
2872 Biophysical Journal Volume 85 November 2003 2872–2883

DNA Basepair Step Deformability Inferred from Molecular
Dynamics Simulations
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ABSTRACT The sequence-dependent DNA deformability at the basepair step level was investigated using large-scale atomic
resolution molecular dynamics simulation of two 18-bp DNA oligomers: d(GCCTATAAACGCCTATAA) and d(CTAGGTGGAT-
GACTCATT). From an analysis of the structural fluctuations, the harmonic potential energy functions for all 10 unique steps with
respect to the six step parameters have been evaluated. In the case of roll, three distinct groups of steps have been identified:
the flexible pyrimidine-purine (YR) steps, intermediate purine-purine (RR), and stiff purine-pyrimidine (RY). The YR steps
appear to be the most flexible in tilt and partially in twist. Increasing stiffness from YR through RR to RY was observed for rise,
whereas shift and slide lack simple trends. A proposed measure of the relative importance of couplings identifies the slide-rise,
twist-roll, and twist-slide couplings to play a major role. The force constants obtained are of similar magnitudes to those based
on a crystallographic ensemble. However, the current data have a less complicated and less pronounced sequence
dependence. A correlation analysis reveals concerted motions of neighboring steps and thus exposes limitations in the
dinucleotide model. The comparison of DNA deformability from this and other studies with recent quantum-chemical stacking
energy calculations suggests poor correlation between the stacking and flexibility.

INTRODUCTION

The mechanical deformability of DNA plays an important

role in various biological processes, including protein-DNA

interactions, DNA packing in viruses, the formation of

chromosomes, and higher-order organization of the genetic

material in a cell nucleus. Many of these phenomena occur

within the framework of linear elasticity, where the magnitude

of deformation is proportional to the applied force (Hooke’s

law). In such a ‘‘harmonic regime’’, the energy of deformation

may be expressed as a quadratic function of suitable structural

variables. What remains to be established are the constant

coefficients in such a function, i.e., the ‘‘elastic constants’’ (or

‘‘force constants’’) describing the linear elastic properties of

the system under study. As an example, one can consider

a long piece of DNA as a flexible rod and characterize its

properties by such elastic constants as the bending rigidity (or

dynamic bending persistence length), stretch modulus, and

twist rigidity (Munteanu et al., 1998; Olson, 1996; Olson and

Zhurkin, 2000; Schlick, 1995; Tobias et al., 2000). Beyond

these macroscale features of DNA, there is also considerable

biological interest in the mechanical properties of DNA on

much shorter length scales, namely at the level of one or

several basepair steps, in which case the sequence-dependent

differences in DNA structure and deformability may in-

fluence the binding of proteins (the so-called indirect

readout).

Several experimental and theoretical studies have already

been performed in an attempt to establish DNA sequence-

dependent mechanical properties at the level of basepair

steps. In an extensive and related study, Olson and co-

workers (Olson et al., 1998) analyzed an ensemble of protein-

DNA crystal structures to obtain harmonic deformation

potentials for six helicoidal parameters (twist, tilt, roll, shift,

slide, rise) of all 10 unique basepair steps including all the

coupling terms. This gives a complete description of DNA

basepair step deformability in the harmonic approximation.

Their method is based on the assumption that external

perturbations due to protein binding, neighboring basepairs,

and/or crystal environments all impose forces on the

dinucleotide step under study, and that this results in

deformation of the DNA with respect to the equilibrium

state. Further, if many independent perturbations occur, the

resulting distortions will have a Gaussian distribution,

a consequence of the central limit theorem of statistics. One

can then use the known relation between correlations of

quantities with a multidimensional Gaussian distribution and

the stiffness matrix (Landau and Lifshitz, 1980) to obtain the

desired force constants. These constants, however, are only

relative ones, expressed in units of kT, where k is the

Boltzmann constant and T is an unknown factor, the effective

temperature of the ensemble. Thus, to interpret the values,

some effective temperature must be chosen and this is

accomplished by calibrating the force constants to some

known property. Recently, Matsumoto and Olson (2002)

performed a normal mode analysis of model DNA fragments

based on the above-mentioned perturbed crystal structures

force field, which they calibrated against elastic constants of

a generic DNA.
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A completely different approach to estimate the sequence-

dependent deformability of DNA basepair steps has been

adopted by Anselmi et al. (2000, 2002). They assume that

bending and torsional rigidity of various dinucleotide steps

are modulated according to the differences in their melting

temperatures. They argue that the maximum amplitude of

thermal fluctuations that a dinucleotide step can withstand

before it melts is approximately the same for all steps, and

that a harmonic deformation potential is valid up to tempera-

tures close to the melting one. The maximum basepair step-

independent squared fluctuation amplitude is then equal to

kTm/C (where Tm is the melting temperature and C a force

constant), thus C is proportional to Tm. This force field is also

relative and effectively describes the sequence-dependent

modulation of a generic bending and twisting stiffness.

To obtain sequence-dependent DNA deformability data,

other experimental methods have recently been used as well.

The submicrosecond bending dynamics of duplex DNA

were investigated by Okonogi et al. (2000) using an electron

paramagnetic resonance technique; they studied the effect of

insertion of a tract of alternating A and T (the AT tract) into

a DNA fragment and concluded that the AT tract should be

20% more flexible than the control sequence. Roychoudhury

et al. (2000) have studied mechanical properties of a nucleo-

some positioning motif by the method of cyclization kinetics

and found out that this motif is much more flexible than the

control sequence. More recent high-throughput cyclization

experiments by this group further suggest enhanced

flexibility of AT repeat sequences (Zhang and Crothers,

2003). Pedone et al. (2001) measured the torsional elastic

constants of 10 different 27-mer DNA oligomers by fluo-

rescence polarization anisotropy. The common feature of

these studies is that they generally establish the average

mechanical properties of specific sequences longer than one

or several basepair steps.

