-ps simulation

at 300 K, in explicit solvent, was performed. From the

equilibrated portion of the trajectory (beyond 160 ps) the

covariance matrix of the positional fluctuation of the Ca

carbon atoms was built and diagonalized. The main struc-

tural properties of the equilibrated portion of the trajectory

are reported in Table 1.

Starting from the structure at 2500 ps of the 300-K

simulation, an unfolding simulation was performed by an

EDS expansion procedure at T ¼ 300 K using all the 306

native eigenvectors and the crystal structure as reference.

The final structure (RUN 1 in Fig. 3) was characterized by

radius of gyration (Rg) of 18.94 Å and (with respect to the

crystal structure) by root-mean-square deviation (RMSD) of

the Ca carbon atoms of 19.13 Å , fraction of native contacts

of 0.23, and native helix content (u) of 28%.

The refolding process was simulated by the EDS

contracting procedure, using all the 306 native eigenvectors

(ALL) to bias the system toward the target. The Ca RMSD,

TABLE 1 Structural properties in the crystal (row 1), in the MD simulation of the native structure (row 2) and at the end of the

refolding trajectories (rows 3–6)

RMSDCa* (Å) RMSDsc* (Å) Rg (Å) r* %helix* u* (%)

Crystal – – 12.64 1.00 41 100

Native 1.44(0.22) 2.53(0.20) 12.70(0.20) 0.84(0.01) 42(4) 94(3)

ALLy 0.40(0.02) 2.44(0.04) 12.76(0.02) 0.83(0.01) 40(1) 94(2)

SET1y 2.43(0.02) 5.74(0.05) 12.98(0.02) 0.50(0.01) 10(3) 28(6)

SET2y 5.32(0.10) 7.13(0.08) 13.61(0.05) 0.54(0.01) 17(2) 35(7)

SET3y 2.33(0.07) 3.82(0.07) 13.11(0.05) 0.73(0.01) 43(2) 98(2)

*The RMSD values, RMSDCa and RMSDsc, the native contacts content, r, and the native helix content, u, are calculated with respect to the crystal structure.

%helix represents the total helix content.
yAll the values are averaged over the last 100 ps of each trajectory; standard deviations are in parentheses.

FIGURE 3 Ribbon diagrams of the crystal structure and

of the starting unfolded structures of the refolding

trajectories. The N- and C-terminal residues are repre-

sented by a black and a gray circle, respectively.
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with respect to the target, reached very rapidly, i.e., within

250 ps, a value close to 1.0 Å and the average structure over

the last 100 ps was close to the target one (Table 1).

To characterize the different contribution of the native

eigenvectors to the refolding process, they were divided into

three sets: eigenvectors 1–100, 101–200, and 201–306.

Using these three sets for the EDS procedure, three new

refolding simulations (SET1, SET2, and SET3) were per-

formed. As reported in Table 1, only the last set gave an

average final structure close to the target one. In Fig. 4 the

ribbon diagrams of sequential snapshots along the refolding

trajectory using SET3 are represented. This result suggests

that the most rigid quasiconstraint eigenvectors, represent-

ing in the folded protein the smallest collective vibrations,

contain the proper mechanical information for the folding

process. It is also worth noting that a correct folding was

obtained using in the EDS procedure only 106 eigenvectors

for a protein of;30008 of freedom. These eigenvectors seem

to control and constrain the internal motion of the secondary

structure or loop elements, as shown in Fig. 5, where we

report the fractional decomposition of the overall Ca

displacement due to each single eigenvector into internal

and rototranslational (with respect to the Ca centroids) ones.

The results, for the terminal helices, 609s helix, and loop 1,

make evidence that the last set of eigenvectors mostly

represents internal collective vibrations, i.e., within the

secondary structure or loop element considered. In addition

it is evident from the fractional mean square displacement

per atom (obtained by the eigenvectors components) in the

native structure simulation, calculated for the helices and the

loops, along each eigenvector (Fig. 6), that eigenvectors in

the range of 210–275 are mainly involved in the loops

motion, whereas eigenvectors in the ranges of 200–210 and

275–306 are mainly involved in the helices motion. The

mean-square displacement per atom of a helix or a loop was

calculated averaging the sum of the square components of

each eigenvector of the atoms belonging to secondary

structure or loop element, respectively.

