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Kinetics of Prion Growth

Thorsten Pöschel, Nikolai V. Brilliantov, and Cornelius Frömmel
Humboldt-Universität zu Berlin, Charité, Institut für Biochemie, Berlin, Germany

ABSTRACT We study the kinetics of prion fibril growth, described by the nucleated polymerization model analytically and by
means of numerical experiments. The elementary processes of prion fibril formation lead us to a set of differential equations for
the number of fibrils, their total mass, and the number of prion monomers. In difference to previous studies we analyze this set
by explicitly taking into account the time-dependence of the prion monomer concentration. The theoretical results agree with
experimental data, whereas the generally accepted hypothesis of constant monomer concentration leads to a fibril growth
behavior which is not in agreement with experiments. The obtained size distribution of the prion fibril aggregates is shifted
significantly toward shorter lengths as compared to earlier results, which leads to a enhanced infectivity of the prion material.
Finally, we study the effect of filtering of the inoculated material on the incubation time of the disease.

INTRODUCTION

Although the detailed mechanism for the spreading of

transmittable spongiform encephalopathies diseases (TSE)

such as scrapie, kuru, and a kind of Creutzfeld-Jacob disease

is not yet convincingly clarified, by now it is generally

acknowledged that prion proteins are involved in all forms of

TSE diseases (e.g., Laplanche et al., 1999; Will et al., 1999;

Parchi et al., 1996). There is a long history of speculations,

starting as early as 1967 (Alper et al., 1967; Griffith, 1967),

on whether the presence of misfolded and fibril-like

structure-forming prions cause the disease or whether they

are just a side effect accompanying the disease. By now,

however, there is still no rigorous experimental proof of any

of these hypotheses.

The prion involved in TSE diseases is the PrP protein

(Prusiner, 1991). It is found in two distinct conformations,

PrPc and PrPsc. The proteins of PrPc (c for cellular)

conformation are located at the surface of neural tissues,

but their function has not yet been revealed. In difference to

the healthy conformation, PrPc, the pathogenetic conforma-

tion of this protein, called PrPsc (sc for scrapie), is only

partially digested by proteinase K. The most striking feature

of PrPsc is that it tends to form large-scale aggregates (Jeffrey

et al., 1995) comprising ;200 monomeric units (Prusiner,

1999a). These fibrillic aggregates are essentially one-

dimensional structures (Jarrett and Lansbury, 1993; Lans-

bury and Caughey, 1995), whose sizes grow along one

dimension in both linear directions (Scheibel et al., 2001).

For the molecular mechanism of the conversion of the

healthy PrPc molecule into the pathological PrPsc several

models have been proposed, such as the hetero-dimer
mechanism (Cohen et al., 1994), the cooperative autocatal-
ysis (Eigen, 1996), and the nucleated polymerization model
(Jarrett and Lansbury, 1993). In a critical comparison of

these models, Masel and co-workers gave arguments in favor

of the nucleated polymerization model (Masel et al., 1999),

which by now seems to be widely accepted. Since the kinetic

theory which will be presented in the following sections

applies to this model, we wish to briefly sketch it here: it is

assumed that, in the PrPc conformation, prions occur as

monomers, whereas aggregates consist of PrPsc. The process

of polymerization is assumed to be extremely slow until

a threshold size of n monomers in the aggregate is achieved.

Above this critical size the polymer is much more stable, and

the polymerization progresses significantly faster (Lansbury

and Caughey, 1995). PrPsc polymers are assumed to be un-

branched, i.e., they are effectively one-dimensional. It does

not necessarily mean, however, that the PrPsc macromole-

cules are one-monomer wide; i.e., they may well have heli-

cal or similar structure.

Hence, the model by Masel et al. (1999) addresses the

evolution of the disease after an external infection. It does

not describe the aggregate formation by polymerization of

monomers, i.e., the appearance of sporadic prion diseases.

The evolution of the disease after an infection can be de-

scribed separately since the polymerization of monomers (to

form stable aggregate of supercritical size) is a very slow

process. Aggregates which contain a number of monomers

less than n are energetically unfavorable, inasmuch as they

cannot form a stable fold such as a complete b-helix (Wille

et al., 2002). Therefore it is assumed that, once created,

subcritical aggregates disintegrate almost immediately into

monomers.

Thus, the following elementary processes are involved in

the kinetic model by Masel et al. (1999):

1. The system contains a variable number x of PrPc

monomers. They are generated at a time-independent

rate l. Each PrPc monomer is degraded metabolically at

rate d. Thus, by generation, one obtains x ! x 1 1, by

degradation x ! x � 1.

2. Each of the linear PrPsc polymers grows by one monomer

unit with rate b. If we denote the number of PrPsc

molecules of length i by yi, then growth of a polymer of
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length i by incorporating a monomer causes yi ! yi � 1,

yi11 ! yi11 1 1, and x ! x � 1.

3. Any PrPsc polymer of size i may split into two smaller

polymers. Inasmuch as a linear polymer of length i has

i – 1 links connecting monomeric units and each of them

may break at rate b, a PrPsc polymer splits at rate b(i – 1)

into two smaller pieces of lengths j 2 [1, i – 1] and i – j. If

the length of one or both of the fragment polymers is

smaller than the minimal stable polymer size n, this

fragment(s) disintegrates into PrPc monomers. The latter

process is assumed to occur very rapidly, i.e., an infinite

rate is assumed.

Hence, the split of a polymer of size i into two smaller

pieces of sizes j and i – j causes the following changes of

the system’s status:

(a) if j $ n and i – j $ n: yi ! yi � 1, yj ! yj 1 1,

yi�j ! yi�j 1 1, or

(b) if j \ n and i – j $ n: yi ! yi � 1, yi�j !
yi�j 1 1, x ! x1 j, or

(c) if j $ n and i – j \ n: yi ! yi � 1, yj ! yj 1 1,

x ! x1 i� j, or
(d ) if j\ n and i – j\ n: yi ! yi � 1, x ! x1 i.

Note that the last rule, (d ), deviates from the model

proposed by Masel et al. (1999). In their model, the case

j \ n and i – j \ n was not explicitly considered. If

a polymer of size smaller than 2n – 2 splits it may happen

that both of the arising smaller polymers are shorter than

the minimum stable length n. If one does not take into

account rule (d ), only one of them disintegrates into

monomers—which is inconsistent with the assumption

that polymers shorter than n are unstable. By means of

rule (d ), we assure that both polymers disintegrate,

provided both of them are smaller than n.
4. A PrPsc polymer may be degraded by incorporation into

plaques or by engulfment by macrophages. This process

is independent of the size of the polymer and occurs at

rate a. Here the transition yi ! yi � 1 occurs.

The described prion growth model is sketched in Fig. 1.

The aim of this article is to outline some consequences

which follow from the mathematical analysis of the

nucleated polymerization model of PrPsc molecule growth.

In particular we show that there exists a stable steady-state

normalized size distribution of PrPsc polymers for which

we provide an explicit analytical expression. We describe

quantitatively the dynamics of the average size of PrPsc

polymers and give evidence for qualitatively different

scenarios of the disease which happen after an inoculation

of PrPsc into a healthy organism. We derive a condition

which discriminates the scenario of healing, when the initial

number of PrPsc molecules due to the inoculation decays to

zero, from different scenarios. In difference to earlier results

we give evidence that asymptotically the exponential growth

of the total PrPsc mass ceases and the system finally relaxes

to a steady state with a well-defined size distribution of

polymers. In this steady state the numbers yk of polymers of

lengths k is constant, as well as the number of monomers.