Nevertheless, detailed crystallographic studies aimed at

understanding the deformabilities of dinucleotide steps un-

der various conditions have been accumulating. Chen et al.

(2001a,b) studied the indirect readout in the CAP-DNA com-

plex that contains an extremely deformed primary kink, and

Mack et al. (2001) investigated the intrinsic bending and de-

formability of the TA step, in contrast to the AT step.

Besides the experimental investigations, various compu-

tational approaches have been applied to tackle the problem.

In general, one tries to obtain an effective force field on

a larger scale (e.g., elastic constants of a flexible rod) from

simulations with small-scale force fields such as interatomic

potentials. The range of methods includes normal mode

analysis (Matsumoto and Go, 1999; Matsumoto and Olson,

2002), energy minimization or molecular dynamics (MD) of

structures deformed by imposed restraints (Banavali and

MacKerell, 2002; Cluzel et al., 1996; Konrad and Bolonick,

1996; Lavery and Hartmann, 1994; Packer and Hunter,

2001; Varnai and Lavery, 2002), and the analysis of

fluctuations from unrestrained molecular dynamics.

This last method, restricted to the harmonic (linear)

elasticity regime, does not require any external perturbations

imposed on the system. One has to choose appropriate

structural variables to describe the deformation of the system

(such as the six helicoidal parameters in the case of a basepair

step) and calculate their mutual correlations based on their

time courses obtained from molecular dynamics. The in-

version of the correlation matrix then gives the stiffness

matrix, i.e., the elastic constants, as noted above (Landau and

Lifshitz, 1980).

Unrestrained molecular dynamics of DNA with explicit

inclusion of water and ions and with accurate treatment of

the long-range electrostatic interactions has come of age and

has been successfully applied to a range of problems—see

recent reviews (Beveridge and McConnell, 2000; Cheatham

and Kollman, 2000; Cheatham and Young, 2001) and

references therein. It is now becoming clear that it can be

used to study not only DNA ‘‘average’’ properties like the

structure and conformational preferences, but also dynami-

cal events connected with thermodynamic fluctuations in

the system at nonzero temperature. Since one can see each

and every atom in its motion, a microscopic picture of vari-

ous phenomena can be obtained, as far as the limitations in

the force field and trajectory length permit. An interest-

ing example is recent studies on the relationship between

dynamic cation positions and the structure of the minor

groove (Hamelberg et al., 2000, 2001). In an early attempt to

calculate DNA elastic properties from unrestrained molec-

ular dynamics, Bruant et al. (1999) applied the method of

fluctuations in a simplified form to 1-ns molecular dynamics

of two 15-bp oligonucleotides. In our previous work (Lankas

et al., 2000) we calculated harmonic elastic constants of 3–11

bp duplex DNA fragments using four 5-ns unrestrained MD

trajectories of 17-bp duplexes. Our description of the

fragment deformation was ‘‘global’’: we measured the total

fragment length, total twist, and two angles defining the

fragment bending into the grooves of the central basepair and

into the perpendicular direction—DNA was thus considered

as an unshearable, anisotropic flexible rod. We obtained the

stretch modulus, twist rigidity, and anisotropic bending

rigidities as well as all the coupling terms. The calculated

values were in very good overall agreement with experi-

mental results for generic DNA; however, the atomic

resolution approach exposed the pronounced sequence

dependence of the DNA elasticity. We further applied the

method to polypurine tracts containing modified bases

(Lankas et al., 2002) showing that the presence or absence

of the N2 amino group is a primary factor to determine

structures and elasticities of polypurine tracts.

Molecular dynamics simulations can also be used to study

DNA deformability at the basepair step level. McConnell

and Beveridge (McConnell and Beveridge, 2001) assigned

a specific flexibility to each of the 10 dinucleotide steps

based on the area of their roll-tilt plots enclosing 98% of the

MD data points. This can be compared directly with the
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‘‘volume of conformation space’’ proposed by Olson et al.

(1998). Recently, Thayer and Beveridge (2002) divided the

roll-tilt plots into quadrants and 10 concentric rings, thus

providing more detailed information about the distribution of

MD data for use in their Hidden Markov Model to describe

DNA-protein interaction.

These approaches already give a certain idea about the

relative deformabilities in roll and tilt of the dinucleotide

steps and are independent on any assumption about the

harmonic nature of the deformation potential. The aim of the

present work, however, is to obtain a description of DNA

mechanical properties on the basepair step level by cal-

culating harmonic potential energy functions of the 10

unique basepair steps. The energy is expressed in terms of

the six helicoidal parameters: twist, tilt, roll, shift, slide,

and rise. The calculations are based on atomic-resolution

molecular dynamics simulations of two DNA oligomers

using a reliable simulation protocol. The method of fluc-

tuations is used to calculate the complete stiffness matrix,

including all the couplings. This allows a direct comparison

with the force constant estimates from x-ray data by Olson

et al. (1998) and with other experimental results. Further,

a relationship between DNA sequence-dependent deform-

ability and stacking energy is discussed. Finally, we demon-

strate the limitations of the model related to the coupling

between different basepair steps in a DNA sequence. A

thorough theoretical treatment of the problem has recently

been provided by an independent study (Gonzalez and

Maddocks, 2001).

METHODS

The effective temperature

Matsumoto and Olson (2002) obtained the effective temperature by

performing a normal mode analysis of a model homopolymer with

simplified, generic basepair step interactions derived from the x-ray data.

The temperature was chosen in such a way that the normal modes of the

homopolymer corresponded to those of an elastic rod with a bending

persistence length of 550 Å, twist persistence length of 360 Å, and stretch

modulus of 1900 pN, values comparable to the elastic constants of generic

DNA. Although Matsumoto and Olson do not report the effective

temperature directly, it can be estimated from other data in their study.

