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Stochastic Model of Autocrine and Paracrine Signals in Cell
Culture Assays
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ABSTRACT Autocrine signaling systems are commonly studied under cell culture conditions. In a typical cell culture assay,
a layer of liquid medium covers a random two-dimensional dispersion of cells, which secrete ligands. In a growing number of
experiments, it is important to characterize the spatial range of autocrine and paracrine cell communication. Currently, the
spatial distribution of diffusing signals can be analyzed only indirectly, from their effects on the intracellular signaling or
physiological responses of autocrine cells. To directly characterize the spatial range of secreted ligands, we propose
a stochastic model for autocrine cell cultures and analyze it using a combination of analytical and computational tools. The two
main results derived within the framework of this model are 1), an expression for the fraction of autocrine trajectories, i.e., the
probability for a ligand to be trapped by the same cell from which it has been secreted; and 2), an expression for the spatial
distribution of trapping points of paracrine trajectories. We test these analytical results by stochastic simulations with efficient
Brownian dynamics code and apply our model to analyze the spatial operation of autocrine epidermal growth factor receptor
systems.

INTRODUCTION

We propose and analyze a stochastic model for autocrine

signals in cell culture assays. The two main results of this

article are an expression for the autocrine fraction of ligand

trajectories, i.e., the probability for a ligand to be captured

by the same cell from which it has been secreted; and an

expression for the spatial distribution of the trapping points

of escaping ligands. These expressions are generalized to

account for the effects of ligand-receptor dissociation and

receptor-mediated endocytosis. Our approach is based on

a combination of computational and analytical tools. First,

we develop an efficient Brownian dynamics algorithm for

generating the trajectories of secreted ligands. Second, we

homogenize the boundary condition on the trap-covered

surface that models the cell-covered dish. This homogeni-

zation significantly simplifies further analysis of autocrine

loops in cell culture assays. Our analytical results capture the

dependence of the spatial operation of autocrine loops on

parameters of the cell and those of the cell culture assay.

Autocrine signaling accompanies all stages of embryonic

development and is important for tissue homeostasis (Sporn

and Roberts, 1992; Freeman and Gurdon, 2002). Amplified

autocrine signaling is one of the hallmarks of cancer (Sporn

and Todaro, 1980; Rozengurt, 1999; Hanahan and Wein-

berg, 2000; Graeber and Eisenberg, 2001). Understanding

the operation of autocrine systems is important for harness-

ing them in applications such as tissue engineering or

targeting the components of autocrine loops in diseases. In

vivo, autocrine loops are under control of tissue architecture,

cell density, and developmental state of the cell. Although it

is next to impossible to control all of these variables in vitro,

experiments with cultured cells can be used to ask a number

of fundamental questions about the operation of autocrine

systems.

A number of recent articles addressed the question of

the spatial operation of autocrine loops. Depending on the

application, it is important to estimate the fraction of the

ligands recaptured by the cell and/or the spatial distribution

of trapping points for escaping ligands. The biophysical

framework relating these properties to the parameters of the

autocrine loop, such as receptor affinity and expression level,

and the parameters of the assay, such as cell density and

medium height, may guide data analysis and planning of

future experiments. The existing approaches to autocrine

systems are based on the compartmental models (Forsten and

Lauffenburger, 1992; Oehrtman et al., 1998; DeWitt et al.,

2001) or on the single-cell or confluent monolayer ap-

proximations (Shvartsman et al., 2001, 2002). The com-

partmental models contain a large number of adjustable

parameters, whereas the applicability of the single-cell/

confluent monolayer approximations is difficult to evaluate.

Here, we go beyond these approximations and develop

a stochastic model that is applicable over a wide range of cell

densities, medium heights, and molecular/cellular parame-

ters of autocrine systems.

By studying the migration of human mammary epithelial

cells equipped with autocrine epidermal growth factor

receptor (EGFR) loops and plated at low cell density, Wiley,

Lauffenburger and colleagues concluded that autocrine loops

could operate already at the level of a single cell (Wiley et al.,

1998; Dong et al., 1999; Maheshwari et al., 2001). This
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conclusion was supported by experiments measuring the

rates of ligand release into the medium and its control by the

number of cell surface receptors (Lauffenburger et al., 1998;

Oehrtman et al., 1998; DeWitt et al., 2001, 2002). These

studies naturally lead to the question about the relationship

between the efficiency of ligand recapture and parameters of

autocrine loops.