Taken together, these results show that, although the

correct folding can be obtained using all the 306-Ca carbon

eigenvectors, a folded structure of comparable quality can be

obtained using only the last 106 eigenvectors. In what

follows we will perform different independent folding sim-

ulations using this last set of eigenvectors. This because we

want to use the least biased procedure in our folding simu-

lations and find out the main mechanical information neces-

sary for the folding process.

To have a better statistics we performed nine additional

independent unfolding simulations starting at different times

of the native simulation, thus obtaining different final

structures (Fig. 3 and Table 2). The EDS refolding sim-

ulations (RUNS 2–10) were performed for 1.0–1.5 ns, with

the same procedure adopted for SET 3: 300 K and utilizing

only eigenvectors 201–306 in the EDS procedure. The re-

sults, reported in Table 3 (RUN 1 of Table 3 coincides with

FIGURE 4 Ribbon diagrams of sequential snapshots along the refolding

trajectory using SET3.

FIGURE 5 Fractional Ca internal (black) and rototranslational, with

respect to the Ca centroids (gray), displacements for the Nter helix (top left),

Cter helix (top right), 609s helix (bottom left), and loop 1 (bottom right),
versus the eigenvector index.

FIGURE 6 Fractional mean-square displacement per atom (obtained by

the eigenvector components) along each eigenvector, calculated for the

helices Nter, Cter, and 609s (left), and for the loops 1, 2, and 3 (right).
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SET3 of Table 1), show that simulations from 1 to 5 con-

verged well to the target structure with values comparable

with the native structure simulation (Table 1). Simulations

6–8 did not show RMSD, native contacts, or helix content

in agreement with the target. Simulations 9 and 10 are doubt-

ful because, although they show values comparable with the

native structure, the terminal helices do not show a proper

folding. In fact, the RMSD (with respect to the crystal of

the terminal helices), averaged over the last 100 ps, is much

larger than in RUNS 1–5, being�4.5 Å in respect to�2.0 Å.

In addition, as discussed later, they show a small value of

native contacts content between the terminal helices. Interest-

ingly, recent fluorescence energy transfer studies on the iso-

cytochrome c folding (Lyubovitski et al., 2002), measured

the distribution of distances between donor- and acceptor-

labeled residues and suggested that only a fraction of the col-

lapsed structures correctly fold. It has to be pointed out (Fig.

3) that the starting structures of simulations 6–10 did not

have any contact between the terminal helices, as shown by

the N- and C-terminal residues represented by a black and

a gray circle, respectively. Hence the contact between the

terminal helices seems to be a prerequisite for a proper fold-

ing, in agreement with the hypothesized role of these contacts

in the cyt-c folding process (Colon et al., 1996; Marmorino

et al., 1998; Xu et al., 1998). Fig. 7 (RUN 1–5) shows that

the correct folding is obtained when the native contacts be-

tween the terminal helices precede those between helices 609s

and C-ter. The process is reversed in RUN 9 and RUN 10,

where the contacts between the terminal helices reached

;50% of the native structure value.

The correlation among the native contacts content, the

radius of gyration and the helix content in the EDS fold-

ing trajectories (Fig. 8) for RUNS 1–10 shows that the folding

process can be divided into two steps: the first one is

characterized by the decrease of the radius of gyration, with no

significant increase of the native contacts content and amount

of secondary structure; in the last part of the simulation the

radius of gyration is almost constant, whereas the native

contacts and the secondary structure content increase in an

almost concerted way. This sequence is actually in agreement

with the one proposed by SAXS and CD measurements

(Akiyama et al., 2000, 2002) and MD data on different

proteins (Brooks III, 2002; Guo et al., 1997; Alonso and

Daggett, 2000). The SAXS and CD measurements also

suggested that the folding process of cyt c is characterized by

two intermediates, as evidenced by the analysis of the time

dependence of the radius of gyration that was fitted by

a double exponential characterized by time constants of;0.5

TABLE 2 Structural properties of the starting unfolded structures of the refolding trajectories

RMSDCa* (Å) RMSDsc* (Å) Rg (Å) r* %helix* u* (%)

RUN 1 19.13 20.06 18.94 0.23 14 28

RUN 2 21.26 21.80 24.47 0.50 22 49

RUN 3 21.45 21.20 21.50 0.43 19 44

RUN 4 20.69 21.47 22.92 0.43 11 37

RUN 5 16.93 17.33 19.24 0.48 19 56

RUN 6 25.66 26.77 27.59 0.38 18 53

RUN 7 26.97 27.82 29.24 0.34 27 63

RUN 8 20.42 20.44 21.66 0.33 15 42

RUN 9 22.32 22.28 21.39 0.43 31 67

RUN 10 21.08 21.58 21.94 0.42 15 46

*The RMSD values, the native contacts content, r, and the native helix content, u, are calculated with respect to the crystal structure. %helix represents the

total helix content.