The six-step parameters in their generic homopolymer have certain mean

values and standard deviations but are uncoupled to each other. Starting with

twist, we assume that the twist rigidity of the whole polymer is due to pure

twisting of the individual steps. Since the steps are identical, isolated units in

the model, the twist rigidity of the polymer is equal to that of a single step.

Denoting the root mean-square deviation (rmsd) of the twist by rmsd(Tw),

the distance between basepairs in the step (taken as (Shift2 1 Slide2 1 Rise2)
1/2) by l, and assuming that the average twisting energy is equal to (1/2)kT

(the equipartition principle), we have Teff ¼ (C/kl).(rmsd(Tw))2. Substituting

for rmsd(Tw) the value of 5.58 (i.e., 0.096 rad) reported in the study, we

obtain Teff ¼ 295 K. As a backward check, we assumed that Teff ¼ 295 K,

calculated the force constants with respect to tilt and roll (based on the rmsd

values in the study), and then computed their harmonic average. In this case,

it should approximate the isotropic bending persistence length of the whole

polymer (Lankas et al., 2000). The result is 550 Å, exactly as reported by

Matsumoto and Olson. We thus suppose that the effective temperature of the

x-ray ensemble of Olson et al. is 295 K and use this value throughout our

study.

Molecular dynamics simulations

Two different DNA duplexes were built from Arnott B-DNA models (Arnott

et al., 1980, 1983) using the nucgen module of AMBER6 (Pearlman et al.,

1995). These were the DNA sequences d[GCCTATAAACGCCTATAA]

and d[CTAGGTGGATGACTCATT]. The Cornell et al. (1995) force field

was used for all the simulations discussed. The initial in vacuo models were

minimized for 500 steps (250 steps steepest descent followed by 250 steps of

conjugate gradient minimization) with no cutoff and use of the generalized

Born implicit solvent model implemented in AMBER6/7 with the default

radii. The minimized duplex structure was then solvated with TIP3P waters

(Jorgensen et al., 1983) with at least a 9 Å buffer of water in each direction in

a truncated octahedral unit cell. Net-neutralizing Na1 ions were added at

favorable electrostatic positions and then an additional set of 20 Na1 and 20

Cl� ions were added (also at favorable electrostatic positions). Assuming an

;75 Å truncated octahedral box, the addition of 20 extra ions corresponds to

;100 mM added salt. To avoid initial bias due to the positioning of the ions

(Cheatham and Young, 2001), the initial ion positions were randomized by

random swaps with water molecules such that no ion was closer than 5 Å to

the DNA or 3.5 Å to any other ion.

Initial minimization was performed with the coordinates of the DNA held

fixed allowing only the water and ions to move. This first involved

minimization for 500 steps of steepest descent and 500 steps of conjugate

gradient minimization using the particle mesh Ewald method (Essmann et al.,

1995; Sagui and Darden, 1999) (and an 80 3 80 3 80 charge grid, an 8 Å

cutoff, 1 3 10�5 direct space tolerance, fourth order B-spline interpolation,

and an Ewald coefficient of ;0.35). SHAKE (Ryckaert et al., 1977) was

disabled for the minimization. An 8 Å cutoff was used for the van der Waals

interactions and the pair list was updated every 25 steps. After the

minimization, 150 ps of molecular dynamics were performed (with a 2 fs

time step and SHAKE on the hydrogens with a tolerance of 10�8) applying

constant pressure and temperature with Berendsen temperature coupling

(Berendsen et al., 1984) with relaxation constants of 1.0. The cutoff for pair

interactions was set at 9 Å, and a 1.0 Å buffer was built for the pair

interaction list that was updated heuristically to avoid omission of pair

interactions. A long-range bulk density van der Waals correction was

applied. Particle mesh Ewald was applied as before, except that the cutoff

was 9 Å leading to an Ewald coefficient of ;0.31. At least 20 ns production

simulations were initiated after the brief equilibration with no restraints

applied. The only change in runtime parameters for the production

simulations was that the center of mass translation was removed periodically

(every 5000 steps) (Chiu et al., 2000; Harvey et al., 1998) and the pressure/

temperature coupling times were increased to 5.0.

ANALYSIS

Trajectory snapshots were saved every picosecond. The time

courses of the basepair step helicoidal variables (twist, tilt,

roll, shift, slide. rise) were obtained by analyzing the DNA

structure in each snapshot using the 3DNA code (Lu et al.,

2000). The first nanosecond was excluded from the analysis.

Assuming that the probability of a fluctuation, w, is an

exponential function of the corresponding free-energy

change E, w} expð�E=kTÞ (Einstein’s formula), it can be

shown that the correlation matrix of the structural variables is

proportional to the inverse of the stiffness matrix (Landau

and Lifshitz, 1980). Let xi and xj be two helicoidal variables,

hxixji their correlation, F the stiffness matrix, and F�1 its

inverse. Then hxixji ¼ kTðF�1Þij. We substituted to the left-
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Biophysical Journal 85(5) 2872–2883



hand side the time correlations obtained from the simulation

trajectory and inverted the relation to compute the elements

of the stiffness matrix, i.e., the desired elastic constants.

The square of the ‘‘accessible conformational volume’’ is

defined as the determinant of the correlation matrix (the last

equation shows that it can also be calculated as the reciprocal

value of the determinant of F, multiplied by kT). This is

a direct analogy with the one-dimensional case where the

dispersion, hx2i, gives the square length of the interval where

the variable x spends most of the time. The computer code

for obtaining DNA basepair step deformabilities from

molecular dynamics simulations is available upon request

from the authors.

RESULTS AND DISCUSSION

We performed unrestrained molecular dynamics simula-

tions of two 18-bp DNA duplex oligonucleotides in NPT

ensemble with explicit representation of water and ions. The

trajectory length is 20 ns in both cases. A truncated

octahedral box with periodic boundary conditions was used,

which lead to a relatively large system of ;40,000 atoms.