The steady state of the system is determined by the rate

constants a, b, and b, but not by l and d, which characterize

the monomer production and degradation, even if both of

these rates are large as compared to other rates in the system.

We wish to note that although the nucleated polymeriza-

tion model by Masel et al. (1999) is widely accepted, there

exist also alternative models of the prion-related diseases.

Wille et al. (2002) claimed that the formation of aggregates is

not the main process in such diseases and that nonfibrillar

structures of the PrPsc may be important. The authors em-

phasized that the conversion of PrPc into PrPsc is driven by

the formation of unusually stable parallel b-helix folds. Serio

et al. (2000) proposed a conformational conversion model,

which incorporates both the aspects of the nucleated

polymerization and templated assembly models (Prusiner,

1999b) with some additional features. The authors suggest

that the appearance of the fibrillar structures during prion-

related diseases happens due to the aggregation of oligo-

meric intermediates.

DERIVATION OF THE KINETIC EQUATIONS

Consider the rate equations for all species involved in the

dynamics of PrPsc growth. The numbers in curled brackets,

f. . .g, refer to the enumeration of the elementary processes

as described in the previous section. We denote the time-

dependent number of PrPc monomers by x(t), and of PrPsc

polymers by yk(t) with k being the degree of polymerization,

i.e., the length of the polymer.

In what follows we do not consider spatial effects for the

reaction kinetics, i.e., we assume that the above-mentioned

elementary processes occur independently of the spatial

location of the polymers and monomers. A complete model

should account for such spatial effects and describe the

transport of monomers and polymers of different sizes in the

organism. Spatial effects may affect the reaction rates

considerably. Moreover such effects as the spread of the

infection from the place of injection to the place of

observation (which may cause a time lag in the evolution

FIGURE 1 Sketch of the prion aggregate growth model after Masel et al.

(1999) but modified. For explanation see text.
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of the disease) need to be considered by a model which takes

into account spatial effects. Presently, however, we do not

have a reliable model of the molecular transport in the

organism and thus we restrict ourselves to the here-presented

simplified model.

The PrPc monomer equation

According to the model by Masel et al. (1999) there are two

different source terms for x(t), namely the generation of PrPc

monomers with rate l f1g and disintegration of split prod-

ucts of length smaller than n f3b,3c,3dg. Sink terms for

PrPc monomers are caused by metabolic degradation at rate

d f1g and by PrPsc polymer growth f2g. Mathematically,

the rate equation for PrPc monomers that takes into account

these four processes reads

dx

dt
¼ l� dx � bx+

‘

i¼n

yi 1 2b +
n�1

j¼1

+
‘

i¼n1j

jyi 1 2b +
n�1

j¼1

+
n1j�1

i¼n

iyi:

(1)

The meaning of the first two terms at the right-hand side of

Eq. 1 is obvious. The third term describes aggregation of

monomers with polymers of different sizes, where one has to

take into account all existing degrees of polymerization,

starting from i ¼ n, since polymers of size smaller than n are
unstable.

The instability of polymers smaller than n is explicitly

accounted by the following two terms: the index j refers to
the size of one piece after the fracture of a polymer of size i
(which occurs in yi copies). For j ¼ 1; 2; . . . ; n� 1, this

piece disintegrates and produces jmonomers. Since the piece

of size j may be split from both sides of the polymer, the

breakage rate constant b doubles in Eq. 1. It is assumed that

a polymer of length i can split at i – 1 positions and all of

these splittings occur with equal rate b. This term describes

the process when only one of the fragments is smaller than n,
whereas the other one of size i – j$ n is stable. The last term
in Eq. 1 accounts for the process when both products of the

splitting process are smaller than n. In this case both of the

resulting polymers are completely disintegrated and, thus,

produce i monomers. Note that in the mathematical

formulation of the model given by Masel et al. (1999) the

possibility of complete disintegration of the polymer after

splitting was not taken into account and the equation for the

monomers derived there lacks the corresponding term. At

first glance, this term that concerns only polymers of lengths

smaller than 2n – 2, should not essentially affect the

distribution yi(t). The term matters, however, since splitting

such a small molecule due to the original rule would produce

a number of PrPc monomers and a PrPsc polymer of length

smaller than n which is assumed to be unstable by definition.

Hence, neglecting this term any simulation would produce

polymers of size smaller than n and, hence, lead the system

into an ill-defined state.

The PrPsc polymer equation

Next we write the rate equations for the PrPsc polymers. The

elementary processes as described at the end of the In-

troduction give rise to the kinetic equations for the number of

PrPsc polymers of length i $ n,

dyi
dt

¼ bxyi�1 � bxyi � ayi � bði� 1Þyi 1 2b +
‘

j¼i11

yj: (2)

The first term at the right-hand side of Eq. 2 describes the

growths of the number of PrPsc polymers of size i when
a monomer reacts with a PrPsc polymer of size i – 1 (process

f2g), transforming it into a polymer of size i. Similarly, the

second term describes the reaction of a polymer of size i with
a monomer which transforms it into a polymer of size i 1 1

by reducing the number yi. The third term describes the

degradation of PrPsc polymers independent of their size

(process f4g), with the rate a � d. The fourth term refers to

all possible splittings of the polymer of size i, which leads to
decreasing yi. Indeed, the total rate of all possible splittings

of polymer i into pieces of l and i – l with equal rate b reads

+
n�1

l¼1

byi ¼ byi +
n�1

l¼1

1 ¼ ði� 1Þbyi: (3)

Finally, the last term describes the process when a polymer

of size j splits into two pieces—one of length i, and the other
one which may be of any size. Again, the rate constant

b doubles, since the piece imay be split from both ends of the

polymer.

Important characteristics of the size-polydisperse PrPsc

polymer solution are the total number of polymers y and the

total number of monomers which are contained in the

abundance of these polymers z as

y[ +
‘

i¼n

yi; z[ +
‘

i¼n

iyi; (4)

where z is proportional to the total mass of PrPsc.

An equation for ymay be obtained by summing up all Eqs.

2 for all polymer sizes i:

dy

dt
¼+

‘

i¼n

dyi
dt

¼ b+
‘

i¼n

ðxyi�1� xyiÞ�a+
‘

i¼n

yi� b+
‘

i¼n

ði�1Þyi12b+
‘

i¼n

+
‘

j¼i11

yj

¼�ay�ðbz�byÞ12bðz�nyÞ
¼�ay1bz1ð1�2nÞby: (5)

To simplify Eq. 5, we use the definitions from Eq. 4 and the

identity of

+
‘

i¼n

ðyi�1� yiÞ ¼ +
‘

i¼n�1

yi�+
‘

i¼n

yi ¼ 0; (6)

which holds true, inasmuch as yn–1 ¼ 0. The last term in Eq.

