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Atomically Detailed Simulations of Helix Formation with the Stochastic
Difference Equation
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ABSTRACT An algorithm is described to compute approximate classical trajectories as a boundary value problem with an
integration step in the arc length. High-frequency motions are filtered out when a large integration step is used, maintaining the
stability of the algorithm. At the limit of high filtering (large steps), but still offering an accurate description of the continuous path,
the trajectory approaches the steepest descent path (SDP). The steepest descent path is widely used as a reaction coordinate
in chemical systems. At intermediate step sizes, some inertial motions remain, interpolating between reaction coordinates and
exact classical trajectories. Numerical studies of spatial and energetic properties of meta-trajectories are carried out. Two
systems are considered here: valine dipeptide and the folding of a small helical protein. Although thermodynamic properties of
meta-trajectories are affected by the filtering, the ordering of events remains similar for substantial differences in trajectory
resolution.

INTRODUCTION

Molecular dynamics (MD) simulations provide valuable,

atomically detailed information about the mechanisms,

kinetics, and thermodynamics of many biophysical pro-

cesses. The great utility of these simulations is diminished

(somewhat) by their computational complexity, and by the

difficulties in approaching highly extended timescales rele-

vant for molecular biophysics. Routine atomically detailed

MD simulations are restricted today to the nanosecond

timescale, whereas processes in molecular biophysics are

frequently extended to microseconds, milliseconds, and even

seconds.

A number of approaches were designed to overcome the

timescale barrier in MD simulations of macromolecules.

These approaches use a variety of assumptions and approx-

imations. In atomically detailed protein-folding studies,

common approaches are: a), high-temperature unfolding to

accelerate the timescales associated with room temperature

motions (Daggett, 2002; Mayor et al., 2003); b), computa-

tions of the free-energy surface along predetermined order

parameters (Boczko and Brooks, 1995; Brooks, 2002), and

c) extrapolation of short time kinetics to long times using an

assumed exponential behavior (Snow et al., 2002; Pande

et al., 2003). The simulations a–c provide considerable

insight into folding mechanisms. These different approaches

successfully address diverse types of problems; therefore,

studying a new system with a broader set of tools is a clear

plus.

Here, we propose an alternative procedure to study

processes that occur at long times on the molecular scale.

The approximations used in the new algorithm (filtering of

high-frequency modes) are very different compared to what

was done in the past and can be done in a systematic way.

For small steps and essentially no filtering of high-frequency

modes, the calculated trajectories approach the exact

classical path. At the limit of maximum filtering of high-

frequency modes, the trajectories approach the steepest

descent path (SDP), a widely used model for a reaction

coordinate. Trajectories with an intermediate step are called

‘‘meta-trajectories’’. In contrast to the SDP, the kinetic

energy is considered explicitly in the meta-trajectories. It is

therefore expected that at intermediate filtering, they will

capture additional dynamic features of the true system that

go beyond the use of a reaction coordinate.

A variant of our method (Eastman et al., 2001) was used to

study peptide folding. Another boundary value formulation

of trajectories that was applied to the protein-folding

problem is the MaxFlux algorithm (Huo and Straub, 1997,

1999; Straub et al., 2002). In the Discussion, we compare the

proposed methodology to the other long time techniques

mentioned above.

In previous publications (Cárdenas and Elber, 2003;

Ghosh et al., 2002), we have shown that the approximate

trajectories contain valuable information on folding mech-

anisms that compare favorably with experiment. In Elber

et al. (2002), we briefly described the application of the new

methodology to a conformational transition in glycine

dipeptide and to the folding of a helix. In this article, we

provide an in-depth description of the algorithm, the

application to a small system (valine dipeptide), and to the

formation of a helix.

The meta-trajectories suggest at least two useful features:

the identification of i), the slow reaction coordinates,; and of

ii), the order of events of the process (e.g., which is

first—secondary structure formation, or hydrophobic col-

lapse?). The theory of meta-trajectories is explained in the

next section.
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THEORY

Consider the principle of minimal action, formulated as

a function of length:

S ¼
ðYf

Y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� UðYÞÞ

p
dl: (1)

The classical action is S, the total energy is E, and the

potential energy UðYÞ is a function of the mass-weighted

coordinate vector YðlÞ. The trajectory YðlÞ is parameterized

as a function of the arc length l, and dl is an infinitesimal arc-

length element (again, in mass-weighted coordinates). We

seek a trajectory such that the action is stationary, i.e.,

dS=dY ¼ 0. The two end points, Y0 and Yf , are held fixed.

Equation 1 leads to trajectories that are calculated

differently from usual MD simulations. First, the trajectory

is solved using boundary conditions; we must know the

beginning and the end coordinate vectors. In the usual MD

protocol, the initial coordinates and velocities are used.

Second, the trajectory is parameterized as a function of

length, and not as a function of time. Third, instead of

constraining the total time of the trajectory (with a fixed step

size and a fixed number of steps) in the new formulation, the

energy of the trajectory is fixed. The energy conservation is

built into the basic algorithm, whereas in the usual MD

simulations, it is possible to simulate systems that do not

conserve energies (intentionally or unintentionally).

The first-order variation with respect to the mass-weighted

coordinates must be equal to zero (for a classical trajectory),

which gives a differential equation with respect to the arc

length (Landau and Lifshitz, 1984):

dS=dY ¼ d2Y

dl
2 1

1

2ðE� UÞ ð=U � ð=U � êÞêÞ ¼ 0: (2)

The vector ê is parallel to the trajectory direction at l and is

normalized to 1. Equation 2 does not contain a force

component along the direction of the path:

d
2
Y

dl
2 � ê ¼ 0: (3)

In principle, Eq. 2 can be solved with the two initial

conditions, Yðl ¼ 0Þ and dYðl ¼ 0Þ (note that ê is parallel to
dY). However, this differential equation is not advantageous

to the time (Newton’s) formulation. The term 1=2ðE� UÞ of
Eq. 2 serves as an effective mass for the integration and is

inconvenient for direct numerical integration. It is singular at

classical turning points (when E ¼ U) and can change

rapidly as a function of l, making the choice of the

integration step problematic. From our experience, it is the

application to the boundary value problem that makes the

length formulation attractive, and not the initial value

formulation presented in Eq. 2.