The AMBER 6 simulation package (Pearlman et al., 1995)

with the Cornell et al. (1995) force field was used. The

following DNA oligomers were simulated: d(GCCTA-

TAAACGCCTATAA) and d(CTAGGTGGATGACTCA-

TT). The first one contains the TATAAACGCC decamer,

a strong nucleosome positioning motif (Widlund et al., 1997,

1999) whose elastic properties have recently been in-

vestigated by Roychoudhury et al. (2000). Using the method

of cyclization kinetics, they found that a 30-bp construct

containing three repeats of the motif exhibits a nearly

twofold decrease in the bending rigidity and a twist modulus

smaller by 35% with respect to generic DNA. We can thus

expect that our first sequence as a whole will have unique

elastic properties. The second sequence, in contrast, was

used by Roychoudhury et al. as a control and was found to

behave quite normally. Although it is not a purpose of this

study to calculate the elastic properties of these sequences as

a whole, i.e., the global flexibilities (work in progress), we

could assume that the differences in global behavior are

reflected on the local, basepair step level. It is possible that

the deformability of at least some basepairs is context-

dependent, as was recently demonstrated (Mack et al., 2001).

Thus choosing two sequences with dramatically different

elastic properties would enable us to cover a wide range of

the basepair step behavior including its context dependence.

Note that all 10 unique steps are represented at least once in

our systems, most of them 2–3 times.

To compare our results with the crystallographic data of

Olson et al. (1998), one has to calibrate the latter to obtain

absolute values of the force constants. In other words, it is

necessary to establish the effective temperature of the

crystallographic ensemble (which is a purely statistical

property and has nothing to do with the real, physical

temperature of the crystals). We have done this as explained

in the Methods section. The resulting value, 295 K, is used

throughout our study.

Diagonal force constants

Table 1 shows the full list of the force constants for the 10

unique basepair steps calculated form the simulations. Fig. 1

summarizes the sequence dependence of the diagonal force

constants. The numbers are calculated as averages of the

corresponding force constants of all identical basepair steps

in the simulated sequences with the error bars indicating

the range of calculated values. The two dinucleotide steps at

each end of the oligomers were excluded from the analysis

since they may be subject to end-effects. Note that the first

three steps on the x axes are of the YR type (pyrimidine-

purine), the last three are RY (purine-pyrimidine), and the

four in the middle are RR (purine-purine). For comparison,

the figures also present the data by Olson et al. (1998). The

larger the force constant, the stiffer the degree of freedom is.

Considering the twist rigidity, the simulations suggest that

the CG and CA steps are by far the most flexible; the value

of the TA step is distinctively higher, and the remaining

steps have on average still higher twist rigidities that are

comparable to each other. This confirms the exceptional

softness of the YR steps; however, TA seems to be slightly

stiffer than CG and CA. The relatively large error bars in the

simulation data indicate significant differences for the twist

rigidities for different instances of the same basepair step.

This might indicate a high sensitivity of the twist stiffness

to the sequence context; it may be, however, also related

to limited sampling on the present simulation timescale.

Overall, the x-ray data show similar trends and are quan-

titatively comparable with the simulation results. The impor-

tant exception is GG, which in the x-ray data stands out of

the general trend and is suggested to be the most flexible of

all steps, even more than CA.

Turning to tilt, the simulations show a simple picture: the

YR basepair steps are flexible whereas the other steps are

stiffer, and within each group the values of the force con-

stants are directly comparable. The crystallographic data, by

contrast, suggest a more complex dependence: CG is the

most flexible step but the values of CA, GA, and GC are

comparable, and the YR step TA in fact ranks among the

stiffest.

The stiffness with respect to roll is of particular interest

since roll is more flexible than tilt and thus preferentially

involved in spontaneous bending. The simulation data sug-

gest three distinct groups of steps: the YR basepair steps are

the most flexible, the RR show intermediate flexibility, and

the stiffest are RY. The observed higher flexibility of YR

steps toward basepair roll is likely related to different balance

of intrastrand and interstrand van der Waals contributions to

stacking in these steps. The roll perturbs coplanarity of bases

within one strand and thus reduces the van der Waals
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(overlap) component of intrastrand stacking (due to a non-

uniform vertical distance of the bases). It is especially

pronounced for rolls compressing the major groove, as the

consecutive bases are somewhat noncoplanar (open toward

the minor groove) for roll ¼ 0. It is a result of a concerted

effect of propeller twisting and right-handed helical twisting.

Among the basepair steps, the YR ones show the lowest

intrastrand overlap of bases whereas they have extensive

interstrand stacking involving noncoplanar bases due to

propeller twisting. In contrast to the intrastrand stacking the

interstrand stacking improves with roll motion compressing

the major groove, as it alleviates the interstrand clash of

bases in the minor groove and improves their coplanarity.

The opposite effect of roll on intra- and interstrand stacking

in YR steps contributes to the roll flexibility. The crystallo-

graphic data for roll once again show a rather complex

dependence: TA is the most flexible, the values for CG, CA,

AA, and GA are comparable, and there is a peak at AG.

In the case of shift, neither x-ray nor simulations shows

any clear sequence specific tendency. Note that x-ray data

suggest CG as the most flexible, followed by GG, and pre-

dict a sharp stiff peak for GA, which is not observed in

simulation. In both simulation and analysis of the x-ray data,

the slide stiffness shows a slight increasing tendency from

YR over RR to RY; however, large oscillations are observed

in the analysis based on the crystal structures. Interestingly,

large oscillations at AG and GG in the x-ray data correspond

to large variances in the simulation data. The small

increasing trend observed with shift is quite pronounced in

the case of rise. Only AG and GG in the x-ray data exhibit

apparently higher rise rigidity.

