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Model of Intracellular Calcium Cycling in Ventricular Myocytes
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ABSTRACT We present a mathematical model of calcium cycling that takes into account the spatially localized nature of
release events that correspond to experimentally observed calcium sparks. This model naturally incorporates graded release by
making the rate at which calcium sparks are recruited proportional to the whole cell L-type calcium current, with the total release
of calcium from the sarcoplasmic reticulum (SR) being just the sum of local releases. The dynamics of calcium cycling is studied
by pacing the model with a clamped action potential waveform. Experimentally observed calcium alternans are obtained at high
pacing rates. The results show that the underlying mechanism for this phenomenon is a steep nonlinear dependence of the
calcium released from the SR on the diastolic SR calcium concentration (SR load) and/or the diastolic calcium level in the
cytosol, where the dependence on diastolic calcium is due to calcium-induced inactivation of the L-type calcium current. In
addition, the results reveal that the calcium dynamics can become chaotic even though the voltage pacing is periodic. We
reduce the equations of the model to a two-dimensional discrete map that relates the SR and cytosolic concentrations at one
beat and the previous beat. From this map, we obtain a condition for the onset of calcium alternans in terms of the slopes of the
release-versus-SR load and release-versus-diastolic-calcium curves. From an analysis of this map, we also obtain an
understanding of the origin of chaotic dynamics.

INTRODUCTION

The contraction of a cardiac myocyte is triggered by an

intracellular rise in calcium concentration that is due to

a coordinated release of calcium from the sarcoplasmic

reticulum (SR) (Fabiato, 1983). The release of calcium from

the SR occurs via ryanodine receptors (RyR), which are in

close proximity to L-type calcium channels that are located in

the cell surface membrane and T-tubules (Meissner, 1994;

Wang et al., 2001). When the cell is depolarized, L-type

channels open and allow calcium entry into a confined

microdomain. The rise of calcium in this small space is

sensed by the nearby cluster of RyR channels that in turn open

via calcium-induced calcium release (CICR) (Fabiato, 1983).

As the calcium concentration in the cell rises, contractile

elements are activated and the cell contracts. An uptake

pump, which is activated by the rise in calcium, then pumps

calcium back into the SR. This interplay between voltage

across the cell membrane and intracellular calcium cycling

forms the basis of excitation-contraction (EC) coupling.

During normal beating of the heart, myocardial cells

undergo periodic depolarizations of the membrane called

action potentials (AP). The shape of the AP waveform is

determined by the flux of ions across the membrane. Some of

these fluxes, such as those due to the L-type channel current

(ICa) and theNaCa exchange current (INaCa), aremodulated by

intracellular calcium concentration. Thus, the calcium system

is driven by an AP waveform that is itself dependent on the

dynamics of the calcium system. Recently, Chudin et al.

(1999) were able to shed light on this coupling by stimulating

a rabbit ventricular myocyte using a clamped AP waveform.

They observed that at high stimulation rates the whole cell

calcium transients exhibited alternans evenwhen the clamped

voltage stimulus was periodic. This result demonstrates that

the calcium system could be dynamically unstable indepen-

dently of the dynamics of the membrane potential. Thus,

given the bidirectional coupling between voltage and cal-

cium, this raised the important possibility that abnormalities

in calcium cycling could influence the membrane potential

and hence promote arrhythmias. For example, ventricular

fibrillation is typically preceded by ventricular tachycardia,

where the ventricles can be driven at rapid rates by an unstable

rotating spiral wave. It is possible that at high rates a

dynamical instability of calcium cycling at the single cell level

may promote wave break and thus underlie the transition of

ventricular tachycardia to ventricular fibrillation. Therefore,

a physiologically basedmodel of calcium cycling is necessary

to investigate this important bidirectional coupling of voltage

and calcium. In particular, it is important that this model

reproduces the experimentally observed complex dynamics

of the calcium system at high stimulation rates.