To suggest a numerical algorithm, we consider first

a discrete version of the action as formulated in Eq. 1:

S ffi +
i¼0;...;N11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� UðYiÞÞ

p
Dli;i11 Dli;i11 [ jYi11 � Yij:

(4)

The action S is now a function of the intermediate

coordinates, fYigNi¼1, where the coordinate set Y0 and YN11

are held fixed. An expression for a stationary point of the

action will be obtained by requiring:

f@S=@Yi ¼ 0gN

i¼1: (5)

This is a nontrivial global optimization problem, since the

derivatives are not linear in the coordinates for all practical

applications. Nevertheless, there are a few guidelines that we

can use. For example, we anticipate that the use of a very

small step will recover the exact equations of motion; what

can we say about the limit of large steps? Here, it is useful to

consider the discrete version of Eq. 2:

D
2
Yi

Dl2
1

1

2ðE� UðYIÞÞ
ð=U � ð=U � ~eeiÞ~eeiÞ ¼ 0

D
2Yi

Dl
2 ¼ 2Yi � Yi11 � Yi�1

Dl
2 ~eei [

Yi1 1 � Yi�1

jYi1 1 � Yi�1j
(6)

The length step, Dl, is a constant and is independent of the
index i. However, it is not truly necessary. The action

integral (Eq. 4) is still valid if Dl of different sizes is used,
provided that Dl is small. From a numerical perspective, it is

more convenient to keep Dl as small as possible by making

all the steps equal. Because steps of equal size are

a convenient numerical choice, we enforce this condition

by the use of constraints (see ‘‘Algorithm’’ section). No

effect on the exact limit of the action is expected. Some

variation in the step size may be useful (the path curvature is

not uniform in space), but this is a topic for future work.

Consider the solution of Eq. 6 as a function of the step size

Dl. Of the two terms on the left-hand side of the equation,

only the first term (the ‘‘acceleration’’) depends on the step

size. As the step becomes larger, the acceleration becomes

smaller and contributes less to the sum compared with the

second term. The step size Dl is considered large when the

following condition is satisfied:����D
2
Yi

Dl
2

���� � j=UðYiÞ � ð=UðYiÞ � ~eeiÞ~eeij: (7)

At this limit, the inertial term is negligible and the

variation principle is modified to:

@S

@Yi

� 1

2ðE� UðYiÞÞ
ð=UðYiÞ � ð=UðYiÞ � ~eeiÞ~eeiÞ ¼ 0

! =UðYiÞ � ð=UðYiÞ � ~eeiÞ~eei ¼ 0 8i: (8)

Equation 8 can be used as a definition of the SDP. It is the

path in which the force is minimized in all directions,

excluding the direction of the path (Elber, 1996). Algorithms

for the calculations of the SDP and reaction coordinates,
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based on the above definition, were proposed in the past

(Jonsson et al., 1998; Ulitsky and Elber, 1990).

Note another effect when using a large step, Dl: the

accuracy of ~e (used to approximate ê) decreases as a function
of the step size. A finite difference formula estimates the path

slope ê (Eq. 6) and is less accurate as the step size increases.

In contrast with the first term of the right-hand side of Eq. 6,

~e is not a decreasing function of Dl. It therefore makes

significant contributions even at large steps. Moreover, since

the path becomes less oscillatory as a function of the step size

(some high-frequency oscillations are removed when the step

size is getting larger), it may be easier to estimate accurately

the path slope for certain decreases in the number of length

slices. This is demonstrated in the numerical examples.

In an earlier article (Olender and Elber, 1996), it was

shown that a large time step (in the context of a boundary

value formulation) filters high-frequency motions. A similar

argument holds also for the present formulation in which the

trajectory is parameterized as a function of length, and we

therefore do not repeat it here. At intermediate step lengths,

the solution of the variation problem will yield a trajectory

with partially filtered high frequencies. We therefore have:

@S

@Yi

ffi D
2
Yi

Dl
2 1

1

2ðE� UðYiÞÞ
:ð=UðYiÞ

� ð=UðYiÞ � eêeiÞeêeiÞ ¼ 0 8i: (9)

One way of solving Eq. 9 is to define a target function with

a minimum that satisfies the equation. Going back to the

definition of the classical action may be problematic, since

the classical action is not necessarily a minimum of the

trajectory (only a stationary point). Others (Passerone et al.,

2003) have considered the solution of the stationary

trajectory of the action directly. Their procedure, which is

aimed at solving trajectories with high accuracy, is more

expensive than the approach described here that computes

approximate meta-trajectories. We consider the minimiza-

tion of the function Q0:

Q
0 ¼ +

i

ð@S=@YiÞ2: (10)

A complete FORTRAN code of the derivatives is

provided in the stochastic difference equation in length

module (SDEL), which is a part of the MOIL package (Elber

et al., 1995) available from http://cbsu.tc.cornell.edu/soft-

ware/moil/index.htm.

Equation 10 is not the final form of the target function

used in the optimization. There are two more technical points

that need to be addressed. The first concerns the overall

molecular translation and orientation. Since we compute

distances ðDli;i11Þ as norms in Cartesian space, it is important

to factor out overall translations and rotations from the

individual structures along the trajectory. Imposing linear

constraints (see below) on each of the length slices

(intermediate coordinate sets) removes these motions. These

linear constraints are derived from the Eckart conditions

(Elber, 1990), which in mass-weighted coordinates are:

+
j¼1;::;L

yij ¼ 0 +
j¼1;...;L

y
0

ij 3 ðyij � y
0

ijÞ ¼ 0 8i: (11)

The vectors ykl (of rank 3) include the mass-weighted

Cartesian coordinates of atom l in structure k. The vectors y0ij
are a reference coordinate system and are taken from the

coordinate sets of the initial guess for the trajectory (before

optimization). The total number of atoms is L. Equation 11

consists of 6N linear constraints. We denote these constraints

by sim i ¼ 1; . . .N m ¼ 1; . . . ; 6. Since the constraints

are linear, finding steps that do not violate the constraints can

be done efficiently as discussed below.

The gradients of the constraints and unit vectors in their

direction, h0
il ¼ ð=sil=j=siljÞ, are coordinate-independent.