The escaping fraction of autocrine ligands can mediate

homo- and heterotypic cell-cell interactions. Studying this

mode of intercellular signaling, Luttrell and colleagues have

prepared co-cultures of autocrine ‘‘donor’’ and ‘‘acceptor’’

cells (Pierce et al., 2001; Ahmed et al., 2003). Autocrine

donors could be induced to secrete the ligand (heparin-

binding epidermal growth factor) that activated receptors on

the donor or acceptor cells. Heterotypic cell-cell interactions

could be detected only when the cells where co-cultured

at high density. In another area, an increasing number of

experiments suggest that secreted growth factors and

cytokines contribute to the radiation bystander effect,

a phenomenon whereby radiation affects the cells that were

not in direct contact with radiation (Barcellos-Hoff and

Brooks, 2001; Mothersill and Seymour, 2001; Dainiak,

2002). These studies naturally lead to the question about the

spatial range of autocrine signals in cell culture assays, which

is the main focus of our analysis in this article.

MODEL

In this section we introduce a stochastic model of autocrine

signals in a cell culture assay, Fig. 1, A and B. We consider

a random two-dimensional dispersion of cells that secrete

ligands uniformly over the cell surface. The secreted ligands

diffuse in the medium layer of thickness h; the diffusion

coefficient of the ligand is denoted by DL. Ligands can bind

to receptors that are uniformly distributed over the cell

surface. The cells are modeled by disks of radius rcell, Fig.
1 B. The interaction of diffusing ligands with the receptor-

covered cell surface is modeled by imposing a radiation

boundary condition on the cell surface. This means that the

probability density function for the coordinate of a diffusing

ligand, p(x,y,z,t), on the cell surface satisfies

DL

@pðx; y; z; tÞ
@z

����
z¼0

¼ kpðx; y; z ¼ 0; tÞ: (1)

The rate constant, k, is related to the total number of

receptors on the cell surface, Rtotal, and ligand-receptor

binding rate constant, kon, by the relation k ¼ konRtotal/

(prcell
2NA), where NA is the Avogadro’s number (Lauffen-

burger and Linderman, 1993). A ligand-receptor complex

can either dissociate or be internalized by the cell. Both

dissociation and internalization are first-order processes

characterized by the rate constants koff and ke, respectively.
We trace the ‘‘fate’’ of a ligand that is released at a random

point on the cell surface. Specifically, we derive the

probability for the ligand to be recaptured by the initial cell,

i.e., the fraction of autocrine trajectories. We also find the

spatial distribution of the trapping points for the trajectories

escaping from the ligand-producing cell; such trajectories

are termed paracrine. Finally, we derive an expression for

the fraction of the ligand internalized by the initial cell and

the spatial distribution of internalization points for ligands

internalized outside of the ‘‘parent’’ cell. All of these results

are derived as a function of measurable parameters of the cell

and parameters of the assay. To illustrate our results, we

apply them to the autocrine EGFR system (Oehrtman et al.,

1998; Dong et al., 1999; DeWitt et al., 2001, 2002;

Maheshwari et al., 2001; Wiley et al., 2003).

ALGORITHM

The size of a single cell is several microns, whereas the

height of the medium used in a typical cell culture

experiment is several millimeters. This wide separation of

length scales, together with the random boundary condition

on the trap-covered plane, makes the deterministic numerical

methods (e.g., finite elements or finite differences) imprac-

tical. We have developed a Brownian dynamics algorithm

that efficiently generates the trajectories of ligands in this

problem with wide separation of length scales.

Our algorithm combines two techniques from Brownian

dynamics simulations of diffusion-limited reactions. Next to

the trap-covered surface we use the exact one-dimensional

propagator for the partially absorbing boundary condition

FIGURE 1 (A) Schematic representation of a cell culture assay: a random

dispersion of cells is covered by a layer of liquid medium of thickness h.