5 simplifies as
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+
‘

i¼n

+
‘

j¼i11

yj ¼+
‘

i¼n

+
‘

j¼n

yjQð j� iÞ ¼+
‘

j¼n

yj +
‘

i¼n

Qð j� iÞ ¼+
‘

j¼n

yj +
j�1

i¼n

1

¼+
‘

j¼n

yjð j�nÞ ¼ z�ny; (7)

where the step-function is defined by

QðkÞ ¼ 1 if k[0

0 if k#0:

�
(8)

With Eqs. 6–7 we arrive at

dy

dt
¼ bz�ð2n�1Þby� ay: (9)

Similarly, multiplying the ith equation in Eq. 2 by i and
performing the summation we obtain an equation for z(t) of

dz

dt
¼bxy�az�bnðn�1Þy: (10)

Although the equation for the number of monomers was

incomplete inMasel et al. (1999), Eqs. 9 and 10 coincide with

those obtained there. This does not mean that the time

dependence of the number of polymers y(t) and their total

mass z(t) is identical to previous results, since the number of

monomers, x(t), enters the equations for y and z.Wewill show

below that the evolution of y(t) and z(t) is even qualitatively

different from that of the model by Masel et al. (1999).

Collecting the results of this section, we give the set of

equations that govern the evolution of the system:

_xx¼ l�dx�bxy12b+
n�1

j¼1

+
‘

i¼n1j

jyi12b+
n�1

j¼1

+
n1j�1

i¼n

iyi;

_yy¼�ay1bz1ð1�2nÞby;
_zz¼bxy�az� bnðn�1Þy: (11)

Unfortunately, with the correct kinetic equation for the

monomers it is not possible to obtain a closed solution for the

variables x, y, and z. In general, the evolution of monomers x
depends not only on the total number of polymers y and their
total mass z, but on the full distribution yk, which is unknown.
We will come back to this issue in The Effect of Filtering.

KINETIC EQUATIONS FOR CONSTANT NUMBER
OF MONOMERS

Simplified set of equations for x(t ) 5 x0 5 const

The analysis of the kinetic equations in Eq. 11 simplifies

considerably if one assumes that the number of PrPc

monomers is kept constant by some regulatory processes

in the cell:

xðtÞ ’ x0 ¼ const: (12)

With this assumption, the rates in Eq. 11 simplify to a set of

linear equations:

_yy¼�ay1bz1ð1�2nÞby
_zz¼ bx0y�az�bnðn�1Þy; (13)

which may be solved exactly. The solution reads (Masel and

Jansen, 2001),

zðtÞ ¼ c1 expðr1tÞ1c2 expðr2tÞ (14)

yðtÞ ¼ d1 expðr1tÞ1d2 expðr2tÞ (15)

with

r1=2 ¼�a�bn1
b

2
6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2
14bbx0

q
: (16)

In realistic systems we have r1 [ 0, r2 \ 0 (Masel and

Jansen, 2001). The constants c1, c2, d1, and d2 are specified
by the initial conditions, i.e., they may be expressed in terms

of y(0) and z(0):

d1 ¼
yð0Þ½ð1�2nÞb� r2� a�1bzð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2
14bbx0

p ; d2 ¼ yð0Þ�d1

c1 ¼
yð0Þ½bx0�bnðn�1Þ�� zð0Þða1r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2
14bbx0

p ; c2 ¼ zð0Þ� c1:

(17)

Hence, the time-dependence of y(t) and z(t) is described by

two exponents, r1 and r2.

PrPsc polymer size distribution

The equations for the number of polymers with different

degree of polymerization may be found iteratively. The

evolution of yn(t) is characterized by three exponents, yn11

by four exponents, and generally, yn1k(t) by k 1 3 expo-

nents. To show this, we apply the Laplace transformation

ỹkðsÞ ¼
ð‘

0

e
�st
ykðtÞdt (18)

to the kinetic Eq. 2 for the number of polymers. We use the

property of the Laplace transform dyk=dt ! sỹkðsÞ � ykð0Þ
and write +‘

j¼i11
yj as y�+i

j¼n
yj. Then the Laplace trans-

form of yk reads

ỹkðsÞ ¼
ykð0Þ1 2bỹðsÞ � ð2b� bx0Þỹk�1ðsÞ � 2bỹk�2ðsÞ � � � � 2bỹnðsÞ

s1 ½bx0 1 a1 bðk1 1Þ� : (19)
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Inasmuch as the Laplace transform of y(t) and z(t) is given by

ỹðsÞ ¼ d1

s� r1
1

d2

s� r2
and z̃ðsÞ ¼ c1

s� r1
1

c2
s� r2

; (20)

ỹkðsÞ may be expressed by means of Eq. 19 in terms of ỹjðsÞ
with j\ k. Hence, Eq. 19 allows for an iterative solution for

the complete polymer size distribution, starting from ỹn ( yj¼
0 for j\ n). It reads

ỹnðsÞ ¼
ynð0Þ
s1an

1
2bd1

ðs� r1Þðs1anÞ
1

2bd2

ðs� r2Þðs1anÞ
; (21)

where we introduce the short-hand notation, ak[ bx01 a1
b(k 1 1). The inverse Laplace transform for these simple

fractions (which correspond to the basic inverse Laplace

transforms; Abramowitz and Stegun, 1964) reads as

ynðtÞ ¼A
ðnÞ
0 e

�ant1Bne
�jr2 jt1Cne

r1t; (22)

with

A
ðnÞ
0 ¼ ynð0Þ1Bn1Cn

Bn ¼
2bd2

r21an

Cn ¼
2bd1

r11an

; (23)

where we take into account that r2\ 0. As it follows from

Eq. 22, the evolution of yn is described by three exponential

functions. Similarly, ỹn11ðsÞ may be expressed in terms of

ỹnðsÞ and ỹðsÞ. Performing the inverse Laplace transform for

this quantity yields

yn11ðtÞ ¼ A
ðn11Þ
0 e

�ant1A
ðn11Þ
1 e

�an11t1Bn11e
�jr2 jt1Cn11e

r1t;

(24)

where the coefficient A
ðn11Þ
0 depends on yn(0), A

ðn11Þ
1 on

yn(0) and yn11ð0Þ, whereas the coefficients Bn11 and Cn11

depend only on y(0) and z(0). The expressions for these

coefficients are derived in Appendix B.

Thus, yn11(t) is expressed by four exponents. This iter-

ative procedure may be continued to find successively all

yk(t), i.e., the complete polymer size distribution. Using Eqs.

22 and 24 and the iterative scheme, one obtains the time-

dependence of the polymer size distribution,

yi ¼ +
i�n

k¼0

AðiÞ
k e

�an1kt1Bie
�jr2jt1Cie

r1t; (25)

where Ak
(i), Bi, and Ci are constants and the coefficients aj

have been defined above. As already mentioned, for realistic

parameters r1[0 and r2\0, thus in the series of expressions

in Eq. 25 only the last term Cie
r1t has a positive exponent and

grows with time. Therefore, after a transient time which is

considerably shorter than the incubation time (Masel and

Jansen, 2001), all terms with negative exponents may be

neglected. This means that the system evolves independently

of its initial conditions and the distribution of PrPsc polymer

sizes has achieved its steady-state form. Neglecting the

amplitudes Ak
(i) and Bi, one obtains expressions for the

coefficients Ci. Solving this equation (details are given in

Appendix B), one obtains the steady-state distribution for the

normalized size distribution wi ¼ yi/y:

wi ¼
qi�qi11

qn

qk ¼ ðk1n0Þe�n2ðk1n0Þ2=2; (26)

where

n0 ¼ ða1r11bÞ=b and n2 ¼ b=bx0: (27)

Fig. 2 shows the analytical result, Eq. 26, together with the

results of a numerical simulation. The details of the sim-

ulation method are given in Appendix A.