There have been many efforts to model intracellular

calcium dynamics. Initial modeling attempts were faced with

the challenge of explaining the experimentally observed

(Wier et al., 1994) linear dependence of calcium release from

the SR on the whole cell ICa current (graded release), given

that RyR channels are activated by a CICR mechanism that

favors an all-or-none response. This issue was resolved by

Stern (1992), who pointed out that graded release can be

explained by the stochastic recruitment of independent local

release fluxes. Stern referred to models of this type as local

control models since a small cluster of L-type channels were

coupled to a cluster of RyR channels via a local pool of

calcium. Stern emphasized that models that couple whole
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cell ICa to RyR flux via a single pool, which he referred to as

common-pool models, would not be able to explain graded

release. This hypothesis was later confirmed by high

resolution confocal imaging, which showed that the global

rise in calcium was due to the summation of many local

release events sometimes referred to as calcium sparks

(Cannell et al., 1994; Cleemann et al., 1998; Lopez-Lopez

et al., 1995; Niggli, 1999; Wier and Balke, 1999).

The local nature of the release has led researchers to

explore the detailed calcium dynamics within the dyadic

junction, i.e., the space between the L-type channel clusters

and the corresponding RyR receptor clusters (Cannell and

Soeller, 1997; Greenstein and Winslow, 2002; Rice et al.,

1999; Peskoff and Langer, 1998; Sobie et al., 2002; Stern

et al., 1999). However, it turns out to be difficult to char-

acterize experimentally the gating kinetics of the RyR

clusters and the interaction of these clusters with the L-type

channels. As a result, these kinetics are still poorly understood

and, in particular, the detailed mechanism by which release

from the SR is terminated remains controversial (Bers, 2001;

DelPrincipe et al., 1999; Niggli, 1999). Moreover, even if the

calcium dynamics at the dyadic junction is precisely known,

there are on the order of 104 junctions within a cell (Cleemann

et al., 1998). Given that each junction is on a submicron scale,

a modeling approach that attempts to resolve the dynamics of

each junction is unlikely to be computationally tractable for

modeling arrhythmogenesis at the tissue or organ level.

Several authors have proposed tractable phenomenological

models of calcium cycling at the whole cell level (Chudin

et al., 1999; Fox et al., 2002; Glukhovsky et al., 1998; Jafri

et al., 1998; Luo and Rudy, 1994; Snyder et al., 2000; Vis-

wanathan et al., 1999). However, several of these models

(Jafri et al., 1998;Glukhovsky et al., 1998; Snyder et al., 2000)

are common-pool models and, as Stern (1992) predicted, do

not reproduce graded release. Hence, they do not correctly

describe the coupling between the L-type calcium current and

the release from the SR that is crucial to describe EC coupling.

Viswanathan et al. (1999) presented an improved version of

a model of release flux from the SR first presented in the Luo-

Rudy II model (Luo and Rudy, 1994), which incorporates

graded release. This model was able to reproduce calcium

alternans in simulations performed in a ring of coupled cells,

where the voltage waveform was not clamped (Hund et al.,

2000). However, this model does not take into account the

fact that the release from the SR is the summation of discrete

release events. Consequently, it cannot, for example, describe

the influence of the amplitude and duration of these events

on the dynamics of calcium cycling and the instability

mechanism responsible for alternans.

In this article, we present a new model of EC coupling in

ventricular myocytes. This model distinguishes itself from

previous models in that it represents release from the SR as

a summation of elementary release events that correspond to

calcium sparks. Furthermore, the model formulation is based

on two experimentally measurable constitutive relations:

1. The relation between the rate of spark recruitment and the

whole cell ICa. This relation describes quantitatively the

crucial coupling between ICa and calcium release from

the SR. This relation is formulated by introducing

a variable, N(t), which corresponds to the total number

of sparks recruited at a given time t in the whole cell, and

by making the rate of spark recruitment (dN/dt) pro-

portional to the whole cell ICa. This linear relationship

between dN/dt and ICa is based on the available

experimental data on simultaneous measurements of

spark occurrence and whole cell ICa (Collier et al., 1999;
Lopez-Lopez et al., 1995) and reproduces graded release.

2. The relation between the total amount of calcium

released form the SR and the SR load. This relation

can be built into the model by letting the rate of spark

recruitment and/or the average release current of a single

spark depend on the junctional SR (JSR) concentration.

This dependency is then chosen phenomenologically to

reproduce the highly nonlinear relationship between

fractional release and load that has been measured

experimentally (Bassani et al., 1995).

Another important experimental input into the model is the

observation (Cleemann et al., 1998;Niggli, 1999) that the life-

time of sparks is relatively constant and independent of both

SR load and diastolic calcium level. Based on this obser-

vation, we model termination of release from the SR by

assuming that the release current of a single spark decays

exponentially in time from its initial peak value, with a time

constant that is taken comparable to theobserved spark lifetime.