It is interesting to compare these data with the dinucleotide

flexibilities obtained by Anselmi et al. (2002) from melting

temperatures. This force field is shown to have predictive

power in the case of sequence-dependent differences in

nucleosome binding free energies, as well as in other

problems (Anselmi et al., 2000, 2002). Anselmi et al. suggest

that the isotropic bending rigidity and the twist rigidity is

modulated in the same way, depending on the melting tem-

perature of the step. The modulating factors span a rather

narrow range, from 0.894 for TA (the most flexible) to 1.180

for the most rigid GC step. The CG step is found to be the

most ‘‘generic’’ with the scaling factor close to 1. The other

steps fall into two categories: the more flexible with factors

;0.95 (CA, AG, AA, AT) and the more rigid with the values

;1.04–1.07 (GG, GA, AC).

The coupling terms

To obtain a complete picture of the basepair step deform-

ability, one has to take into account the nondiagonal

elements of the stiffness matrix (the ‘‘coupling terms’’) as

well. One way to do this is to calculate the volume of the

conformational space in which the basepair spends most of

the time (Olson et al., 1998). The square of the volume can

be estimated as the determinant of the covariance matrix or,

TABLE 1 Force constants in harmonic potential energy functions describing the deformation of individual basepair steps

CG CA TA AG GG AA GA AT AC GC

Twist-twist 0.0227 0.0210 0.0357 0.0441 0.0482 0.0461 0.0422 0.0463 0.0489 0.0421

Tilt-tilt 0.0278 0.0275 0.0245 0.0371 0.0414 0.0389 0.0392 0.0404 0.0411 0.0396

Roll-roll 0.0153 0.0184 0.0136 0.0227 0.0241 0.0235 0.0211 0.0272 0.0267 0.0275

Twist-tilt* 0.0014 �0.0005 �0.0008 �0.0027 �0.0004 0.0060 0.0005 �0.0003 0.0007 0.0002

Twist-roll 0.0031 0.0049 0.0084 0.0057 0.0044 0.0083 0.0086 0.0081 0.0076 0.0070

Tilt-roll* 0.0011 0.0009 �0.0001 �0.0027 �0.0009 0.0033 �0.0002 0.0007 0.0029 �0.0010

Shift-shift 1.3464 1.6003 1.5294 1.6568 1.9839 1.9748 1.4302 1.1932 1.3410 1.7614

Slide-slide 2.0342 2.2856 2.2691 2.7056 3.2154 2.9137 2.5179 3.3095 2.9739 2.7084

Rise-rise 4.3896 6.2903 5.0546 6.3875 7.3347 7.6206 8.3295 10.4992 9.8821 10.2808

Shift-slide* �0.1867 �0.2832 0.0516 �0.0263 0.0572 0.1711 0.0259 �0.0965 �0.1574 0.3178

Shift-rise* �0.0411 �0.0651 �0.0330 �0.0318 0.2151 0.1922 0.0250 �0.0231 �0.0059 0.1312

Slide-rise 1.4671 0.8160 0.9130 1.3204 1.1959 1.3815 1.1528 2.4811 2.5929 2.5578

Twist-shift* 0.0226 �0.0102 �0.0058 �0.0311 0.0238 0.0568 �0.0011 �0.0082 0.0051 �0.0012

Twist-slide �0.0855 �0.0170 �0.0926 �0.1764 �0.2250 �0.2180 �0.2056 �0.1157 �0.2007 �0.1929

Twist-rise �0.1243 �0.1259 �0.0932 �0.1437 �0.1142 �0.1587 �0.1276 �0.0891 �0.1600 �0.1603

Tilt-shift �0.0516 0.0040 0.0233 �0.0194 �0.0653 0.0015 �0.0262 0.0241 �0.0049 �0.0478

Tilt-slide* 0.0103 �0.0021 0.0052 0.0078 0.0050 �0.0075 �0.0023 �0.0097 �0.0129 �0.0183

Tilt-rise* 0.0047 �0.0158 �0.0032 0.0498 �0.0838 �0.2054 �0.0829 0.0063 0.0439 �0.0632

Roll-shift* 0.0106 �0.0024 �0.0097 �0.0143 �0.0042 0.0158 0.0112 0.0090 0.0141 �0.0015

Roll-slide �0.0205 0.0093 �0.0078 �0.0291 �0.0070 �0.0220 �0.0006 �0.0499 �0.0022 0.0055

Roll-rise �0.0199 �0.0865 �0.0370 �0.0010 0.0044 �0.0541 �0.0121 0.0927 0.1089 0.1257

Force constants are in units of kcal/mol�deg2, kcal/mol�Å2, or kcal/mol�deg�Å for angular, translational, or mixed deformations, respectively.

*These coupling constants should be zero for self-complementary steps (CG, GC, AT, TA) since tilt and shift change sign upon changing the direction in

which a DNA sequence is followed, and energy must not depend on this direction. Due to the influence of sequence context and/or limited sampling, the

constants calculated from our simulations are nonzero. However, none of them ranks among the most important couplings for self-complementary steps (see

Fig. 2 a).
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equivalently, as the reciprocal of the determinant of the

stiffness matrix, multiplied by kT. Note that due to the

invariance of the determinant with respect to the coordinate

system rotation, its value is equal to the product of the

eigenvalues of the matrix.

We calculated the conformational volume for all 10 steps.

The volume for CG was the largest and thus this step stands

out as the most flexible. The other YR steps, CA and TA, have

comparable values of ;60% of the CG one. The remaining

steps occupy a range of 30% (GA) to 20% (AT) of the CG

value. Thus, AT seems to be the stiffest step. The x-ray values

reported by Olson et al. show similar trends, with CG the

most and AT the least flexible; however, their values for TA

and GG are quite close to each other. In any case, one should

keep in mind that the conformational volume gives only

a very broad idea about the step flexibility. The energetics of

any specific deformation can be fully understood only by

considering the force constants themselves.