Evolution of the average size of PrPsc polymers
and scenarios of PrPsc evolution

We introduce the average size of PrPsc polymers as s(t) ¼
z(t)/y(t). Both y(t) and z(t) have the same time-dependence

after the transient time, which corresponds to exponential

growth with the exponent r1 as given in Eq. 16. Therefore,

the average size is time-independent after this transient time.

From the set of equations in Eq. 13 for y(t) and z(t) follows
the equation for s:

ds

dt
¼ 1

y

dz

dt
� z

y
2

dy

dt
¼bx0�bnðn�1Þ1bð2n�1Þs�bs

2

(28)

¼ g1bð2n�1Þs�bs
2
: (29)

Equation 29 defines the value of g ¼ bx0 – bn(n – 1).

The solution of Eq. 28 reads

FIGURE 2 Distribution of polymers wi [ yi/y over the polymer length i

for fixed number of monomers x0 ¼ 500. We obtain excellent agreement

between the analytical result Eq. 26 (line) and the results of a numerical

simulation (circles). The parameters are n ¼ 6, a ¼ 0.05, b ¼ 93 10�4, and

b ¼ 0.015.
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sðtÞ ¼ n�1

2
1

r1� r2
2b

3 tanh
r1� r2

2
t1

1

2
ln

ðr1� r2Þ1bð1�2n12sð0ÞÞ
ðr1� r2Þ�bð1�2n12sð0ÞÞ

� �� �
;

(30)

with s(0) being the initial average length of PrPsc polymers.

The evolution of the average size as described by Eq. 30 is

drawn in Fig. 3 together with the results of a numerical

simulation of the stochastic model. Solving the steady-state

equation

_ss¼ g1bð2n�1Þs�bs
2 ¼ 0; (31)

we obtain for the steady-state average size

s1;2 ¼ n�1

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bx0
b

1
1

4

r
: (32)

The number of PrPsc molecules y(t) can also be expressed in

terms of the average polymer size s(t). From Eq. 13 follows

dy

dt
¼ bðs� s*Þy with s*¼ ð2n�1Þ1 a

b
: (33)

The velocity of growth of the average size _ss as a function of

the average size s is drawn in Fig. 4. For the given set of

parameters the values of s1/2 and s* are marked. We see that

only the steady-state solution s1 corresponds to a stable

fixpoint (moreover, for the chosen set of parameters, s2 is

negative).

From Eq. 33 one can conclude that there exist several

scenarios of the system evolution, depending on the initial

mean size of polymers s(0) (see Figs. 5 and 6).

The last three cases (Fig. 6) correspond to decay of the

total number of polymers to zero. Any inoculation for the

corresponding sets of parameters does not lead to spreading

of the disease. The condition of complete recovery of an

infected organism reads s1\ s*, or in terms of the number of

monomers,

x0\x*; (34)

where

x*¼ b
�1
b n1

a

b

� �
n�11

a

b

� �
: (35)

Contrarily, if the condition of Eq. 34 does not hold, any
inoculation of PrPsc polymers leads to infection, even if the

inoculation is infinitesimally small, e.g., consists of a single

molecule. Certainly this is not realistic and demonstrates that

the application of continuum differential equations has a

restriction. These deal with the average numbers and ignore

their fluctuations. For very dilute systems the fluctuations of

the numbers of molecules are of the same order as the

numbers themselves and one has to use a stochastic model,

which is employed in the present study (see Appendix A).

THE FULL SET OF KINETIC EQUATIONS, EQ. 11

Evolution of x(t ), y(t ), and z(t )

So far the number of PrPc monomers was kept constant (x(t)
¼ x0), which was attributed to some regulatory process. This

assumption simplifies the analysis of the kinetic equations

yielding the linear set of Eq. 13, which enables us to draw

certain conclusions as shown in the previous sections.

Unfortunately, we are not able to solve the full set of

equations in Eq. 11 including the time-dependence of PrPc

monomers in a closed form. Nevertheless, it is possible to

investigate the process sketched in Fig. 1 numerically using

a stochastic method, such as the Gillespie algorithm

(Gillespie, 1976; Feistel, 1976, 1977; see also Appendix A,

this article).

Numerical simulations show that after the initial expo-

nential growth of the number of polymers and of their total

mass, the supply of monomers (which occurs at the constant

rate l) is not large enough to support further exponential

growth. The system relaxes to the steady state at which the

process of PrPsc decay is completely compensated by the

process of their production from PrPc monomers. After the

exponential growth ceases, the number of monomers as well

FIGURE 3 Evolution of the average size s ¼ z(t)/y(t) of PrPsc polymers

due to Eq. 30 (line) and results of a simulation (circles). The parameters are n

¼ 6, a ¼ 0.05, b ¼ 9 3 10�4, and b ¼ 0.015. The initial size is s(0) ¼ 10.

FIGURE 4 The average growth velocity _ss over the average size s due to

Eq. 29. The parameters are n ¼ 6, a ¼ 0.015, b ¼ 0.0009, b ¼ 0.025, and

x0 ¼ 500.
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as the number of polymers reach relatively fast their steady-

state value x(t) ¼ xst and ykðtÞ ¼ ðykÞst. The same happens to

the total number of PrPsc polymers y(t) and to their total mass

z(t), which also achieve their steady-state values, yst and zst.
The expressions in Eq. 11 read for the steady-state case,

when _xx ¼ _yy ¼ _zz ¼ 0, and x ¼ xst, y ¼ yst, z ¼ zst,

�ayst1bzst1ð1�2nÞbyst ¼ 0

bxstyst�azst�bnðn�1Þyst ¼ 0: (36)

From the first equation in Eq. 36 we find the steady-state

value of the average size of PrPsc polymers,

sst ¼ zst=yst ¼ a=b1ð2n�1Þ; (37)

which, substituted into the second equation in Eq. 36, yields

the steady-state number of monomers,

xst ¼ b
�1½a2

=b1ð2n� 1Þa1nðn�1Þb� ¼ x*: (38)

The evolution of the number of monomers and of the average

size of polymers is drawn in Figs. 7 and 8.

Note that xst equals the threshold value for the number

of monomer x* for the model with fixed x ¼ x0. This is

not surprising, inasmuch as x* separates two regimes of

exponential decay and exponential growth of the abundance

of PrPsc; thus, x ¼ xst ¼ x* corresponds to the number of

monomers which keeps the abundance of PrPsc constant.

Due to the time-dependence of the number of monomers

x(t), the evolution of the number of PrPsc polymers y(t) and
their total mass z(t) becomes more complicated (see Fig. 9):

The initial exponential growth finally completely ceases and

y(t) and z(t) saturate at their steady-state values. Between the
exponential growth and saturation one observes a nearly

linear growth.