The model includes additional features that are not present

in previous models. The first is a phenomenological de-

scription of intracellular sodium accumulation. This accu-

mulation is well documented experimentally (Harrison and

Boyett, 1995), and was found necessary to reproduce the

experimentally observed rise of diastolic calcium at high

pacing rates. The second is the compartmentation of the

myoplasm into a submembrane space near the sarcolemma

and the rest of the myoplasm. This distinction recognizes the

fact that the concentration in the submembrane space, which

influences both the NaCa exchange current and the calcium-

dependent inactivation of ICa, is much larger during release

than the average bulk concentration inside the myoplasm,

due to the proximity of this space to dyadic junctions.

Finally, consistent with the discrete picture of sparking

events, the model builds in a diffusional delay between the

network SR and the JSR that distinguishes between the

average JSR concentration of recruited and unrecruited

dyadic junctions. We shall show here that this distinction

leads to the interesting effect that this delay can enhance SR

release, as opposed to always reducing it, as in previous

models where the JSR is treated as a single pool (Jafri et al.,

1998; Glukhovsky et al., 1998; Luo and Rudy, 1994).

We explore the dynamics of calcium cycling by pacing the

model using a clamped AP waveform that is fitted to those
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used in the experiments of Chudin et al. (1999). At high

pacing rates, the model exhibits sustained calcium alternans,

consistent with the experimental findings. Furthermore, we

vary parameters of the model to identify which parts of

the complex calcium cycling machinery are essential for

alternans and which ones have a secondary role. We identify

two essential instability mechanisms for alternans. The first

is a steep relation between release and SR load, and the

second is a steep relation between release and diastolic

calcium that is due to calcium-induced inactivation of ICa. In
addition, we find that the calcium dynamics can become

chaotic even when paced with a periodic AP clamp.

To gain further insight into both alternans and chaotic

dynamics, we reduce the ordinary differential equations

(ODEs) of the model to a two-dimensional discrete map that

relates the SR and cytosolic calcium concentrations at one

beat to those at the previous beat. This map allows us to

obtain a stability condition for the onset of calcium alternans

with AP clamp pacing in terms of the slopes of the relations

between release and SR load, and release and diastolic

calcium, as well as the strength of the calcium uptake into the

SR. In addition, this map allows us to show that the existence

of chaos is due to a nonmonotonic relation between the peak

calcium transient at one beat to that at the previous beat.

This article is organized as follows. In the next section, we

describe the various intracellular compartments used in the

model, and define the corresponding calcium concentrations.

In the section ‘‘SR Release Flux’’, we describe a model for

the SR release current. The calcium dependent membrane

currents are then described in the section, ‘‘Calcium Fluxes

across the Sarcolemma’’. In the section ‘‘Dynamics of

Calcium Cycling’’, we integrate these currents into a set

ODEs that are used to study calcium cycling. In the section

‘‘Voltage Clamp Pacing’’, we present the results of the

model when paced under an AP clamp protocol. The

reduction of this model to a map is then described in the

section ‘‘Analysis of Beat-to-Beat Dynamics’’, and the

results are used to analyze the dynamical behavior of the

model. The results are discussed in the ‘‘Discussion’’

section, followed by ‘‘Conclusions’’.

INTRACELLULAR COMPARTMENTS
AND CONCENTRATIONS

A schematic diagram of the intracellular compartments

relevant to calcium cycling is given in Fig. 1. The SR is

a spatially diffuse network of tubules and cisternae that is

composed of two distinct parts. The first is the network SR

(NSR), which is a meshwork of tubules that enwraps the

myofilaments. These tubules branch out from the NSR into

flattened elliptical sacs, referred to as the junctional SR, that

position themselves close to the surface of the cell

sarcolemma (Forbes et al., 1985; Franzini-Armstrong et al.,

1999). The volume in between the JSR and the sarcolemma is

the dyadic junction, wherein RyR channels in the JSR

membrane are in close proximity to L-type channels in the

sarcolemma. In ventricular myocytes, the sarcolemma forms

a uniform array of deep invaginations into the cell, referred to

as T-tubules (Soeller and Cannell, 1999), which effectively

distribute dyadic junctions uniformly throughout the cell.