They are computed only once at the beginning of the

calculation and used ever after. The unit vectors, h0
il, of

a single length slice are not necessarily orthogonal. For all

i,we have (in general) ho
il � ho

ik 6¼ dlk. It is useful to have

another set of unit vectors that span the same space and are

orthogonal to each other in the i subspace. We use the Gram-

Schmidt procedure (Czerminski and Elber, 1990a)) for each

of the six fh0
ilg

6
l¼1 (fixed i) to create another set of orthogonal

vectors, fhilg
6
l¼1 such that hil � hik ¼ dlk 8i; l; k: These

vectors are used in the constrained optimization.

Let fYigNi¼1 be a discrete representation of the current

trajectory that satisfies the constraints. Let fdY0
i g

N
i¼1 be

a trajectory displacement that we wish to apply to the current

representation to obtain a new trajectory fYi1dY0
i g. The

components of dY0
i that violate the constraints’ subspace are

removed as follows:

dYi ¼ dY
0

i � +
l¼1;...;6

ðdY0

i � hilÞhil 8i: (12)

The new trajectory, fYi1dYig, satisfies the constraints.

Note that Eq. 12 will not hold with the vectors fh0
ilg

6
i¼1 that

are not orthogonal.

Our procedure of correcting only the steps and not the

coordinates may be unstable. Small numerical inaccuracies

may accumulate over many steps, and the coordinate values

may drift away from the plane that satisfies the constraints.

However, in our experience with the use of linear

constraints, the constraints are not violated in a significant

way for tens of thousands of steps, and further corrective

measures (beyond the correction of the step) are not

required. This is to be contrasted with the solution of

nonlinear constraints (e.g., SHAKE (Ryckaert et al., 1977))

for which the coordinates, in addition to the displacements,

are adjusted at every step.

The second technical point is concerned with the

homogenous distribution of the points along the path (or

keeping a uniform Dl for all length slices). There is no force

in the path direction, only in the direction perpendicular to it.
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Therefore, the equations of motion do not determine the

density of points along the path, which can be chosen as

we please without loss of generality. Nevertheless, it is

numerically useful to enforce the homogeneous distribution

of points by additional (nonlinear) constraints. We have:

C ¼ +
N

i¼0

lðDli;i11 � hDliÞ2 hDli ¼ 1

N1 1
+
N

i¼0

Dli;i11: (13)

The parameter l is a constant chosen to optimize the

calculation efficiency while still maintaining a uniform

distribution of points along the curve. The target function

used in the optimization is:

Q ¼ Q
0
1C ¼ min

subject to the constraints f½sil ¼ 0�6l¼1g
N

i¼1: (14)

We seek a trajectory, fYigNi¼1, starting from an initial guess

fY0
i g, such that Q is a minimum. The trajectory so produced

is the exact classical trajectory if the step is small and, is

a ‘‘meta-trajectory’’ otherwise.

Note also that the minimization of the target function Q,

which is our way of producing classical trajectories, is

a procedure that remains stable almost independently of the

step size (in contrast to a solution of initial-value differential

equations). This property is what makes the present

algorithm considerably more stable than approaches that

rely on initial value solvers. It makes it possible to study

processes that take longer than what is approachable today

by molecular dynamics (Duan and Kollman, 1998). The

analytical limits of the computed paths that we have for small

steps (a classical trajectory) and large steps (a steepest

descent path) are also encouraging. A wide range of step

sizes provides useful information on molecular dynamics

and reaction pathways, even if exact Newtonian trajectories

are unattainable.

In the present article, we focus on meta-trajectories

obtained with a solution of Q ¼ 0. As we showed in earlier

studies, meta-trajectories provide information on the order of

events in complex molecular processes such as protein

folding (Cárdenas and Elber, 2003; Ghosh et al., 2002). In

extracting the order of events, we rely on the monotonous

relationship between time and length:

t ¼
ðY2

Y1

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� UÞ

p : (15)

The integral suggests that events 1 and 2, at lengths l2[l1,
occurred at times t2[t1. We assume that the above relation-

ship holds when we approximate the trajectory by a discrete

set of configurations.

THE ALGORITHM

In the present section, we describe the algorithm used to

compute meta-trajectories:

i. Determine beginning and ending coordinate sets, Yi and
Yf . A trajectory is computed as a boundary value

problem, and the first step is to determine the fixed end

points. In the examples considered in this article, we use

energy minima. For example, in valine dipeptide, we

used the minimized coordinates of the C7 axial and the

C7 equatorial conformations as the coordinates of the

end configurations.

ii. Determine an initial guess for the trajectory using N
intermediate configurations fYigNi¼1. In most cases, we

use a minimum energy path as a starting point for the

meta-trajectory calculations. As argued in the previous

section, the SDP is a limiting solution of the basic

equations. Essentially, every classical trajectory can be

mapped into an SDP by monotonically decreasing the

inertial term. Reduction in the inertial term can be

related to an increase in the step size. In practice, we use

our minimum-energy-path self-penalty walk (SPW)

algorithm (Czerminski and Elber, 1990b)) to produce

an initial guess for SDEL optimization. The SPW

approach computes minimum energy paths that approx-

imate the SDP and are in most cases sufficient for the

initial guess requested here. We denote the initial guess

by fY0
i g

N
i¼1:

iii. Estimate the kinetic and total energy of the trajectory.

Once a minimum energy path is provided, we can

examine the higher and the lower values of the potential

energy. If we start at a minimum with the lowest

potential energy point, Ulow, and the highest energy

value along the steepest descent path is Uhigh, the kinetic

energy at the minimum must be larger than Uhigh � Ulow.

For convenience, we take it to be Uhigh � Ulow1

ðð3L� 6Þ=2ÞkBT which is the average thermal energy

measured at the top of the barrier. The Boltzmann

constant is kB, and T is the absolute temperature.

Sampling from Maxwell distribution of velocities is also

possible. However, the above protocol is what we used

in the present study.

iv. Optimize the initial guess for the trajectory. Start from

the initial guess fY0
i g

N
i¼1 and optimize a trajectory for K

steps. A step in the optimization can be based on the

conjugate gradient Powell algorithm (Press et al., 1986),

or on simulated annealing where the target function to be

optimized is Q. In both cases, the displacement added is

subject to the constraints of Eq. 11. For example, in

simulated annealing we solve the second-order differ-

ential equations for the trajectory Z[ fYigNi¼1:

d
2
Z=dt

2 ¼ �=ZQ

subject to the constraintssil ¼ 0 8i; l
Zðt ¼ 0Þ ¼ fY0

i g
N

i¼1 (16)

and jdZ=dtj2 ¼ mðF� tÞ
ðlinear cooling with velocity scalingÞ:
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The fictitious time, t, is used only for generating

intermediate steps during the minimization and has no

meaning otherwise. The total minimization ‘‘time’’ is F.