Steady-state PrPsc polymer size distribution

The steady-state distribution of the PrPsc polymer sizes may

be obtained exactly in the same way as for the case of x(t) ¼
x0. The only difference is that instead of x0 one has to use

now xst, given by Eq. 38, and that the growth rate is zero, i.e.,
the value of r1 ¼ 0 is to be taken. Performing the same

derivation as presented in Appendix B, but with r1 ¼ 0, we

obtain the steady-state size distribution wi ¼ yi/y of PrPsc

polymers:

wi ¼
qi�qi11

qn

qk ¼ ðk1n90Þe�n92ðk1n90Þ2=2; (39)

FIGURE 5 PrPsc polymer growth scenarios for the case s*\ s1. The parameters are n ¼ 6, a ¼ 0.05, b ¼ 9 3 10�4, and b ¼ 0.015, which corresponds to

s* ¼ 66.44 and s1 ¼ 96.78. (Top) s(0)\ s* (y10(0) ¼ 53 105); (middle) s(0)[ s* (y25(0) ¼ 83 103); and (bottom) s(0)[ s1 (y200(0) ¼ 25,000). In all cases

the initial inoculation is z(0) ¼ 5 3 106.
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with the modified coefficients

n90 ¼ ða1bÞ=b and n92 ¼ b=bxst: (40)

As it follows from Eq. 39, the steady-state distribution is

shifted now to smaller polymer sizes as compared to the

previous case of x ¼ x0 (see Eq. 26), where we assumed that

the number of PrPc monomers was kept constant due to some

external regulatory process. The size distribution due to Eq.

39 is drawn in Fig. 10.

In Fig. 7 we have drawn the evolution of the number of

PrPc monomers x(t). The rates which are related to the

stochastic growth, degradation, and splitting of the PrPsc

polymers are much smaller than the rates of production and

degradation of PrPc monomers, l and d, respectively (see

Masel et al., 1999). This fact gave rise to the assumption

of a time-independent number of monomers x(t) ¼ x0 ¼
l/d which was exploited in the previous sections. In-

FIGURE 6 PrPsc polymer growth scenarios for the case s*[ s1. The parameters are the same as in Fig. 5 except for a ¼ 0.1, which corresponds to s* ¼
122.11 and s1 ¼ 96.76. (Top) s(0)\ s1 (y10(0)¼ 53 105); (middle) s*[ s(0)[ s1 (y100(0)¼ 53 104); and (bottom) s(0)[ s* (y500(0)¼ 104). In all cases the

total initial inoculation is z(0) ¼ 5 3 106.

FIGURE 7 Evolution of the number of monomers x¼ x(t). The simulation

starts with x(0)¼ 100 monomers and relaxes within a very short time (which

is not visible on the timescale of the figure) to x(t)� 500. This corresponds to

the number of monomers x0 ¼ l/d which provides the initial exponential

growth. According to a complicated dynamics it eventually approaches its

steady-state value xst ¼ 222.211 given by Eq. 38 (dashed line). The

parameters are n ¼ 6, a¼ 0.05, b¼ 93 10�4, b ¼ 0.015, l¼ 200,000, and

d ¼ 400.

FIGURE 8 Evolution of the average size of PrPsc polymers s ¼ z(t)/y(t).
The simulation starts with s(0) ¼ 200. The dashed line shows the analytical

result, Eq. 37. The parameters are given in the caption of Fig. 7.
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deed, shortly after the beginning of the simulation, x(t) re-
laxes to its assumed steady-state value x0. For later times,

however, one observes a further relaxation to a final steady

state.

Evolution of the PrPsc size distribution

In the previous subsection, we have investigated the steady

state of the PrPsc polymer size distribution. For the spreading

of the sickness it may be interesting to know the evolution of

the size distribution after an inoculation. In Fig. 11 we have

drawn the size distribution at particular times after an

inoculation of 435 PrPsc polymers of length 50 each, i.e.,

y50(0)¼ 435. Hence, the total initial PrPsc mass is z(0)¼ 435

3 50 ¼ 21750, which is ;1/100 of the steady-state value as

can be seen from Fig. 9 (right). The curves are drawn at time

instants t � 0, t � 4, t � 16, t � 64, t � 256, and t � 1024.

During the relaxation the distribution shifts significantly to

the right, i.e., larger polymers occur preferably. This explains

the maximum in the evolution of the average size as drawn in

Fig. 8.

The effect of filtering

One may raise the question of how the initial PrPsc length

distribution affects the spreading of the disease. To this end

we made simulations with identical masses of the initial

inoculation, z(0) ¼ 16,000, but with different size distribu-

tions. We have chosen three initial distributions, displayed in

the top row of Fig. 12. For the simplest one we use a delta-

like distribution, y40(0) ¼ 400 (left). As the system evolves it

approaches the steady-state distribution as given above (Fig.

10). In Fig. 12 (bottom left) we show the size distribution at

the time instant t ¼ 16.1 days when the total mass reaches

z ¼ 2 3 106. For the reasons explained below we use this

total mass as the mass accumulated after the incubation time,

i.e., z(tinc)¼ zinc¼ 23 106. Then this distribution yi(tinc) was
used to generate two other distributions: the ‘‘natural’’

distribution, yi(0) ¼ yi(tinc)/125 (top middle in Fig. 12) and

the ‘‘filtered’’ distribution, yi(0) ¼ 0 for i[ 50 (top right in
Fig. 12), preserving the total initial mass z(0). The dashed

lines show the (accordingly scaled) distribution yi(tinc) which
refers to the assumed incubation time. The second row in

Fig. 12 shows the according distributions at the incubation

time t ¼ 16.1. One notes that at this stage, the initial

distribution is already completely relaxed, i.e., there is no

significant difference between all the three distributions. The

initial distribution does, however, affect the growth of the

total mass of PrPsc molecules. Fig. 13 shows the total mass

of polymers over time corresponding to the three different

initializations.

It was shown that infected mice develop symptoms of the

sickness as soon as there is a certain level of PrPsc in their

brain, independently of the incubation period and the amount

of initial inoculation (Manson et al., 1994; Büeler et al.,

1994). Therefore, one may define the incubation time tinc as
the time when a certain mass of PrPsc molecules, z(tinc) ¼
zinc, is achieved after an initial inoculation at time t ¼ 0. In

Fig. 13 we have marked the times tinc after which the mass

zinc ¼ 2 3 106 was reached for our three different initial

distributions. As it has been already mentioned the initial

stage of the disease corresponds to exponential growth of

the prion abundance. For the chosen set of the model parame-

ters in Fig. 13, the exponential growth corresponds to the

doubling time of ;2.5 days. This is consistent with the

experimental data by Beekes et al. (1996), Taylor et al.

(2000), Kimberlin and Walker (1977, 1980, 1986), and

Kimberlin et al. (1983), where doubling time in the range of

FIGURE 9 Evolution of the number of

PrPsc polymers y(t) (left) and the total

mass of polymers z(t). For comparison,

the dashed lines show the solution of the

simplified set of equations, Eq. 14, with

the exponents and coefficients given by

Eqs. 16 and 17, respectively, with x0 ¼
l/d. The parameters of the simulation are

given in the caption of Fig. 7.