TABLE 3 Final structural properties of the refolding trajectories

RUNS* RMSDCa
y (Å) RMSDsc

y (Å) Rg (Å) ry %helixy uy (%)

RUN 1z 2.33(0.07) 3.82(0.07) 13.11(0.05) 0.73(0.01) 43(2) 98(2)

RUN 2 1.36(0.04) 2.75(0.05) 12.76(0.04) 0.82(0.01) 39(3) 86(4)

RUN 3 1.97(0.06) 3.18(0.06) 13.11(0.05) 0.77(0.01) 41(2) 96(3)

RUN 4 2.12(0.10) 3.22(0.07) 12.96(0.04) 0.77(0.01) 40(1) 93(3)

RUN 5 1.84(0.07) 2.94(0.08) 12.93(0.04) 0.78(0.01) 38(2) 89(5)

RUN 6 4.35(0.06) 5.57(0.06) 13.52(0.06) 0.61(0.01) 35(2) 80(5)

RUN 7 3.48(0.07) 4.50(0.09) 13.41(0.05) 0.62(0.01) 33(2) 83(4)

RUN 8 2.86(0.08) 4.25(0.06) 13.23(0.06) 0.65(0.01) 36(2) 83(4)

RUN 9 2.26(0.06) 3.64(0.07) 13.40(0.04) 0.75(0.01) 42(1) 98(2)

RUN 10 1.87(0.06) 3.27(0.08) 13.03(0.05) 0.77(0.01) 42(1) 96(3)

*All the values are averaged over the last 100 ps of each trajectory; standard deviations are in parentheses.
yThe RMSD values, RMSDCa and RMSDsc, the native contacts content, r, and the native helix content, u, are calculated with respect to the crystal structure.

%helix represents the total helix content.
zRUN 1 coincides with SET3 of Table 1.
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ms and ;15 ms. In the present case the double-exponential

behavior was less evident (data not shown); however, the

double-exponential fitting gave an excellent correlation

coefficient, r ¼ 0.998, and time constants of 120 ps and

4420 ps. The difference of the time constant magnitude has to

be ascribed to the EDS method that speeds up considerably

the sampling toward the folded condition; however, the ratios

between the experimental time constants (;30) and our time

constants (;36) are comparable.

CONCLUSIONS

In the present article a new method to simulate the folding

process of a protein to its native state is reported. The method

is based on the essential dynamics sampling procedure and

provides a biased MD simulation, which restrains 1068 over

the ;30008 of freedom of the protein. These restrained

degrees of freedom are obtained by the essential dynamics

analysis of the positional fluctuations of the backbone carbon

atoms and do not contain any information on the other

backbone and side chain atoms. It has to be pointed out that in

the EDS procedure no deterministic force is added to the

Hamiltonian and hence the system is not systematically

forced toward the target. The restraints were applied only to

the last eigenvectors, representing the most rigid quasicon-

straint motions, whereas all the other degrees of freedom

were completely free to sample the configurational space,

according to the usual equations of motion. The results also

showed that the restrained eigenvectors are mostly involved

in the internal collective motions, within helices or loops,

whereas the essential eigenvectors (the first 10–20) provide

mainly rototranslational motions of helices or loops. Such

results clearly show that the last eigenvectors define the main

mechanical constraints necessary in a folded protein, whereas

the essential eigenvectors really represent the large internal

motion which can occur without unfolding the protein.

The folding of cytochrome c was simulated as a test. The

results evidenced that five assays (out of 10) were successful,

three assays were not, and two were doubtful. It has to be

pointed out that also fluorescence energy transfer studies

on the iso-cytochrome c folding (Lyubovitski et al., 2002)

suggested that only a fraction of the collapsed structures

correctly fold. Finally, our results showed that in the EDS

simulations the folding process of cyt c is characterized by an

initial decrease of the radius of gyration, with no significant

increase of the native contacts and of secondary structure

content; in the last part of the simulation the radius of

gyration is almost constant, whereas the native contacts

percentage and the secondary structure content increase in an

almost concerted way. This folding path is in agreement with

the experimental suggestions (Akiyama et al., 2000, 2002)

on cyt c and with MD data on different proteins (Brooks III,

2002; Guo et al., 1997; Alonso and Daggett, 2000).
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