In simulated annealing, a fixed number of steps is used,

whereas with the conjugate gradient algorithm, we

optimize until the gradient norm is lower than

a threshold. We have found (perhaps not surprisingly)

that the minimization with conjugate gradient results in

meta-trajectories closer to the steepest descent path,

whereas the minimization with simulated annealing

provides trajectories that deviate significantly from the

minimum energy path and include more oscillations in

the minima. This indicates that multiple solutions exist,

and different optimization protocols can pick alternative

trajectories. Note that even exact trajectories (solutions

of the boundary value problems with a very small step)

can have multiple solutions in the length representation.

Hence, the last observation of multiple trajectories is not

necessarily a result of our approximation or our

optimization protocol.

v. Evaluate and refine the trajectory. The meta-trajectories

are likely to be longer that the minimum energy path that

does not include rapid vibrations. Since the number of

grid points is kept constant, the step size increases when

a trajectory is computed starting from a minimum energy

path. Therefore, the final step size of an optimal path

with a fixed number of slice points is checked against

a critical value. The critical value, DlC, depends on the

properties of the system. For example, in the simulation

of the folding of cytochrome C (Cárdenas and Elber,

2003), the maximum step size was set to 0.6 Å. If Dl is
larger than DlC, then the trajectory is not accepted; more

intermediate points are added by halving the existing

intervals, and a trajectory with more length slices is

reoptimized as described in section iv.

It is clear from the description of the algorithm that the

trajectory we compute (that falls in the neighborhood of

a steepest descent path) depends on the characteristics of the

sampled minimum energy coordinates. The meta-trajectories

will have a distribution of energy barriers, some of which are

quite high. Minimum energy paths with high energy barriers

are theoretically valid; however, they are less likely to be

sampled as thermal trajectories. Numerically, they are also

more difficult to compute since the combination of high

kinetic energy and high barriers implies rapid changes in the

path curvature. In the study below, we focus on sampling

trajectories in the neighborhood of low-barrier minimum-

energy paths. Hence, we deliberately select minimum energy

paths with low energy barriers for refinement to classical (or

meta-) trajectories from the complete ensemble of minimum

energy paths.

In addition to the solution of a boundary value

formulation, we also solved MD trajectories using initial

values. In this case, we have for initial conditions the two

FIGURE 1 Stick-and-ball model of valine dipeptide showing the u and c

torsional angles.

FIGURE 2 Meta-trajectories with 10 (solid lines with

circles), 100 (dotted line with diamonds), 1000 (solid line)

and 10,000 (dotted line) slices connecting the C7 equatorial

(initial) and axial (final) conformations of valine dipeptide

shown on a two-dimensional (u, c) map. These trajectories

were computed independently with initial guess trajecto-

ries computed using a SPW algorithm. Also shown is the

SDP connecting these conformations (solid line with white

diamond ).
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coordinate sets Y0 and Y1 that we obtained from the boundary

value solution. We propagate the solution using:

Yi11 ffi 2Yi � Yi�1 � =U � =U � Yi � Yi�1

jYi � Yi�1j

� �
Yi � Yi�1

jYi � Yi�1j

� �
Dl

2
:

(17)

The algorithm is not highly accurate or stable (the estimate

for the path slope is based on Yi and Yi�1 instead of Yi�1 and

Yi11) but is sufficient for the task at hand, which is

a comparison to the boundary value algorithm.

NUMERICAL EXAMPLES

We present numerical examples for two cases: i), a confor-

mational transition in valine dipeptide, and ii), the folding of

a small helical protein, Ac-WAAAH1-(AAAR1A)3A-NH2

(Thompson et al., 2000). The force field that was used in the

calculation is the extended atom model of AMBER/OPLS

(Jorgensen and Tirado-Rives, 1988; Weiner et al., 1984) as

implemented into our code MOIL (Elber et al., 1995). The

study of valine dipeptide was done in vacuum, whereas helix

folding was investigated in an effective solvation model, the

generalized Born (GB) model (Hawkins et al., 1995; Tsui

and Case, 2000)).

Valine dipeptide

We report trajectories computed between minima of the

dipeptide energy surface. The C7 axial and the C7 equatorial

FIGURE 3 Mass-weighted length step is plotted as

a function of the logarithm (base 10) of the number of

slides for the SDEL trajectories connecting the initial and

final conformations of valine dipeptide.

FIGURE 4 Comparison between a refined SDEL trajec-

tory for valine dipeptide with Dl ¼ 0.003 (amu1/2 Å) and

the corresponding solution of the initial-value molecular

dynamics equation (Eq. 17) is shown in (u, c) map.
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backbone conformations of valine dipeptide are considered.

Conformational transitions in this small molecule are

dominated by changes in two soft degrees of freedom, the

ðf;cÞ torsion angles. In Fig. 1, we show a stick-and-ball

model of this molecule with the relevant torsions indicated,

and in Fig. 2 we show a ðf;cÞ map.

A set of trajectories refined independently

On the two-dimensional map (Fig. 2), we indicate the

beginning and the ending configurations, and plot meta-

trajectories and the steepest descent path. Meta-trajectories

with 10, 100, 1000, and 10,000 length slices in ðf;cÞ space

are shown. These trajectories were computed independently,

meaning that the minimum energy paths were constructed by

separate (independent) calls to a minimum-energy algorithm

(the SPW algorithm (Czerminski and Elber, 1990b)), and an

action optimization was applied to each of the initial guesses.

In Fig. 3, we show the step, Dl, as a function of the number

of length slices of fully optimized trajectories. We expect the

basic step, Dl, to decrease as a function of the number of

slices. This in general is the case. However, when the

number of grid points is very large, further reduction in step

size as a function of the number of points is slow. Initially,

we find a significant reduction in step size when a trajectory

of 10 slices is compared to trajectories of 100 and 1000

FIGURE 5 (A) Bond and (B) electrostatic energy versus

the normalized path length for meta-trajectories for valine

dipeptide with 10, 100, 1000, and 10,000 slides.
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slices. However, when the number of length slices increases

to 104 and 105, Dl changes comparatively little. We found

it difficult to decrease the step further to make a more

meaningful comparison to initial value formulation. In

Fig. 4, we demonstrate that for 0.003 (amu1/2 Å), we obtain

similar initial value and SDEL results. The step is the largest

size for which the initial value integrator is still stable for

valine dipeptide. This step size is;10 times smaller than the

step size we achieved using 105 slices with independently

refined trajectories.