The flux of calcium from the SR to the myoplasm, shortly

after a voltage depolarization, is due to a summation of

several thousand discrete local release events (Cannell et al.,

1994; Cleemann et al., 1998). During the release process,

calcium in the SR is being drained into the myoplasm via

JSR compartments that are being depleted by local calcium

release. To describe the calcium concentration within the SR

during this release process, we first assume that the SR is

composed of Njsr identical JSR compartments, each with

a volume, yjsr, along with the bulk NSR with volume ynsr.

This gives a total SR volume of ysr ¼ ynsr1Njsryjsr. The total

calcium concentration within the kth JSR compartment will

be denoted by ckjsr; and the concentration in the NSR is cnsr.
At any given time, the JSR compartments can be divided into

those that are being drained due to a spark in the local dyadic

space, and those that are not. The average total calcium

concentration within JSR compartments that are not being

drained at time t will be denoted by c9jðtÞ. This average is

simply given by

c9jðtÞ ¼
1

NUðtÞ
+
k�U

c
k

jsrðtÞ; (1)

where the summation is over the set of NU(t) unrecruited JSR
compartments. The average total calcium concentration

within the entire SR network, which includes all the JSR

and the NSR, will be denoted by cj(t) and is given by

cjðtÞ ¼
1

ysr
ynsrcnsrðtÞ1 +

Njsr

k¼1

yjsrc
k

jsrðtÞ
" #

; (2)

FIGURE 1 Illustration of the intracellular spaces.
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where the summation is over both recruited and unrecruited

JSR volumes. It is important to distinguish between cj and c9j,
since in general cj 6¼ c9j. This is due to the finite time necessary

for c9j to relax to cj via the diffusion of calcium ions within the

SR network. During a local release, at the kth dyadic junction,
for instance, ckjsr will drop below cj as the JSR compartment is

depleted. However, c9j can be larger than cj since the set of

unrecruited JSR compartments are not depleted. This feature

is quite different from previous models (Jafri et al., 1998;

Glukhovsky et al., 1998; Luo and Rudy, 1994), where the

entire JSR is treated as a single pool that is being replenished

by the NSR. In such models, the JSR concentration is always

less than the SR concentration during release.

To describe the calcium outside of the SR, we first divide

this space into the bulk myoplasm (volume yi, average free

calcium concentration ci), and a submembrane space

(volume ys, average free calcium concentration cs), which
corresponds to the space in between the bulk myoplasm and

the sarcolemma (see Fig. 1). To clarify further, cs is the

average concentration that calcium-dependent membrane

channels sense. Since membrane currents are delivered into

ys, and since ys � yi (in this article we use ys=yi ; 10), the

concentration changes in the submembrane space are much

larger and faster than those in the bulk myoplasm. This effect

can potentially influence calcium-dependent ion channels at

the sarcolemma. Also, the free calcium concentration within

the kth dyadic junction will be denoted by ckp: It is important

to note that the average volume of a dyadic space is ;10�9

times smaller than that of the cell volume. Thus, during

a calcium spark in the kth dyadic junction the concentration

ckp can rise rapidly to levels[100 mM (Peskoff and Langer,

1998), whereas the concentration in the submembrane space

will rise to ;5–10 mM.

SR RELEASE FLUX

Spark recruitment rate

To model the release process at the whole cell level, it is first

necessary to determine the relationship between the number

of release events (sparks) and the corresponding voltage

stimulus. Since RyR channels are triggered by nearby L-type

channels, it is reasonable to expect that spark recruitment is

related to the total calcium current entering the cell via the

L-type channels (ICa). Collier et al. (1999) have measured

whole cell ICa simultaneously with calcium spark occurrence

in rat ventricular myocytes, albeit under experimental

conditions of reduced ICa, which allowed for the visualiza-

tion of individual sparks. They showed that the time course

(i.e., time constant of decreasing occurrence) of calcium

sparks with sustained depolarization was statistically iden-

tical to the time course (i.e., the time constant of inactivation)

of the ICa current. This confirmed the conclusions of an

earlier study that was similar except that ICa was not

measured (Lopez-Lopez, 1995). A more recent article (Sah

et al., 2002) again shows in a quantitative manner that the

time course of spark occurrence parallels the time course of

ICa, using novel voltage clamp protocols, such as triangular

and action potential waveforms.

To quantify the relationship between spark occurrence and

the ICa current, we will denote the number of sparks recruited

at time t to be N(t). Then the rate of spark recruitment is

dN(t)/dt, which is the number of sparks recruited in a whole

cell per unit time. This rate can be computed directly from

experimental measurements of spark occurrence. Using the

experimental data presented in the work of Collier et al.