FIGURE 10 Size distributions of PrPsc polymers for the full model,

including x ¼ x(t). The points display numerical simulations and the line

shows the analytical result, Eq. 39. The parameters of the simulation are

given in the caption of Fig. 7. For comparison, the dashed line shows the

result for the simplified model with x(t) ¼ l/d ¼ const. due to Eq. 26.
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2–7 days has been reported. Naturally, the exponential

growth of the aggregate mass implies linear dependence of

the incubation time on the logarithm of the initial dose

(Masel et al., 1999). Note, however, that in Fig. 13 the initial

dose z(0) is the same for all shown curves; the inoculation

differs only by the initial size distribution of the polymers.

To illustrate qualitatively the incubation time-dependence on

the initial distribution we have chosen zinc ¼ 23 106, which

approximately corresponds to 2 LD50 doses (Beekes et al.,

1996) and to tinc ¼ 16.1 days. The ratio zinc/z(0) ;1/125 and

the incubation time are significantly smaller than those

detected in experiments. The experimental incubation time

may be 103 larger, whereas the ratio zinc/z(0) may be as

large as 1012 for low initial doses (see, e.g., Beekes et al.,

1996; Taylor et al., 2000). In our simulation, the ratio zinc/
z(0) corresponds to seven doublings—whereas in experi-

ments,;20–30 doublings are observed. This ratio, however,

is far beyond the abilities of the present computer model

based on the Gillespie algorithm. Hence for the qualitative

analysis we use the above values for tinc and zinc, which can

be called ‘‘model’’ values.

Since the initial size distribution affects the growth of the

total PrPsc mass, one may ask the question of how filtering

the inoculated material affects the evolution of the total mass

and, hence, the incubation time. By filtering at a level k
(which is to eliminate PrPsc polymers whose length exceeds

FIGURE 11 Evolution of the size distribution for the initial condition y50(0) ¼ 435, yi(0) ¼ 0 for i 6¼ 50. The parameters of the simulation are given in the

caption of Fig. 7.

FIGURE 12 Influence of the size distribution of the inoculation to the evolution of the distribution. The parameters are n ¼ 6, d ¼ 100, a ¼ 0.027, b ¼
0.0048, l ¼ 106, and b ¼ 0.025. For explanation, see text.
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k) from the distribution yi(tinc), corresponding to the

incubation time, and by preserving the total mass of the

inoculated material, i.e.,

yi ¼
Cwi for i# k
0 for i[k;

�
(41)

where wi ¼ yi(tinc)/y(tinc), the normalization constant C is

determined by

C¼ zð0Þ
+

k

i¼n
iwi

; (42)

which assures that the initially inoculated mass z(0) does not
depend on the degree of filtering k. Fig. 14 shows the

incubation time over the degree of filtering. The critical mass

of PrPsc material, i.e., the mass which determines the

incubation time, has been chosen as before, zinc ¼ 2 3 106.

As it is seen from Fig. 14 the sickness develops faster if the

inoculation consists of shorter PrPsc aggregates. This effect

has a simple explanation: the same amount of the PrPsc

aggregates contains more active ends if it is composed of

shorter chains, therefore, the growth occurs more rapidly.

For very short molecules, however, when the typical size

only slightly exceeds the stable minimum n, one could

expect an increase of the incubation time. This may happen,

because at the very beginning of the process any splitting of

the polymer would lead to its complete disintegration and

thus to reduction of the number of growing entities. We do

not see the latter effect, however, for the chosen parameters

of the simulation.

Hence, for experimental purposes, the production of PrPsc

may be enhanced by subdividing long PrPsc chains into

several smaller pieces, e.g., by application of ultrasonic

treatment.

COMPARISON WITH EXPERIMENTS

The developed mathematical model can be checked by

comparing the theoretical results with available experimen-

tal data. As shown above, the assumption of a constant

concentration of monomers, being a basic hypothesis of the

theory by Masel et al. (1999) and Masel and Jansen (2001),

implies qualitatively different scenarios of the disease as

compared to the solution of the full set of kinetic equations in

Eq. 11 where the concentration of monomers is time-de-

pendent. The comparisonwith experimental data can discrim-

inate between these scenarios.

The most striking difference between these models is the

time-dependence of the number of polymers y(t) (or of the
total mass of polymers z(t)). For the simplified model x(t) ¼
x0, which corresponds to the set of equations Eq. 13, there

exist two possible scenarios in dependence on the model

parameters: unlimited exponential growth of the number of

prion fibrils (i.e., of y(t) or z(t)); or their complete exponential

disappearance. The possible scenarios for this simplified

model have been illustrated in Fig. 5 (infinite growth) and in

Fig. 6 (complete die-off). Contrarily, the solution of the full

set of kinetic equations in Eq. 11, i.e., including the time-

dependence of the number of monomers, shows initially

intensive growth of the number of polymers y(t), but later it
saturates at some constant value.

If the onset of clinical disease, or of the death of the

infected animal occurred at a time which corresponds to the

stage of exponential growth of the number of polymers, it

would be difficult to discriminate between the models by

means of experimental data. This is definitely the case for

Beekes et al. (1996), Taylor et al. (2000), Kimberlin and

Walker (1977, 1980, 1986), and Kimberlin et al. (1983),

where a linear dependence of the incubation time on the

logarithm of the initial dose has been reported.

Fortunately, however, there exist experiments which show

saturation of the number of polymers. Rubenstein et al.

(1991) infected mice by intracerebral injection as well as by

intraperitoneal injection with a mixture of scrapie-associated

fibrils (SAFs) of different size. Then the number of the SAFs

was directly measured by negative-stain electron microscopy

at various times after the inoculation. The details of the

FIGURE 13 Total mass of PrPsc molecules, z(t) over time for different

initial size distributions as shown in Fig. 12. The initial total mass, z(0) ¼
16,000, is identical in all cases. The full line corresponds to the left plot in

Fig. 12, the dashed line to the middle plot, and the dotted line to the filtered

inoculation drawn in the right plot.

FIGURE 14 The incubation time is sensitive to the size distribution of the

inoculation. The figure shows the model incubation time over the level of

filtering as defined by Eq. 41 for an identical number of PrPsc units in the

inoculation, i.e., for the same value of z(0).
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infective material and the purification procedure are given by

Rubenstein et al. (1991). In these data we clearly observe

a saturation of the total mass of the prion polymers—i.e., the

data supports our model.

Fig. 15 compares the prediction of our theory with the

experimental data given by Rubenstein et al. (1991) for

the time-dependent abundance of SAFs after intracerebral

inoculation. In Fig. 16 we show the comparison of the

theory and experiment for intraperitoneal inoculation. Again

we see that the experiment supports the model of variable

monomer concentration. This conclusion needs some ex-

planation. First, due to the large scattering of the ex-

perimental data, one can also use a nonsaturating curve,

which corresponds to the exponential growth. However, the

best exponential fit corresponds to a doubling time of ;25

days which is not consistent with the experimentally

observed doubling time. Second, we do not take into ac-

count a possible time lag due to spatial propagation of the

infective material. For the experimental data shown in Figs.