Autocrine and paracrine trajectories: secreted ligand can be captured by the

cell surface receptors on the ligand producing cell or its neighbors. (B) Cells

are modeled by randomly distributed disklike traps of radius rcell. A

reflecting boundary condition is placed at z ¼ h. The boundary condition at

z ¼ 0 is partially absorbing on the trap surface and reflecting otherwise.
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(Lamm and Schulten, 1981, 1983; Edelstein and Agmon,

1997). Far from the trap-covered plane, we use the first-

passage-time technique (Siegel and Langer, 1986; Torquato

and Kim, 1989; Zheng and Chiew, 1989). By construction,

the algorithm has an adaptive timestep: in the first-passage-

time branch of the algorithm, the timestep is chosen based

on the distance to the lower (trap-covered ) and the upper

(reflective) boundary. Next to the trap-covered surface, the

timestep is dictated by the lateral distance to the nearest trap or

the trap size (to ensure the validity of using a one-dimensional

propagator for the vertical displacement). The details of the

algorithm implementation can be found in the Appendix.

A sample trajectory, shown in Fig. 2, demonstrates the

adaptive timestep strategy: the large timesteps away from

the trap-covered surface and smaller timesteps next to this

surface. After validating the algorithm by comparing its

results to the analytical and (deterministic) numerical solu-

tions of a number of problems in simple geometries, we have

used it to analyze the statistical properties of autocrine and

paracrine trajectories. All the computational results are based

on averaging over 20 configurations of 200 randomly placed

traps and 105 trajectories for each configuration.

RESULTS

Autocrine trajectories

Our Brownian dynamics simulations indicate that the

autocrine fraction essentially does not depend on the medium

layer height and the trap density. The height was varied from

2 to 3 mm, and the trap density was varied from 1% to 40%

of the surface coverage. Dimensional analysis indicates that

the dependence on the ligand diffusivity, trap size, and the

binding rate constant is reduced to the dependence on a single

dimensionless group, the Damköhler number, defined as Da

[ rcellkDL. The Damköhler-dependence of the fraction

of autocrine trajectories, Pau, is shown in Fig. 3. This

dependence is well described by

Pau ¼
Da

Da1 4=p
: (2)

The expression in Eq. 2 can be obtained using one of

the results from Zwanzig and Szabo (1991). This formula

is a generalization of a well-known result for partially

absorbing spherical traps (Collins and Kimball, 1949), to

the case of a partially absorbing disk on the otherwise

reflecting plane. As was shown by Collins and Kimball, the

trapping probability for a particle that starts at the surface of

a partially absorbing sphere of radius R is given by the ratio

k/(k 1 kSm), where k ¼ 4pR2k, and kSm ¼ 4pRDL is the

Smoluchowski rate constant. To get the result in Eq. 2, we

use this ratio with k ¼ prcell
2k and kSm replaced by the

expression for the steady-state rate constant for a perfectly

absorbing disk of radius rcell on the otherwise reflecting

plane: kdisk ¼ 4rcellDL (Hill, 1975).

To rationalize independence of Pau from the medium layer

thickness, h, and the cell surface density, n, one has to

compare the average span of autocrine trajectories with h and
characteristic length associated with trapping of paracrine

trajectories. The span of the autocrine trajectory is defined as

the maximal excursion of a secreted ligand before its

recapture by a cell surface receptor (Shvartsman et al., 2001,

2002). Using dimensional arguments one can see that the

average autocrine excursion length is ;DL/k. In our case,

DL/k\ 0.1 mm; this is an order-of-magnitude smaller than

h, which varies from 2 to 3 mm. To estimate the

characteristic length associated with the trapping of the

paracrine trajectories, one needs to know the spatial density

of the trapping points. We have analyzed this density in

Berezhkovskii et al. (2003) and have shown that all moments

FIGURE 2 An adaptive timestep Brownian dynamics

algorithm uses the first-passage-time method far from the

trap-covered plane and samples from the exact one-

dimensional propagators close to the lower boundary. See

Appendix for the detailed description of the algorithm.
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of the trapping distance diverge as the medium layer

thickness tends to infinity. For the case under study, the

medium height is large enough and the average trapping

length is much greater than DL/k. Thus, for the relevant

range of biophysical parameters, the characteristic lengthDL /

k is much smaller than both the medium height and the

average trapping distance. This is why Pau is independent of

both h and the cell surface density.