In Fig. 5 A we show the potential energy of the bonds for

the trajectories with different slices. As we argued earlier, the

low-resolution few-slice representation filters high-fre-

quency modes. Bond vibrations (high-frequency motions),

are expected to cool down as the number of slices decreases.

This is indeed the case; in Fig. 5 A, the trajectory with 10

slices is of the lowest bond energy. In contrast, the

electrostatic energy (Fig. 5 B) is roughly the same for the

low resolution trajectories. Note also that the behavior of the

longest trajectories of 103 and 104 slices is similar. This is

explained by a similar Dl for the two cases regardless of the

number of length slices (Fig. 3).

Refining a single trajectory of valine dipeptide

The calculations presented above were for trajectories

constructed independently. Here, we consider the refinement

FIGURE 6 Meta-trajectories connecting the C7 equato-

rial (initial) and axial (final) conformations of valine

dipeptide shown on a two-dimensional (u, c) map. The

trajectories were computed by resolution enhancement

(e.g., the initial guess for the 19-slide trajectory was

obtained by interpolating 1 intermediate structure between

every segment of the 10-slide trajectory computed by

SDEL; a similar doubling procedure was used to generate

the rest of the trajectories).

FIGURE 7 Mass-weighted length step is plotted as

a function of the logarithm of the number of slides for

the SDEL trajectories of valine dipeptide constructed using

the resolution enhancement procedure.
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of a single trajectory. Starting from a low-resolutionminimum

energy path (constructed with the SPW algorithm (Czermin-

ski and Elber, 1990b)) with 10 points, we computed an SDEL

path with the same number of length slices. The resulting

trajectory was used in resolution enhancement. A series of

path optimizations was performed; at each optimization the

initial number of grid points of the previous optimization was

doubled by adding a new configuration at the center of each

length slice. A minimization (with conjugate gradient) of the

new path converged when the gradient of the target function

was\0.01 kcal/mol/Å. The halving procedure was repeated

until we have 9217 slices to describe the single trajectory. The

final step size was 0.00106 (amu1/2 Å).

In Fig. 6,we show the different trajectories on a ðu;cÞmap.

What is remarkable about this plot is the high similarity of the

refined trajectory (presumably close to exact) and the initial

SDEL path. Note also that the present protocol produces steps

that decrease rapidlywith the number of slice points (Fig. 7). It

selects trajectories that are closer to the SDP, compared to

global search algorithms such as simulated annealing.

In Fig. 8, we compared an SDEL trajectory with a large

number of slices and an initial value solution of the equations

of motion. The path slope of the reactant (required for the

initial value solver) was estimated from the SDEL solution.

Although the SDEL and the initial value solver (Eq. 17)

agree for a few steps (see also Fig. 8 B for a close-up), they

rapidly deviate.

Valine dipeptide was used to demonstrate the feasibility

FIGURE 8 (A) Comparison between the SDEL trajec-

tory with 9217 slides (Fig. 6) and a path computed using

the initial-value algorithm (Eq. 17). (B) Detail of A

showing the region in which trajectories start to diverge.
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and the soundness of the calculations. Below, we describe

trajectories of helix formation, a larger system that is also of

considerable biophysical interest (see Discussion).

A folding trajectory of a helical peptide

We consider the alanine-rich peptide WAAAH1-

(AAAR1A)3A that has a significant tendency to form a helix.

The thermodynamic and kinetic properties of this peptide

were determined experimentally (Thompson et al., 2000). The

SDEL trajectories are used to study the folding mechanism.

The boundary conditions were an energy-minimized

configuration starting from an ideal helix (the list of the

ðu;cÞ angles of the minimized structure is given in Table 1)

and one (locally minimized) structure from an ensemble of

unfolded configurations. The unfolded configurations were

prepared as follows: 10 high temperature trajectories (600 K)

in the gas phase were computed for 1 ns each. Structures

were saved each 50 ps, and were minimized using conjugate

gradient algorithm for 2000 steps. The usual energy function

of MOIL (Elber et al., 1995) was employed with the addition

of a GB model (Hawkins et al., 1995; Tsui and Case, 2000)

for implicit solvation. We have used this GB model

successfully in the past for other SDEL applications

(Cárdenas and Elber, 2003; Ghosh et al., 2002).

A total of 114 unfolded structures that differ from each

other by at least 6 Å RMSwas selected and used in the compu-

tations of 114 folded trajectories. Similarly to the calculations

of the valine trajectories, minimum energy paths were

calculated first using the CHMIN module of the MOIL

package (and the SPW algorithm (Czerminski and Elber,

1990b)). These initial guesses for the trajectories were further

optimized by a simulated annealing protocol available in the

SDEL program. The SDEL code is a part of the recently

released MOIL package (http://cbsu.tc.cornell.edu/software/

moil).

We have examined trajectories with 100 and 1000 length

slices for each of the 114 trajectories. The calculation of

a single trajectory with 1000 length slices was done in

parallel with 10 nodes of a 600 MHz Linux cluster for 8 h.

We also computed trajectories with 10 and 10,000 structures

for a few of the set of 114 folding trajectories.

TABLE 1 c/w angles of the folded conformation for

WAAAH1-(AAAR1A)3A

c (degrees) u (degrees)

�34.7165 �58.5412

�42.8834 �73.4939

�46.6180 �65.5121

�44.1895 �75.4107

�52.7535 �157.822

�36.2577 �56.3282

�27.7473 �51.5534

�32.2661 �64.5518

�34.1912 �72.9191

�43.121 �69.7539

�48.1652 �58.428

�46.0091 �57.8565

�41.8973 �61.6938

�34.7618 �67.8165

�41.5916 �69.6428

�54.2888 �58.8207

�49.8535 �77.6352

�51.0633 �160.786

�25.6122 �83.5527

�62.8926 �84.9656

�154.278 �166.624

FIGURE 9 Mass-weighted length step versus the loga-

rithm of the number of slides for trajectories connecting

one unfolded conformation of the alanine-rich peptide

WAAAH1-(AAAR1A)3A to the helical conformation.