A natural question might arise: how big an error is in-

troduced if one neglects the couplings? Obviously, the mag-

nitude of the coupling terms themselves is not of much help

since their relative effect depends also on the correspond-

ing diagonal terms. Here we propose a quantitative criterion

enabling us to judge the relative importance of couplings.

Assume a deformation involving just two helicoidal vari-

ables whereas all the others remain at equilibrium. Denote

FIGURE 1 Diagonal force constants in basepair step harmonic deformation potentials obtained from molecular dynamics simulations (solid line) as

compared with those from the x-ray study of Olson et al. (1998) (dotted line). Error bars in the simulation data indicate the range of values observed. These

constants describe the energetics of a deformation in which only one helicoidal parameter is changed whereas the others retain their equilibrium values. See

Table 1 for a complete list of all constants, including the coupling terms.
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by x and y the deviations of these two variables from their

equilibrium values. Then the energy of deformation is

expressed as E ¼ ð1=2Þðax2 1 2bxy1 cy2Þ: Let Ediag be

the energy computed from the above formula but without

couplings (b is set to zero). A simple calculation shows

that the maximum relative error (in absolute value) due to

ignoring the coupling term is equal to the absolute value of b,

divided by the harmonic average of a and c: jE� Ediagj=
Ediag ¼ jbj=

ffiffiffiffiffi

ac
p

:
The largest relative error is connected with the twist-roll,

slide-rise, twist-slide, and twist-rise couplings (see Fig. 2 a).

However, in the case of RY steps, the values of the roll-rise

are very close to those of twist-roll. The values for other

couplings are in general small. An exception is the tilt-rise

coupling that has a peak at the AA step. Other couplings are

in general small and form a narrow belt near zero (not shown

in the figure). Note that the largest relative error in energy

due to neglecting the couplings can be as high as 60%.

The corresponding values for the crystallographic data

(Fig. 2 b) again suggest the twist-roll, slide-rise, twist-slide,

twist-rise, and tilt-rise to bound the data, with values up to

55%. However, tilt-shift is close to tilt-rise for RR steps and

reaches a value of 40% for CG and GC. The other coupling

errors almost uniformly fill the space between zero and the

above-mentioned ‘‘envelopes’’, rather than forming any kind

of a narrow belt around the zero value. Thus, contrary to the

simulations, the x-ray data suggest no simple trend as far as

the importance of the coupling terms is concerned.

Methodological issues

A very important question concerns the sensitivity of the

calculated data to the helicoidal analysis algorithm used. The

problem was extensively studied by Lu and Olson (1999)

with the conclusion that the helicoidal parameters depend

significantly on the choice of the basepair reference frame but

are much less sensitive to the specific mathematical pro-

cedure used. In the present case, the x-ray data by Olson et al.

(1998) are based on the CompDNA analyzer (Gorin et al.,

1995) whereas our calculations were performed using the

3DNA program (Lu et al., 2000), which conforms to the

recently established ‘‘Tsukuba convention’’ (Olson et al.,

2001). To check for possible discrepancies between results

produced by the two algorithms, we calculated ensemble

averages and standard deviations of a number of basepair

steps using both programs. The angular parameters were

found to be consistent within 0.18 (twist) to 0.28 (tilt and roll),

resulting in \5% differences in standard deviations. The

averages of shift differed by no more than 0.05 Å, those of

slide and rise by\0.01 Å, whereas the differences in standard

deviations were ;3% (0.01 Å) in rise and\1% in shift and

slide. Since the force constants are, broadly speaking, de-

pendent on the square of the standard deviation of the

helicoidal parameters, we conclude that our use of the 3DNA

program may introduce a difference in force constants of

\10% and cannot alter any general trends in the data.

Our calculations are based on a simple equation stating

that the covariance matrix is equal to the inverse of the

stiffness matrix, multiplied by kT. The same relationship was

also used by Olson et al. (1998) and in our previous studies

(Lankas et al., 2002, 2000). It is a mathematical consequence

of the fundamental assumption that the probability of

a fluctuation is an exponential function of the corresponding

free-energy change (Einstein’s formula) and that the free

energy is quadratic in structural variables (Landau and

Lifshitz, 1980). However, the basepair step is a small system

and such ‘‘macroscopic’’ reasoning may be outside its limits

of validity. Recently, Gonzalez and Maddocks (2001)

performed a detailed theoretical analysis of the problem

from the microscopic point of view where the probability

measure is an exponential function of the Hamiltonian. They

showed that due to the non-Cartesian nature of the angular

variables (twist, tilt, roll), a Jacobian must be included in the

above-mentioned relation between the covariance and

stiffness matrices. The Jacobian appears due to the change

of variables from angular to canonical ones and its form

depends on the precise definition of the helicoidal param-

eters. Nevertheless, the relation reduces to the simple one

used here if the Jacobian is constant. To clarify the situation,

we performed an analytical calculation of the Jacobian for

the case of the 3DNA algorithm used here and found that it is

FIGURE 2 Comparison of the relative importance of various coupling

terms. The values indicate the relative error caused by neglecting the

coupling term in a deformation where only two different variables are

involved. See text for details. (a) Results from simulations. (b) Crystallo-

graphic data from Olson et al. (1998). In simulations, the other couplings

not shown in the figures form a narrow belt near the zero value; in

crystallographic data, however, they uniformly fill the space between zero

and the uppermost curves.
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equal to 1, on condition that Roll2 1 Tilt2 � 1 (in radians).

This is satisfied for all but the most distorted structures; for

example, if Roll ¼ 208 and Tilt ¼ 108, their sum of squares is

still only 0.15 rad2.