15 and 16 there is no qualitative difference between the cases

of intracerebral and intraperitoneal inoculation. If the time

lag was important, one would expect much more pronounced

difference between two distinct routes of delivery of the

infective material to the spleen. This has been also confirmed

by independent measurements of the evolution of the number

of PrPsc polymers in the brain which resembles its evolution

in the spleen. The saturation of the curves in this case is

clearly visible, too (see Figs. 2 and 3 in Rubenstein et al.,

1991).

Unfortunately, owing to a lack of any reliable data for the

prion size distribution, we cannot compare our theoretical

prediction with experiments. Since the model of variable

monomer concentration leads to a growth law y(t) which

agrees with experimental data, we conclude that this model

leads also to the appropriate size distribution function.

Hence, we believe that the size distribution of the fibrils is

given by Eq. 39 rather than by Eq. 26.

CONCLUSION

Based on the model of Masel et al. (1999) we have derived

a mathematically complete set of equations which describes

the PrPsc fibril growth. We analyze these equations both

analytically and by means of numerical simulations. First

we have considered a simplified set of equations where the

number of PrPc monomers is assumed to be constant (x ¼
const.), i.e., the concentration of monomers is kept constant

by regulatory processes in the cell. The full set of kinetic

equations for the PrPsc evolution includes the time-depen-

dence of the monomer concentration, which is determined

self-consistently by the rate constants of the system.

We have observed that, depending on the kinetic

parameters, there exist several scenarios of the evolution of

the disease. For the simplified model (x ¼ const), there are

two possible scenarios: unlimited exponential growth of the

fibril abundance, or their complete disappearance. Con-

trarily, for the model of variable number of monomers (x ¼
x(t)), the initial exponential growth of the number of PrPsc

polymers ceases and finally the number of PrPsc saturates.

We have analyzed the evolution of the distribution of

the fibril sizes and obtain analytical expressions for the

distribution for both models, x ¼ const and x ¼ x(t). By
numerical simulations we have studied the influence of

filtering of the inoculation material on the incubation period.

Filtering in this sense means to vary the size distribution of

the inoculation dose by keeping its total mass z0 constant. It
turns out that the incubation time is very sensitive to the size

distribution of the fibrils: keeping the mass of the inoculation

constant it can vary by a factor of five when the size dis-

tribution varies. This result confirms the importance of

filtering in the inoculation and may be checked experimen-

tally.

FIGURE 16 The same as Fig. 15, but for the intraperitoneal inoculation.

The parameters are n ¼ 6, a ¼ 0.018, b ¼ 3.23 10�4, b ¼ 0.32, l ¼ 1170,

and d ¼ 140.

FIGURE 15 Time-dependent number of PrPsc polymers as it follows from

the numerical simulation of the set of equations in Eq. 11, including the time-

dependence of the number of monomers ( full line) together with the

experimental data ( points) (Rubenstein et al., 1991). The abundance of the

fibrils (given in this reference as a number of PrPsc per a square element of

the substrate) was obtained by negative-stain electron microscopy at various

times after intracerebral inoculation. The measurements were performed for

the spleens of Compton white mice and C57BL/6j mice. The dashed line

show the prediction of the simplified model with the same rate constants but

with a constant number of monomers, x0 ¼ l/d; see Eq. 13. The parameters

are n ¼ 6, a ¼ 0.027, b ¼ 4.8 3 10�4, b ¼ 0.8, l ¼ 1080, and d ¼ 215.
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We compare the prediction of our theory with the

available experimental data for the time-dependence of the

number of PrPsc polymers after an inoculation. These ex-

periments strongly support the need to consider the prion

fibril growth including the time-dependence of the PrPc

monomer concentration as described by the set of equations

in Eq. 11. This model predicts saturation of the number of

PrPsc polymers as compared to unlimited exponential

growths for the simplified model where the number of PrPc

monomers is kept constant.

APPENDIX A: NUMERICAL SIMULATIONS

We have simulated the model for PrPsc polymer kinetics using a numerical

method which has been developed independently by Gillespie (1976) and

Feistel (1976, 1977). The system can be described as a Markov process, i.e.,

the transition probability from the present state ~SS to a state ~SS9 depends

exclusively on the present state but not on the earlier history of the system.

The state of the system is characterized by the number yi of polymers of

length i and the number of monomers x, i.e., ~SS ¼~SSðx; yn; yn11; . . .Þ. If at
a certain time the system is in state ~SS, this state can be left for any of the

following destinations:

1. x11; yn; yn11; . . . with ratel;

2. x � 1; yn; yn11; . . . with rate dx;

3. x; yn; . . . yk�1; yk � 1; yk11; . . . for k ¼ n; n11; n12 . . . with rate ayk;

4. x � 1; yn; . . . yk�1; yk11; yk11; . . . for k ¼ n; n11; n12; . . . with rate

bxyk ;

5. x; yn; . . . yk11; . . . yl11; . . . ym � 1; . . . ðk1l ¼ mÞ for l$ k$ n;

6. x1k; yn; . . . yk; . . . yl11; . . . ym � 1; . . . ðk1l ¼ mÞ for k\n# l;

7. x1k1l; yn; . . . yk; . . . yl; . . . ym�1; . . . ðk1l ¼ mÞ for k\n; l\n:

The processes 5–7 correspond to the splitting of a polymer of size m. The

rates at which these processes occur depend on the length of the polymer

chain m. They are given in Table 1.

A polymer of length m may be cut at m – 1 positions and it was assumed

that these cuts occur at equal rate b. Since at state~SS the system contains ym
molecules of size m the total rate of all possible transitions of types 5–7 in

which a polymer of size m splits is b(m – 1)ym (see also discussion of Eq. 3).

For simulations it is sufficient to determine the size m of the polymer

which breaks in the next simulation step at rate b(m – 1)ym due to the

algorithm described below. Once m is determined one selects the position of

the break, i.e., the final lengths l and k, randomly due to an equidistribution.

Depending on their sizes for l\ n, k\ n these pieces either disintegrate by

increasing the number of monomers x or remain stable by increasing the

number of polymers yl, yk, respectively. This procedure yields precisely the

rates which are given in Table 1.

Performing simulation, we have to decide at current time t at what time t1

t the next transition will take place, and what would be the new state among

all states which are accessible from~SS by any of the processes of types 1–7.

Assume at time t that the system is in the state~SS. Then p(t, m) defines the

probability density for the next transition m to occur in the time interval (t1

t, t 1 t 1 dt), leading the system to the state ~SS9, i.e., m:~SS !~SS9. This

transition probability density factorizes as p(t, m) ¼ p0(t)pm. Here p0 is the

probability for no transition occurring during the time interval (t, t 1 t)

whereas pmdt is the probability that during (t1 t, t1 t 1 dt) the state~SS is
left via transition m. In our notations m belongs to one of the seven types of

possible transitions which are listed above, thus, each probability pm is

determined by the according rates.

From its definition, obviously, p0(t) is an exponential distribution

p0ðtÞ ¼Aexpð�AtÞ; (A1)

where A is the sum of all reaction rates of processes which correspond to

transitions ~SS !~SS9, where ~SS9 is any of the states which are accessible by

a single transition from~SS. Hence, A is the total rate to leave the present state
~SS. For our model A reads

A¼ l1dx1 +
‘

i¼n

ayi1bx+
‘

i¼n

yi1 +
‘

i¼n

bði� 1Þyi: (A2)

In simulations we compute the random value of t obeying the probability

distribution p0(t) (Eq. A1) via

t¼� 1

A
logRND; (A3)

where RND is an equidistributed random number from the interval (0, 1).