2928 Cárdenas and Elber

Biophysical Journal 85(5) 2919–2939



FIGURE 10 Variation of the c angle as a function of the

normalized path length for trajectories with 100 (solid line) and
1000 (dotted line) slides connecting one unfolded conformation of

the alanine-rich peptide and the native helical structure. The c

angles correspond to the amino acids: (A) His-5, (B) Ala-12, and

(C) Ala-15.

Simulations of Helix Formation 2929

Biophysical Journal 85(5) 2919–2939



In Fig. 9, we show the dependency of the step size Dl on
the number of length slices. Note that with the simulated

annealing approach, we were unable to reach step sizes (in

length) that are smaller than 0.6 (amu1/2 Å). There is a rapid

drop in the step size as the number of length slices increases

from 10 to 1000. However, increasing the number of length

slices from 1000 to 10,000 decreases the size of the length

step only slightly.

Note also that the trajectory calculations here employed

separate and independent simulated annealing protocols for

each of the trajectories. Hence, they are similar in behavior to

the first set of valine dipeptide paths (see the subsection, ‘‘A

set of trajectories refined independently’’).

In Fig. 10, we show a few of the c dihedral changes for

trajectories computed independently with 100 and 1000

length slices. The overall agreement of the two trajectories is

remarkable, suggesting convergence for spatial properties of

the trajectories already with this number of slices. Note the

‘‘rapid’’ fluctuations that we observe in the trajectories with

a larger number of slices when compared to trajectories with

a smaller number of slices. This suggests that we are clearly

not at the limit of the steepest descent path, and some high-

frequency modes are filtered out while switching between

the two representations.

Partitioning of the energy between bonds, angles, torsions,

van der Waals, and electrostatic components as a function of

the number of slices (for 100, 1000, and 10,000 slices) is

presented in Fig. 11. Similar to the valine dipeptide case, we

observe significant quenching of the high-frequency (bond)

modes. On the other hand, the relevant spatial progress of the

trajectory (the ðf;cÞ dihedral angles) is remarkably similar

in different trajectory resolutions (Fig. 10).

It is of interest to examine how thermodynamics properties

are affected by the filtering protocol that we use. The bond

and the electrostatic energies for different numbers of slices

are shown in Fig. 11, A and E, demonstrating again the

filtering effect, now on a significantly larger system. The

energy fluctuations (related to the heat capacity) are

computed as an average over all trajectories and are shown

in Fig. 12 A. We plot the energy fluctuations as a function of

the number of slices. We also consider the energy

fluctuations separately for the bond energy and for the

electrostatic energy (Fig. 12, B and C). Interestingly, the
energy fluctuations for electrostatics are similar for 100 and

1000 length slices. Since the heat capacity of high-frequency

modes is difficult to assess in classical simulations anyway,

filtering them out, as demonstrated here, may not be a bad

idea. Of course, in our approximate calculations, some of the

classical modes may be filtered as well.

The mechanism of helix formation is of considerable

theoretical and experimental interest (Huang et al., 2002;

Hummer et al., 2001; Thompson et al., 2000); we therefore

devote the rest of this section to the analysis of the calculated

trajectories elucidating the folding mechanism suggested by

the simulations.

In Fig. 13 A, we consider the average energy (over 114

trajectories) as a function of the radius of gyration (the radius

of gyration was suggested in the past as a reaction coordinate

for folding (Boczko and Brooks, 1995), though not for the

problem of helix formation). The average energy is a mono-

tonically increasing function of the radius of gyration,

suggesting no barrier along this coordinate. Similar plots are

obtained using 100 or 1000 slices. Note, however, that such

a barrierless plot can be misleading. It is possible that motion

in the direction perpendicular to the radius of gyration

includes a barrier that is undetected by the above projection,

FIGURE 11 (A) Bond, (B) angle, (C) torsion, (D) van

der Waals, and (E) electrostatic energy versus normalized

path length for folding trajectories for one unfolded

conformation with 100 (solid line with circles), 1000

(solid line), and 10,000 (dotted ) slides.
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i.e., the ‘‘true’’ reaction coordinate is overcoming a barrier in

a direction perpendicular to the radius of gyration. The

projection may eliminate an essential barrier and suggest an

incorrect mechanism. This is indeed the case if we examine

the energetic of u=c helicity (Fig. 13 B). The energy plot

along the number of helical residues has a clear barrier at an

earlier phase of the process. The different characteristics of

the average energy profile, projected along different

coordinates, underline the difficulties in choosing appropri-

ate reaction coordinate(s).

A contour plot of the joint probability density of the radius

of gyration and the number of helical residues is shown in

Fig. 14. This is a steady state plot that includes only reactive

trajectories. The two-dimensional projection suggests that

the barrier is found rather late in the radius-of-gyration

projection (but early along the secondary structure co-

ordinate), and that it is indeed perpendicular to the radius of

gyration.

In Fig. 15, we show the propagation of the two-

dimensional probability density as a function of length.

The average is over all the 114 trajectories and the

corresponding fifth of each of the trajectories. Five

sequential plots, measuring the progress of the reaction as

a function of length, are shown. The plots suggest an early

folding phase in which the radius of gyration is reduced,

which is followed by (initially activated) secondary structure

formation.

Another view of the folding mechanism is provided in Fig.

FIGURE 11 Continued
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16, where we show the probability that a given amino acid is

in a helical configuration. These probabilities are evaluated

for different length windows. Fig. 16 A is an average over the

first fifth of the trajectory, Fig. 16 B over the second fifth, and

so on. It is clear from the figure that N-terminal residues fold

first.

DISCUSSION

Perspective on algorithms for long time dynamics

Folding starts at the tens and hundreds of nanoseconds to

form secondary structure elements, and continues to micro-

seconds and milliseconds to create specific tertiary contacts

and folds. Straightforward molecular dynamics simulations

are restricted to the nanosecond timescales, making it

exceptionally difficult to perform individual trajectories at

extended timescales and to collect statistics to compute

kinetics and thermodynamic averages that can be compared

to experiment.

Therefore, a number of different approaches were

designed to circumvent the timescale problem of straightfor-

ward atomically detailed simulations. Part of this discussion

intends to put the present approach in perspective with

respect to other techniques. The other part of the discussion

deals with comparison to experimental data on helix

formation. The intent of the discussion below is to highlight

the potential difficulties in all computational approaches, i.e.,

FIGURE 11 Continued
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FIGURE 12 (A) Potential energy variance as a function of the

normalized path length for trajectories with 100 (solid line) and
1000 (dotted line) slides. This plot was computed as an average

over the ensemble of 114 trajectories for the helical peptide, (B)

bond energy, and (C) electrostatic energy variances.
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underlining the need for multiple computational methods

that complement each other in the studies of protein folding.