An important point concerns the choice of the all-atom

force field to be used in simulations. The Cornell et al. (1995)

force field is known to be relatively soft. This is dem-

onstrated by its facility for A-DNA to B-DNA transitions as

well as B-DNA to A-DNA transitions (under the appropriate

conditions) and also by its bending properties that have been

shown to be consistent with experiment. It is not as evident

that these subtle properties will be reproduced by other

available nucleic acid force fields, including the Cheatham

et al. (parm98/99) (Cheatham et al., 1999; Wang et al.,

2000), Langley BMS (Langley, 1998), and MacKerell all27

(Foloppe and MacKerell, 2000) force fields. Part of the

enhanced flexibility of the Cornell et al. force field relates to

its relatively faster sugar repuckering compared to the other

force fields (Cheatham et al., 1999; Cheatham and Young,

2001). In our experience, despite the known deficiencies of

lower than expected helical twist, sugar pucker, and

backbone x-angle values, the Cornell et al. force field has

been shown to perform very well not only for structure, but

also its elastic properties (Lankas et al., 2002, 2000). In

contrast, the newer parm99 force field, which supposedly

fixes up the known deficiencies, does not seem to show

proper A-B DNA equilibria (Cheatham et al., 1999) or DNA

bending and dynamics (data not shown).

The hypothesis that stacking energy may have a de-

termining influence on DNA deformability was proposed by

Hagerman (1988) and briefly discussed by Anselmi et al.

(2002) and Pedone et al. (2001) in connection with their

suggested sequence-dependence of DNA stiffness. The issue

is also addressed in our previous works on simulating DNA

deformability (Lankas et al., 2002, 2000). Anselmi et al.

compared the relative rigidities for each dinucleotide step

obtained from the melting temperatures (Gotoh and

Tagashira, 1981) with relative stacking energies based on

an early theoretical work (Ornstein et al., 1978) and reported

a correlation coefficient of 0.96 between the two scales.

However, the order of stability of the 10 basepair steps

suggested by these old semiempirical calculations differs

significantly from that predicted by recent ab initio com-

putations (Hobza and Sponer, 2002; Sponer et al., 2000,

1997). Modern electron correlation calculations represent

almost converged estimates of stacking energies and provide

their reliable relative order (Hobza and Sponer, 2002).

Recently evaluated sequence-dependent stacking energies

(Sponer et al., 2000, 1997) predict very similar high stability

of both GC and CG, somehow lower stability for CA, AC,

and AA, and the least stable GG. These trends are followed

neither by the thermal stability data used by Anselmi et al.

(correlation coefficient 0.3) nor by the crystallographic data

of Olson et al. (1998). They are not followed by our MD

results either, although modern empirical force fields like the

one used here have been shown to reproduce well the

contemporary quantum chemical data (Sponer et al., 2000,

1997). Thus, we suggest that neither DNA stiffness nor its

thermal stability is determined simply by the magnitude of

base stacking: a complex interplay of contributions such as

potential energy profiles and hydration effects seems to play

a role.

Beyond the dinucleotide model

Both the model of Olson et al. (1998) and our simulation

approach presented here so far are based on the assumption

that individual basepair steps can be treated as indepen-

dent units. Anselmi et al. (2002) also report the rigidities

decomposed into individual step contributions. However,

since increasing evidence is accumulating that points to the

influence of the larger sequence context on structure and

deformability of DNA basepairs, it is prudent to question this

underlying assumption. Recently, a thorough crystallo-

graphic analysis (Mack et al., 2001) demonstrated that the

AT steps within an alternating AT context behave differently

from those in an A-tract. Similarly, this crystal data suggest

sequence and crystal packing effects on TA step structure

and dynamics. However, NMR data provide somewhat

conflicting evidence indicating that TA step dynamics are

largely independent of sequence context (McAteer et al.,

1995; McAteer and Kennedy, 2000). Despite this, sequence

context is likely important for both structure and dynamics.

For example, the progressive narrowing of the minor groove

in the A-tract seems to be saturated only at the sixth AA step

(Lankas et al., 2002). Similarly, a solution study of G-tracts

by Fourier transform infrared and circular dichroism spec-

troscopy (Lindqvist and Graslund, 2001) revealed that the

base-stacking pattern of a G-tract up to 8 bp long (G4C4) is

largely affected by the group of bases flanking its 59 end.

Analysis of crystal structures also suggests that the con-

formations of CG, GC, and GG steps are all strongly context

dependent (Packer et al., 2000).

To understand the importance of nearby neighbor in-

fluences, one may assume that a basepair step is embedded in

an ‘‘external field’’ defined by its sequence environment and

that different contexts produce different fields and thus

influence the step behavior. The problem is well defined if

the field is constant (or slowly changing), acting as an ex-

ternal parameter in the thermodynamic treatment of the

system (Landau and Lifshitz, 1980). However, the basepairs

in all steps probably move on a comparable timescale,

meaning that this field would change as rapidly as the

spontaneous conformational fluctuations of the step itself. It

is thus more natural to suppose that some coupling between

different basepair steps in a sequence exists.

Here we address the problem by investigating possible

correlations of motions in different dinucleotide steps of our

oligomers. Time series of helicoidal parameters of different

steps obtained from the simulations were correlated in
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a pairwise manner. For example, the time course of twist of

a particular step was correlated with twist time courses of all

other steps; the same was done for the other parameters. The

correlation coefficients, averaged over all equidistant steps in

both oligomers, are shown in Fig. 3. The x axis indicates the

separation between the steps. The value for ‘‘distance 0’’,

i.e., the correlation coefficient for a step with itself, is by

definition 1 and is not shown in the figure. Thus, ‘‘distance

1’’ indicates the correlations of helicoidal parameters in two

neighboring basepair steps. Note that this correlation is by

far the most important. Shift and tilt are most negatively

correlated, twist and rise slightly less. By contrast, slide is

the only parameter found to be positively correlated in the

neighboring steps. The correlation of roll is very small

already between the nearest neighbors. Although the cor-

relations of twist, tilt, and shift almost cease beyond the

nearest neighbor, those of slide and especially rise persist at

least up to the next-nearest neighbor. We also calculated

these data for the two oligomers separately, but the results

are very similar.