The probability pm of the transition m is determined by

pm ¼ Am=A; (A4)

where Am is the rate of the transition m. The numerical procedure to deter-

mine the transition m to escape from the present state~SS is sketched in Fig. 17.

With these ingredients we can set up an efficient algorithm for the simu-

lation of the system described by the set of equations in Eq. 11. In detail:

1. Initialize the variables x (number of monomers), yi (number of polymers

of size i), and time t ¼ 0.

2. Compute the time t after which the present state is left according to Eq.

A3.

3. Determine the process by which the present state is left as described by

Eq. A4 and Fig. 17.

4. Modify the variables x and yi according to the chosen process.

5. Update the rates Am according to the modified variables.

6. Increment time t ! t1 t.

7. Extract interesting data, such as y ¼ + yi, z ¼ +iyi , etc.

8. Continue with step 2.

Simulation techniques of this type have been applied first by Gillespie

(1976) and Feistel (1976, 1977).

APPENDIX B: STEADY-STATE DISTRIBUTION OF
THE PRPSC POLYMER SIZES

Assume that the number of monomers is constant and equals x0. Then the

kinetic equation for the numbers of PrPsc polymers of size i is given by

dyi
dt

¼bx0ðyi�1� yiÞ�ayi�bði�1Þyi12b +
‘

j¼i11

yj: (B1)

The general solution of this equation reads

yi ¼ +
i�n

k¼0

A
ðiÞ
k e

�an1kt1Bie
�jr2 jt1Cie

r1t; (B2)

TABLE 1

Process Rates for m $ 2n – 1 Rates for n # m\ 2n – 1

(5) b(m – 2n 1 1)ym 0

(6) 2b(n – 1)ym 2b(m – n)ym
(7) 0 b(2n – m – 1)ym
Total b(m – 1)ym b(m – 1)ym
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where the coefficients A0
(n), Bn, and Cn for i¼ n, are given by Eq. 23, and for

i ¼ n 1 1 they may be obtained after the second iterative step,

A
ðn11Þ
0 ¼ ðbx0�bÞ

b
ynð0Þ�

2bd1

r11an

� 2bd2

r21an

� �
(B3)

A
ðn11Þ
1 ¼ yn11ð0Þ�

bx0
b

�1

� �
ynð0Þ

1bx0
2d1

r11an11

1
2d2

r21an11

� �
(B4)

Bn11 ¼
2bd2

r21an11

1
2bd2ðbx0� bÞ

ðr21anÞðr21an11Þ

� �
(B5)

Cn11 ¼
2bd1

r11an11

1
2bd1ðbx0�bÞ

ðr11anÞðr11an11Þ

� �
: (B6)

Generally, the coefficient A0
(k) depends on yn(0), A1

(k) depends on yn(0) and

on yn11(0), and Al
(k) depends on yn(0), . . . , yn1l(0).

All terms in Eq. B2 except for the last one decay exponentially,

whereas the last one grows exponentially. Thus, after a transient time only

this term is nonvanishing. Therefore we may neglect all terms except for

the last one and find the solution in the form yk ¼ Cke
r1t. Substituting this

expression into Eq. B2 we find that the coefficients satisfy the difference

equation

r1Ci ¼ bx0ðCi�1�CiÞ�aCi�bði11ÞCi12b+
‘

j¼i

Cj: (B7)

Now we introduce the quantity

Qi ¼+
‘

j¼i

Cj; (B8)

so that the initial coefficients Ci may be expressed in terms of Qi as

Ci ¼Qi�Qi11: (B9)

The equation for the coefficients Qi reads then as

r1ðQi�Qi11Þ ¼ bx0ðQi11�2Qi1Qi�1Þ
�bði11ÞðQi�Qi11Þ12bQi�aðQi�Qi11Þ:

(B10)

For i � 1 it is reasonable to consider i as a continuous variable, say X and

switch from the difference equation in Eq. B10 to the differential equation.

Then Qi – Qi11 may be written as –dQ(X)/dX and Qi11 – 2Qi 1 Qi–1 as

d2Q(X)/dX2. In this way we can recast Eq. B10 into the form

Q991ðn11n2xÞQ912n2Q¼ 0; (B11)

where

n1 ¼
a1r11b

bx0
and n2 ¼

b

bx0
: (B12)

Introducing a new variable,

j¼ ðn11n2XÞ=
ffiffiffiffiffi
n2

p
; (B13)

we obtain an equation for Q(j),

Q991jQ912Q¼ 0; (B14)

which after a substitute Q ¼ W exp(–j2/4) yields the equation for the

function W(j),

W991 11
1

2
� j

2

4

� �
W ¼ 0; (B15)

which is exactly the equation for the harmonic oscillator in quantum

mechanics, which is also called the parabolic cylinder equation with index

n¼ 1 (e.g., Bender and Orzag, 1978). The general solution to this equation is

the parabolic cylinder function. For n ¼ 1 the solution may be expressed

through Hermite polynomials,

WðjÞ ¼NHe1ðjÞe�j
2=4
; (B16)

with the constant N to be determined from the boundary conditions. Taking

into account that He1(j) ¼ j (Bender and Orzag, 1978) and returning to the

previously used discrete variable i, we obtain

Qi ¼N
ffiffiffiffiffi
n2

p ðn01 iÞe�n2ðn01iÞ2=2
; (B17)

where

n0 ¼
n1

n2

¼ a1r11b

b
: (B18)

To find the constant N we notice that after the transient time

yðtÞ ¼ d1e
r1t ¼+

‘

j¼n

yj ¼ e
r1t +

‘

j¼n

Cj ¼ e
r1tQn ¼ d1e

r1t; (B19)

which yields Qn ¼ d1, or

FIGURE 17 To choose randomly the transition m by which the system escapes from the present state~SS we set up an array V containing the cumulative rates,

i.e., V[0] ¼ 0, V[1] ¼ V[0] 1 A1 ¼ V[0] 1 l, V[2] ¼ V[1] 1 A2 ¼ V[1] 1 dx, V[3] ¼ V[2] 1 A3 ¼ V[3] 1 ayn, etc. Then we draw an equidistributed random

number RND from the interval ½0;+Ai�. The process i for which V[i – 1]\ RND # V[i] is chosen to be the next process.
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N¼ d1e
�n2ðn01nÞ2=2ffiffiffiffiffi
n2

p ðn01nÞ ; (B20)

where d1 is determined by the initial conditions. Using Eq. B9 for the

coefficients Ci, one can write for the normalized distribution

wi ¼
yi
y
¼ ðQi�Qi11Þer1t

Qne
r1t

; (B21)

which with Eq. B17 we rewrite in the final form as

wi ¼
qi�qi11

qn

qk ¼ ðk1n0Þe�n2ðk1n0Þ2=2; (B22)

with

n0 ¼
a1r11b

b
and n2 ¼

b

bx0
; (B23)

as defined previously.

The authors are grateful to C. Gille for helpful discussions and to P.

Krapivsky for drawing our attention to the similarity of cow madness and

the quantum harmonic oscillator.
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