Consider first the approach that uses high temperatures.

Considerable intuition and tests were used to construct

computational protocols that were demonstrated to have

excellent agreement with experiment, e.g., by the calcu-

lations of F-values (Daggett, 2002; Mayor et al., 2003).

However, one should keep in mind that the high temperatures

may distort the folding pathways and make them more direct

and less diffuse. The extent of the distortion is not clear.

The free-energy calculations are a systematic reduction in

the number of relevant variables to one or a few order

parameters (Boczko and Brooks, 1995; Brooks, 2002). This

reduction, provided that the calculations are converged, is

exact and can be related to specific experiments that are done

near or at equilibrium. A difficulty is, however, the choice of

the order parameters. Projections of the high-dimensional

space onto inappropriate order parameters can lead to

qualitatively wrong results. Although considerable experi-

ence has been obtained using a number of reaction

coordinates (e.g., the radius of gyration, secondary structure

content, fraction of native contacts, etc.) the correct choice (if

a ‘‘correct’’ choice exists) is still unclear.

Clever protocols to compute free-energy landscapes

without a prior assumption of a reaction coordinate are the

emerging multicanonical and replica exchange approaches

(Gnanakaran et al., 2003; Hansmann, 2003; Hummer et al.,

2001; Mitsutake et al., 2003). These protocols provide an

equilibrium ensemble of configurations with no further bias,

which is an important step in establishing a general theory

for kinetics and dynamics.

Consider the third option of interpolation from short time

kinetics, which is the most straightforward approach avail-

able today. There, it is assumed that a single barrier

dominates the process at hand. From a spatial viewpoint,

the reactive trajectories are expected to be similar and differ

by incubation time at the well. If the transition rate

‘‘constant’’ is time-independent, the rate can be estimated

from short trajectories (Snow et al., 2002; Pande et al.,

2003), fitting the kinetics to exponential law. The population

of reactive trajectories can be enriched if a measure of the

progress of the reaction is available, i.e., selecting trajecto-

ries that made good progress toward the folded state and

using only them while further propagating the ensemble of

trajectories. Voter put forward this idea (Voter et al., 2002)

for general activated trajectories.

The great advantage of the interpolation protocol, com-

pared to the alternatives, is the estimation of the timescales.

The potential difficulty is the assumption of an exponential

process or the requirement for a ‘‘measure-of-progress’’

variable. The latter is similar in spirit to the identification of an

order parameter in free-energy calculations.

Our SDEL approach has the advantage that no order

parameter is assumed, and the energy of the trajectories

corresponds to that of room temperature. It is the only

algorithm today that provides sound results for atomically

detailed folding mechanisms in proteins with more than 100

amino acids and with experimental folding timescales of

milliseconds (cytochrome C (Cárdenas and Elber, 2003)).

However, there are also difficulties. First, an approxima-

tion is used in the calculations, namely the filtering of high-

frequency modes. The effects of this approximation on the

trajectories are not obvious and require experimentation

(such as the numerical experiments in the present article).

There is a wide agreement that filtering of some high-

frequency modes is sound (e.g., bond vibrations). However,

the SDEL approach filters out all frequencies higher than the

inverse of the step size, and not only the bond motions. This

makes the approximation more difficult to evaluate. One

consequence of the filtering is that the entropy of SDEL

trajectories, which effectively have a smaller number of

degrees of freedom, is reduced compared to the entropy of

the exact trajectories. The reduction of entropy reduces

entropic barriers and shortens ‘‘incubation times’’ within

wells.

There is an interesting analogy here between the SDP as

a fully quenched molecular dynamics trajectory and

Stillinger’s inherent structures (Stillinger and Weber,

1984). The quenched configuration (removal of the kinetic

energy) provided considerable insight into the structural and

thermodynamic properties of liquids. Here, we suggest that

quenched trajectories, at a complete or intermediate levels,

can provide significant insight into system kinetics and

dynamics as well. Similar to the inherent structures, the

quenched trajectories are a useful analysis tool for static and

mechanisms. Similar to the inherent structures, it is not

obvious how to efficiently perform the ensemble averages to

compute thermodynamic and kinetic properties after re-

moving some or all of the kinetic energy. We comment that in

the numerical examples in Figs. 11 and 12, the energy and heat

capacity for slow degrees of freedom are preserved in a wide

range of trajectory resolutions, supporting the suggestion that

the slow modes are affected only slightly by the filtering.

A few other laboratories are developing approaches that

are similar in spirit to the algorithm described here. Eastman

et al. (2001) were using the Onsager-Machlup action that we

developed as a numerical tool (the time formulation of the

stochastic difference equation (Olender and Elber, 1996)) to

study conformational transitions in peptides. A key differ-

ence compared to our calculations is the use of the high

friction limit and the simulation of Brownian trajectories.

Our trajectories approximate Newtonian’s mechanics. Straub

and co-workers in their studies of peptide aggregation (Huo

and Straub, 1997, 1999; Straub et al., 2002) introduced the

MaxFlux approach in which the high friction limit again is

considered. However, the Straub definition of an optimal

trajectory is different from the approach taken in the

Onsager-Machlup formulation. It is based on maximizing

the flux of the diffusion equation and, in contrast to Olender

and Elber (1996), is based on the length discretization, not on
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time. An alternative path formulation of Brownian trajecto-

ries in length seeks the most probable Brownian trajectories

between two end points (Elber and Shalloway, 2000;

Olender and Elber, 1997).

Finally, the ‘‘path sampling’’ procedure of Chandler and

co-workers (Bolhuis et al., 2002; Dellago et al., 1998) may

look conceptually similar to the procedure described in this

article, but it is actually very different. Path sampling was

designed to solve the problem of rare events, namely how to

determine fast trajectories (a few picoseconds) from

reactants to products that occur infrequently. This is the

typical case for one dominant barrier separating two distinct

states. A clever formula is used to estimate the statistical

weights of these reactive trajectories and, from the weights,

the rate. However, this approach is not about generating long

time trajectories for systems without clear timescale

separation; timescale separation is essential for the path-

sampling approach.