Paracrine trajectories

In the case under study, the average trapping length is much

greater than the average distance between the cells on the

surface, given by n�1/2. As a consequence, the inhomoge-

neous boundary condition on the cell-covered plane can

be replaced by the homogeneous one with a trapping rate

constant, keff. This rate constant depends on the parameters

rcell and k of the cell, the fraction of the surface occupied by

the traps, s ¼ prcell
2n, as well as the diffusion constant. For

keff, we use the expression

keff ¼
ks

11pkrcell=4DL

¼ ks

11pDa=4
; (3)

which can be obtained from one of the results derived by

Zwanzig and Szabo (1991). This is a generalization of the

formula for the case when disks are perfectly absorbing

(Berg and Purcell, 1977). Indeed, as k! ‘ the effective rate

constant reduces to 4DLs/(prcell), which is a well-known

Berg-Purcell result. Our Brownian dynamics simulations

show that this boundary condition is very accurate for

Damkohler numbers #1, and over the entire range of

medium heights and cell densities considered in this article.

By homogenizing the boundary condition, we replace the

initial problem of ligand diffusion above a reflecting plane

randomly covered by partially absorbing disks with a much

simpler problem, Fig. 4 A. In the homogenized problem,

a disk with the initial trapping rate constant k, from which

the ligand starts, is located on a uniformly absorbing plane

characterized by the effective trapping rate constant, keff
(Fig. 4 A). Fig. 4 B shows good agreement between the

FIGURE 3 Analysis of autocrine trajectories. The autocrine fraction

depends on a single dimensionless group that combines the size of the trap,

ligand diffusivity, and the rate constant on the trap surface: Da ¼ krcell/DL.

The results of simulations are shown by symbols; the solid curve is given by

Pau ¼Da/(Da1 4/p) (see text for details). Parameters of the simulations are

rcell ¼ 10 mm, kon ¼ 108 M�1 min�1, s ¼ 0.1, 0.2, 0.4, and Rtotal ¼ 104 �
5 3 106.

FIGURE 4 (A) Schematic representation of

the homogenization procedure used to analyze

the paracrine trajectories. The trap-covered

plane is approximated by the partially absorb-

ing boundary condition. The surface reaction

rate constant depends on the trap density and

parameters of the trap, Eq. 3. (B) Comparison

of the probability density functions and cumu-

lative distribution functions found in simula-

tions of the homogenized and original

problems, shown by red and black curves,

respectively. Parameters of the simulations are

Da ¼ 1.77 and s ¼ 0.1, 0.2, and 0.4 (bottom to

top).
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probability densities, g(r), and the cumulative distribution

functions of the trapping points, GðrÞ ¼
R r

0
gðr9Þdr9, found

by simulations of the original and homogenized problems.

There are small differences between the two curves for the

probability density at 1 \ r / rcell \ 2, where the homo-

genization of the boundary condition is not justified.

The homogenization of the boundary condition signifi-

cantly simplifies the numerical analysis of the problem, since

it effectively averages the boundary condition outside of

the disk, from which the ligand starts, over the trap config-

urations. In addition, the homogenization enables an an-

alytical treatment of the spatial distribution of the trapping

points of the paracrine trajectories. As a consequence of the

large average trapping length, one can neglect the disk radius

and assume that all trajectories start from the origin. This

greatly simplifies the analysis. We have derived an infinite

series expression for this distribution at arbitrary values of

keff and h in Berezhkovskii et al. (2003). At large medium

heights (h ! ‘), the expressions for the density of the

trapping points, p(r), is given by

pðrÞ ¼ 2keff

pDL

ð‘

0

x
2

ðkeffr=DLÞ2 1 x
2 K0ðxÞdx; (4)

where K0(x) is the modified Bessel function (Abramowitz

and Stegun, 1964). The corresponding cumulative distribu-

tion function is

PðrÞ ¼
ðr

0

pðr9Þdr9 ¼ 2

p

ð‘

0

arctan
keffr

DLx

� �
xK0ðxÞdx: (5)

This expression works well when hkeff/DL $ 1.