One could pursue this type of analysis further and

compute, for example, the correlations between two different

helicoidal parameters in different steps, etc. This is not

a purpose of this study, but the present data already indicate

that to obtain a more realistic description of DNA properties,

one has to take the coupling between different basepair steps

into account.

CONCLUSIONS AND PERSPECTIVES

The aim of this work is to describe the free-energy changes

upon deforming a basepair step in DNA. Our approach,

based on the analysis of helicoidal parameter fluctuations in

atomic-resolution molecular dynamics simulations, allows

us to construct sequence-dependent deformation potentials

for the 10 unique dinucleotide steps. The method, limited to

the linear (harmonic) elasticity regime, provides absolute

quantities and requires no additional calibration.

Our data exhibit relatively simple trends. The exceptional

flexibility of the YR steps has been observed in the case of

angular parameters (twist, tilt, roll), although in the case of

twist the TA step seems to be somehow stiffer than CG or

CA. The stiffness in roll shows a particularly unambiguous

behavior, with three distinct groups of steps: the flexible YR,

intermediate RR, and stiff RY. Note also that the variance

of values for different instances of identical steps in the

sequences (indicated by error bars in Fig. 1 c) is particularly

narrow. Among the translational parameters, rise shows

generally increasing stiffness from YR through RR to RY,

whereas no simple dependence has been observed in the case

of shift and slide.

However, it should be stressed that a complete description

of the basepair step deformability could be achieved only

by taking into account the couplings between changes of

different parameters. We propose a quantitative criterion to

evaluate the relative error in deformation free energy upon

neglecting a coupling term. The results suggest that slide-

rise, twist-roll, and twist-slide couplings are the most

important.

We extensively compared our data with published base-

pair step deformation potentials deduced from an ensemble

of crystal structures (Olson et al., 1998). The crystallo-

graphic data generally exhibit more complicated sequence

dependence and occasionally larger variations between

different dinucleotide steps.

During the final preparation of our manuscript, a closely

related experimental study appeared (Okonogi et al., 2002).

The authors investigated a set of 50-bp sequences at the

submicrosecond timescale using the electron paramagnetic

resonance technique and determined sequence-dependent

harmonic deformabilities of the 10 unique steps. They as-

sumed the bending potential to be isotropic, i.e., the force

constants for roll and tilt are supposed to be the same. Other

degrees of freedom were not explicitly taken into account.

Although our results cannot be directly compared with these

data because of the different number of degrees of freedom,

an approximate comparison is possible. We first estimate the

isotropic bending constant ki of a particular step i by the

harmonic average of the corresponding values for tilt and

roll, and then establish the ‘‘generic’’ bending constant k by

the harmonic average of ki values for the 10 steps. This

enables us to calculate the inverse relative bending rigidity

r�1 ¼ k/ki, tabulated also in the study of Okonogi and co-

workers (Okonogi et al., 2002, Table 6). The general picture

emerging from both studies is much the same: the YR steps

stand out as the most flexible, followed by intermediate RR

and more rigid RY (although the experimental value for AT

FIGURE 3 Correlation coefficients describing pairwise correlations of

fluctuations of helicoidal parameters in different basepairs along a sequence.

The numbers on the x axis indicate the distance between the basepairs. Thus,

the value at x ¼ 0 expresses a correlation of movements of a basepair with

itself; it is 1 by definition and is not shown in the figure. The value at x¼ 1 is

a correlation coefficient for the nearest-neighboring basepair steps, x ¼ 2

indicates the next-nearest neighbors, etc. The data are averages over all

equidistant steps in both simulated sequences. Note that most of the

correlations fade away beyond the nearest neighbor; however, slide and twist

persist to a longer distance, and roll is almost uncorrelated.
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is close to that for GG). This agreement of two completely

different approaches supports the validity of the explicit-

solvent molecular dynamics simulations. Our range of values

is narrower than in the study of Okonogi et al. (their ratio of

highest to lowest bending constant is ;4, compared to 1.65

in our case). This may be partially caused by the fact that our

timescale (20 ns) is shorter than in the experiment (1 ms). On

the other hand, the inclusion of more degrees of freedom

enables us to suggest a more detailed picture: the YR steps

seem to be the most flexible both in roll and tilt, whereas RR

and RY steps differ only in roll, their tilt force constants

being very similar to each other.

Anselmi et al. (2000, 2002) proposed a set of sequence-

dependent deformabilities based on DNA thermal stability

data. A comparison with recent quantum-chemical stacking

energy calculations demonstrates that the correlation be-

tween the thermal stability scale used by Anselmi et al.

and the corresponding values of stacking energies from

modern calculations is actually rather poor. It is difficult to

quantitatively correlate these energies with our results or

the x-ray data since the full harmonic basepair step poten-

tial comprises 21 force constants and not just one value.

However, the general trend suggesting exceptional flexibility

of the YR steps is by no means followed by the stacking

energy values. Thus, it seems that DNA deformability and

possibly also thermal stability cannot be explained as

a simple consequence of the sequence-dependent stacking

energy differences, and more complex approach will be

necessary.

The correlation analysis of simultaneous structural

fluctuations in different basepair steps of a fragment reveals

a pronounced correlation of DNA motions up to the distance

of 2–3 basepair steps. This emphasizes the fact that basepair

steps do not behave as isolated units and that nonlocal

deformability models would be necessary to more re-

alistically describe the elastic properties of DNA.

Overall, this work once again suggests that modern

atomic-resolution molecular dynamics simulations based on

reliable force fields are capable to capture not only static

features of DNA, but also its dynamic and coarse-grained

properties. This experience paves the way to studying other

aspects of large-scale behavior of nucleic acids by atomistic

simulations.
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