Another significant approximation used here and in our

earlier studies of protein folding (Cárdenas and Elber, 2003;

Ghosh et al., 2002) is the application of the generalized Born

theory (Hawkins et al., 1995) for modeling solvent effects.

This choice was made for obvious reasons (saving very

significant computational resources). However, it is useful to

consider potentially more accurate models of solvation, and

we are extending our calculations to include explicit water

molecules. One effect that the implicit solvent is missing (in

the study of helix formation below) is the potential screening

of hydrogen bonds by large side chains (Garcia and

Sanbonmatsu, 2002; Vila et al., 2000).

FIGURE 13 Potential energy computed for the sets of

114 trajectories with 100 (dotted line) and 1000 (solid line)

slides as a function of the (A) radius of gyration and (B)

number of helical residues present in the structure (a

residue is helical if the u=c angles are6 208 of�57.58 and

�478, respectively).
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In an earlier version of our stochastic difference equation

(SDET—stochastic difference equation in time (Elber et al.,

1999)), we added explicit water to the protocol by optimizing

an average action. The average was calculated on alternative

water configurations for a fixed peptide state. Before an

optimization step was made for the peptide coordinates, an

average over (discrete) water configurations was computed

using molecular dynamics. The average (with fixed protein

coordinates) was calculated separately and independently for

each of the trajectory slices, fYgNi¼1. This is similar in spirit to

a Car-Parrinello procedure (Car and Parrinello, 1988) in

which the equilibrated water molecules play the role of the

electrons. A similar algorithm has now been added to SDEL,

making it possible to study conformational transitions and

folding in explicit solvent (Siddiqi and Elber, unpublished).

The folding of a helix

Thompson et al. (2000) have studied experimentally the

helix-coil transition of the peptide we considered here, and

they made a number of observations that can be connected to

the present calculations: i), an activation energy of ;8 kcal/

mol was measured, and ii), the helix formation starts at the

N-terminal.

Fig. 13 B clearly demonstrates that the process is activated,

and that the activation is associated with the transition of the

first five residues into the first helical turn. We note that no

barrier is observed along the direction of the radius of

gyration, Rg. This coordinate is therefore a poor choice for

a reaction path in this system. There are many conformations,

some of them separated by a significant energy barrier, that are

binned together in a narrow range of radius-of-gyration values

and create a wrong interpretation of a barrierless transition.

The barrier occurs when Rg is at the range 12–13 Å, and its

direction is roughly perpendicular to Rg, making it difficult to

observe in the one-dimensional projection along Rg.

Thompson et al. (2000) estimated the enthalpy barrier to be

8 kcal/mol. From Fig. 13, we estimated it to be;10 kcal/mol,

which is in surprisingly good agreement with the experi-

mental analysis. We should keep in mind, however, that the

accuracy of the enthalpy barrier in this calculation is rather

low, and studies of mechanisms (such as order of events and

the nucleation site at the N-terminal) are consistently more

reliable (Cárdenas and Elber, 2003; Ghosh et al., 2002).

The interesting observation (Huang et al., 2002) that helix

formation can show diffusive kinetics is not inconsistent with

the simulations presented here. In the two-dimensional pro-

FIGURE 14 Contour plot of the steady-state population of conformations

for the alanine-rich peptide as a function of the number of helical residues

and the radius of gyration. The 114 paths with 1000 slides were used to

generate the plot.

FIGURE 15 Progress of the population of the peptide conformations

along the folding trajectories is plotted as a function of the number of helical

residues and the radius of gyration. The first plot (A) contains structures from

the first fifth of each of the 114 trajectories, the second plot (B) from the

second fifth, and so on. The trajectories with 1000 slides were used to

generate the plots.
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FIGURE 16 Probability of helicity for each of the residues in the alanine-rich peptide is plotted for every fifth of the trajectory. A is the average for the first

fifth of the trajectories, B is the average for the second fifth, and so on. These are average plots computed over the 114 paths with 1000 slides.
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jection of the folding process onto the radius of gyration and

helical content coordinates (Fig. 14), the barrier appears rather

late. There is considerable barrierlessmotion along the radius-

of-gyration coordinate before the nucleation barrier is

encountered along the helical content coordinate. Computa-

tionally, the diffusive behavior of a-helix formation was

shown earlier (Hummer et al., 2001) using molecular

dynamics.

In Fig. 16, we plot the probability that a given residue will

be in the helix conformation. Fig. 16 A is an average over the

first fifth of the trajectory, Fig. 16 B is on the second fifth,

and so on. Our trajectories clearly support a nucleation site at

the N-terminal. This result is consistent with straightforward

molecular dynamics at room temperature that we run for 10

ns with the hope of observing evidence for nucleation (Fig.

17). The molecular dynamics trajectories suffer from one

major difficulty: the length of the trajectory is too short to

observe the complete formation of the helix (hundreds of

nanoseconds) and is barely adequate to observe nucleation

(20 ns). Nevertheless, molecular dynamics can be useful to

seek early events, if we know what we are looking for (such

as the use of a progress measure). Here, we look for amino

acids that adapt helical configuration early in the folding

process. Indeed, the molecular dynamics trajectories after 10

ns (Fig. 7) suggest a transient nucleation at the C-terminal

and a more stable nucleation at the N-terminal. Interestingly,

Boczko and Brooks (1995) have found that helix formation

in a three-helix bundle started at the N-terminal as well.

However, the helix was different, and it is hard to draw

general conclusions about nucleation. A recent publication

by Chowdhury et al. (2003) suggested a different mechanism

for helix formation—breaking a hydrophobic cluster. So,

although the present study suggests a nucleation site at the N-

terminal (in accord with experimentation for the above

particular helix (Thompson et al., 2000)), the general

mechanism of helix formation is still unknown.

CONCLUDING REMARKS

We have presented a detailed algorithm to compute long time

processes in the length representation. Though the algorithm

was already used in large systems (protein A and cytochrome

C (Cárdenas and Elber, 2003; Ghosh et al., 2002), this is the

first in-depth description of the algorithm and its evaluation

with respect to other numerical methods. An advantage of

the algorithm is that in the worst-case scenario it provides

trajectories close to the steepest descent path, and at

intermediate levels it interpolates between exact classical

trajectories and the usual definition of a reaction coordinate

in chemical physics.

This work was supported by a National Institutes of Health grant to R.E.
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