The integrals in Eqs. 4 and 5 have to be computed

numerically. We have found that the dependence in Eq. 5 is

well-approximated by a simple formula,

PðrÞ � r

r1 1:1DL=keff

: (6)

This approximate formula predicts the exact r-dependence
with a relative error\5%.

The effect of ligand dissociation and endocytosis

A recaptured autocrine ligand can either dissociate from the

cell or be internalized by it. Internalization terminates the

trajectory of the secreted ligand. The probability of in-

ternalization is given by the ratio n [ ke/(koff 1 ke). The
probability that the ligand is not only recaptured but is also

internalized by the cell, is given by the sum of the prob-

abilities of internalization during the sequential recapture

events as

P
in

au ¼ nPau +
‘

i¼0

½ð1� nÞPau�i ¼
nPau

1� Pau 1 nPau

¼ nDa

4=p1 nDa
:

(7)

Notice that this result can be directly obtained from the

expression for the autocrine fraction, given in Eq. 2, with the

Damköhler reduced by the factor n. Similarly, the probability

density and cumulative distribution of the internalization

distances are given by the same expressions as those in Eqs.

4–6, in which keff is replaced by nkeff. For example, the

analog of Eq. 6 is

P
inðrÞ � r

r1 1:1DL=nkeff

: (8)

Illustrative example

One of the best-studied autocrine systems is that of the

EGFR and its ligands (Wiley et al., 2003). The molecular and

cellular parameters of this system have been reliably

measured. The forward binding rate constant, kon, is ;108

M�1 min�1, and both the dissociation and endocytosis rate

constants, koff and ke, are in the 0.1–0.3 min�1 range. With

the typical receptor expression level Rtotal of 104–106

receptors/cell, and the cell radius of ;10 mm, the rate

constant k in the radiation boundary condition in Eq. 1 is

between 0.1 and 10 mm/s. The typical medium height is 2–3

mm and the diffusivity of a ligand is 10�6 cm2/s. In this

section, we apply our results to this system.

For the entire range of cell surface receptor densities in

this system, DL/k\h. Therefore, we are in the regime where

the statistical properties of secreted trajectories will not

depend on the height of the medium and cell density. The

Damköhler numbers (Da¼ krcell/DL) corresponding to these

values of k lie between Da � 0.01 for 104 receptors/cell and

Da� 1 for 106 receptors/cell. Using these values to calculate

the probability of autocrine capture by Eq. 2, we get Pau �
0.01 for 104 receptors and Pau � 0.5 for 106 receptors. Thus,

1% and 50% of ligand trajectories will be recaptured by the

cell in these two cases. Recent experiments by De Witt and

co-workers were done with engineered fibroblasts that

expressed ;104 EGF receptors per cell (DeWitt et al.

2001, 2002). According to our analysis, the fraction of

autocrine trajectories is ;1%. Based on this estimate, we

conclude that this experiment was operating in a strongly

paracrine regime, i.e. most of the trajectories were ‘‘lost’’ by

the cell.

To characterize paracrine trajectories, we first calculate the

effective rate constant by Eq. 3 and then use it in Eq. 6. For

example, for 105 receptors, k� 1 mm/s, Da� 0.1, and keff �
0.9 3 s [mm/s]. Substituting these relations into Eq. 6, we

get P(r) � r/(r 1 120/s), where r is in microns. The

dependence P(r) is shown in Fig. 5 for s ¼ 0.1, 0.2, and 0.4.

From this expression we see that 90% of the paracrine

trajectories are captured at the radial distances\1200/s mm,

which is equivalent to 60/s of cell diameters. For the

coverages of 0.1, 0.2, and 0.4, this estimate leads to 600, 300,

and 150 cell diameters. This characterizes the ‘‘plume’’ due

to ligand secretion from an autocrine cell with 105 receptors.
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Thus, the spatial range of paracrine signals in a typical cell

culture assay is much larger than the size of a single cell. This

is an immediate consequence of the fact that the cells are

covered by a thick layer of liquid (hkeff/DL$ 1). On the other

hand, in tissues, e.g., in developing epithelial layers, hkeff/DL

� 1, and the spatial range of a diffusible signal can be just

a couple of cell diameters (Berezhkovskii et al., 2003). Thus,

the extrapolation of the estimates of the ranges of secreted

signals from cell culture experiments to tissues must be done

with extreme care.

CONCLUSIONS

We have developed a biophysical framework for the analy-

sis of autocrine loops in cell culture assays. Within the

framework of our model, we have expressed the autocrine

fraction and the spatial distribution of paracrine trajectories

as the functions of parameters of the cell and parameters of

the assay. Our approach is based on the Brownian dynamics

simulations and the homogenization of the boundary con-

dition for the trap-covered surface. For the relevant ranges

of biophysical parameters, the autocrine fraction of trajecto-

ries is a function of a single dimensionless group that depends

on the parameters of a single trap and ligand diffusivity

(Eq. 2). The statistical properties of paracrine trajectories can

be found by solving the problem where the heterogeneous

boundary condition on the trap-covered plane is replaced by

the homogeneous partially absorbing boundary condition

that depends on parameters of a single trap and the trap-den-

sity (Eq. 3).

The ratio DL/keff defines a dynamic length scale for

the analysis of the distances traveled by paracrine ligands.

In the relevant regime, the dynamic length scale is less than

the height of the extracellular medium and greatly exceeds

the size of a single trap. In this case, the distribution functions

for the distances traveled to the first capture event can be

foundanalytically (Eqs.4–6).Thus,both theautocrine fraction

and the distribution function for the distance to the first cap-

ture are given by analytical expressions. These results were

used to analyze the effect of ligand dissociation and recep-

tor-mediated endocytosis (Eqs. 7 and 8).We have tested these

results by Brownian dynamics simulations and demonstrated

their straightforward application to the autocrine EGFR

system.

In this article we have focused on the fate of a single

ligand released from the surface of an autocrine cell. In the

future, we are planning to characterize autocrine ligand

concentrations in cell culture assays. This can be accom-

plished by incorporating the homogenized boundary condi-

tion described in this article into the conventional models of

receptor dynamics.

APPENDIX

In the algorithm, we distinguish between the bulk of the ‘‘medium’’ and

a ‘‘boundary layer’’ extending a distance d away from the trap-covered

surface. The choice for d is dictated by running time considerations; we

found that a near optimal performance is achieved by using d ¼ 0.001rcell.

When the particle is outside this boundary layer, its next position is chosen

to be uniformly distributed on the surface of a sphere that is centered on the

current position of a particle and has a radius R¼min(z0, h� z0), where z0 is

the current position of the particle. The mean time to reach this hypothetical

spherical boundary for the first time is

T ¼ R
2
=6DL: (A1)

Inside the boundary layer, trajectories are generated using exact one-

dimensional propagators. The timestep is fixed and each of the coordinates

is sampled separately according to the relevant distributions. In the lateral

directions, the particle is advanced according to the Gaussian distribution

pFðDx;DtÞ ¼ ð4pDLDtÞ�1=2
expð�Dx

2
=4DLDtÞ: (A2)

In the vertical direction, different propagators are employed depending on

whether the particle is above the reflecting or partially absorbing part

boundary. The two propagators are given by Lamm and Schulten (1981,

1983) as

pRðz;DtÞ ¼ ð4pDLDtÞ�1=2
exp½�ðz� z0Þ2=4DLDt�

�
1 exp½�ðz1 z0Þ2=4DLDt�

�
; (A3)

pAðz;DtÞ ¼ pRðz;DtÞ � ðk=DLÞexp½�ðz1 z0Þ2=4DLDt�
3 erfcx½ðz1 z0 1 2kDtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4DLDt

p
�: (A4)

Sampling from the propagator pA (z,Dt) is performed using the rejection

method.

Inside the boundary layer and above the trap (or within two trap diameters

from it), the timestep corresponds to mean-square displacement 1003

smaller than rcell of

FIGURE 5 Spatial distribution of trapping points computed for the

parameters corresponding to the autocrine EGFR system is rcell ¼ 10 mm,

kon ¼ 108 M�1 min�1, Rtotal ¼ 105, and s ¼ 0.1, 0.2, and 0.4.
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Dt ¼ ð0:01rcellÞ2=2DL: (A5)

Above the reflective part of the surface, the timestep is chosen according to

Dt ¼ ð0:1dnearestÞ2=2DL; (A6)

where dnearest is the distance to the nearest trap.
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