(1999), we compared the rate of spark occurrence and the ICa
current for a depolarization to a holding potential of 30 mV

(see Fig. 4 in their article). In Fig. 2, we plot the computed

spark rate as a function of whole cell ICa. It is clear from the

plot that, under the physiological conditions of the

measurement and for the given depolarization potential, the

measured spark rate is to a good approximation proportional

to whole cell ICa, i.e., dN(t)/dt } ICa(t).
It is known experimentally that when the calcium content

of the SR is increased, the frequency of spontaneous sparks

in a resting myocyte also increases (Cheng et al., 1993;

Lukyanenko et al., 1996, 2000). This dependence between

spark occurrence and SR content implies that RyR channels

are sensitive to the calcium concentration within the local

JSR compartment. Now, since JSR compartments, which

already have been depleted due to a spark, probably cannot

be recruited until they have had enough time to refill, we

expect that the rate of spark recruitment should depend on

the average calcium concentration within unrecruited JSR

compartments (c9j). Thus, we model the JSR calcium

dependence of the whole cell spark rate using

dNðtÞ
dt

¼ gICaðtÞAðc9jðtÞÞ; (3)

where the function A(c9j) gives the JSR load dependence, and

where g is a proportionality constant.

Calcium release during a spark

The local release flux during a spark will be dictated by the

gating kinetics of the RyR cluster and the calcium gradients

FIGURE 2 Spark rate versus whole cell ICa using the experimental data of

Collier et al. (1999). The straight line corresponds to a linear fit.
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in the dyadic space. However, because the detailed prop-

erties of a cluster of RyR channels are not well known,

we will describe local release using a simple phenomeno-

logical model based on very general considerations. First,

we will assume that a spark that is activated at a given time

t9, in the kth dyadic junction, is determined primarily by the

local JSR concentration at the time of activation ckjsrðt9Þ;
rather than the concentration in the local dyadic space

ckpðt9Þ: This is a reasonable assumption because the free

calcium concentration gradient across the RyR channels is

extremely large, and once CICR is induced, the subsequent

flux will rise to a value that is determined by the amount of

releasable calcium in the JSR. We will also assume that

once a spark is recruited it will have a constant lifetime

denoted by tkr . This assumption is motivated by fluores-

cence measurements of calcium sparks (Cleemann et al.,

1998; Niggli, 1999), which show that sparks have a well

defined lifetime around 10–30 ms. Given these simplifying

assumptions, the flux at time t, from the kth JSR

compartment, during a spark that is activated at time t9 # t,
can be written as

I
k

sparkðt; t9Þ ¼ J
kðckjsrðt9ÞÞe

�ðt�t9Þ=tkr ; (4)

where the function Jk gives the JSR load dependence of the

local flux amplitude at the kth dyadic junction.

Once the whole cell ICa is activated, sparks are sto-

chastically recruited at many dyadic junctions distributed

throughout the cell. Thus, at a given time t9, an ensemble of

release fluxes given by Eq. 4 is recruited. Here, we will argue

that this ensemble of spark fluxes has well-defined averaged

properties. This averaging procedure will allow us to drop

the superscript k in Eq. 4, and will simplify the subsequent

analysis of spark summation. First, we note that ckjsrðt9Þ in Eq.
4 denotes the JSR concentration at the time t9 when a spark is
just being recruited. Thus, the kth JSR compartment has not

yet been depleted and will have a concentration that is

roughly the same as the average concentration in unrecruited

JSR compartments c9j(t9). Hence, we can make the approx-

imation that ckjsrðt9Þ � c9jðt9Þ: Second, we assume that the

lifetime and amplitude of a spark in the kth dyadic junction is
roughly the same as the average over the ensemble of

recruited sparks. To be more precise, if we define the average

tr ¼ htkr i and J ¼ hJki; where the brackets denote an aver-

age over the ensemble of recruited sparks, then tkr � tr and

Jk � J. This claim is equivalent to the statement that the

distribution of spark lifetimes and amplitudes is narrowly

peaked around their averages. This assumption is motivated

by fluorescence images of calcium sparks that show that

sparks in different regions of the cell essentially have the

same spatial and temporal properties (Cleemann et al., 1998;

Niggli, 1999). Thus, the local flux during a spark in the kth
junction Ik

spark
ðt; t9Þ; can be represented by an average spark

flux Ispark(t, t9), where J
k ! J; tkr ! tr; and c

k
jsrðt9Þ ! c9jðt9Þ:

To asses the validity of Eq. 4, we have also developed a set

of ODEs that describe the calcium dynamics within a dyadic

junction. This model, given in detail in Appendix A,

simulates a calcium spark using a simple CICR gating ki-

netics that is initiated by a short pulse of calcium injected

into a simulated dyadic space. Local flux termination is then

modeled using a combination of diffusion-driven deactiva-

tion and local JSR depletion. In Appendix A, we show that

Eq. 4 approximates well the local current due to a simulated

local release. However, it is important to note that Eq. 4 does

not rely on any specific mechanism underlying the local

calcium dynamics, and should hold under more general

conditions. Thus, our simple model of the calcium dynamics

at the dyadic junction level serves primarily to validate Eq. 4

in a particular case, but is not central to the overall

implementation of the model.

Summation of calcium sparks

The total flux draining the SR at time t, which will be

denoted by Ir(t), is given by the summation of local fluxes

due to sparks recruited at times t9 # t. To compute this sum,

we divide the interval of time 0 # t9 # t into M bins of

duration Dt9, such that t ¼ MDt9. Consequently, the flux

draining the SR at time t¼MDt9 is given by the discrete sum

IrðtÞ ¼ +
M

i¼1

DNðiDt9ÞIsparkðt; iDt9Þ; (5)

where DN(iDt9) is the number of sparks recruited during the

time interval (i � 1)Dt9 # t9 # iDt9. If we now take the

continuum limit Dt9 ! 0 and use the expression for the

average spark flux Ispark(t, t9) (Eq. 4 where the superscript k is
dropped), the above discrete sum becomes an integral

IrðtÞ ¼
ð t
0

dNðt9Þ
dt9

Jðc9jðt9ÞÞe�ðt�t9Þ=trdt9; (6)

where t9 ¼ 0 is a time origin when Ir(0) ¼ 0. Finally,

differentiating both sides of this equation with respect to t,
we obtain

dIrðtÞ
dt

¼ dNðtÞ
dt

Jðc9jðtÞÞ �
IrðtÞ
tr

; (7)

which will be our basic equation for the release flux Ir(t).
Using Eq. 3, the first term on the right-hand side of Eq. 7 can

be written as ðdNðtÞ=dtÞJðc9jðtÞÞ ¼ gICaðtÞAðc9jðtÞÞJðc9jðtÞÞ;
which reveals that the JSR load dependence of release is

governed by the function Q(c9j) ¼ A(c9j)J(c9j).

SR load dependence of release

The release of calcium as a function of SR load has been

addressed experimentally (Bassani et al., 1995; Shannon

et al., 2000b). In the experiment by Bassani et al. (1995), the

fraction of SR calcium released as a function of SR load at
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fixed trigger ICa was measured in ferret ventricular myocytes.

The authors found that for low SR loads [Ca]SRT\50 mmol/

l cytosol, almost no calcium is released. At normal loading

[Ca]SRT ; 90 mmol/l cytosol, about half of the SR is

released, whereas for slightly larger loading [Ca]SRT ; 100

mmol/l cytosol, almost 70% of the SR is released. Here,

[Ca]SRT denotes the total calcium concentration in the SR,

which is the quantity measured in the experiment. An

important finding of this experiment is that the fraction of

calcium released from the SR depends on the initial calcium

concentration of the SR in a highly nonlinear fashion. To

model this dependence of release on SR load, we will pick

a functional form for Q(c9j), which will reproduce the

essential features of the experimental results. Since the

dependence of release on load only enters through the

function Q(c9j), it is clear that this function itself should

depend on c9j in a nonlinear fashion. There can be several

explanations for such a nonlinear dependence of local release

on JSR load. One possible scenario is that by virtue of the

gating kinetics of the local RyR channels, the amount of

calcium released at a single dyad J(c9j), may change

nonlinearly with JSR load. Another independent possibility

is that the sensitivity of the RyR channels may depend on c9j
in a nonlinear fashion. In this case, it would be the load

dependence of the spark rate A(c9j) that is a nonlinear

function. However, the advantage of our phenomenological

approach is that the function Q(c9j) can be chosen by

appealing directly to experimental data, without a complete

model of the SR load dependence of release.

JSR-SR diffusional relaxation

To complete the model, we take into account the fact that

the average total calcium concentration in the SR (cj) is not
the same as the average concentration of unrecruited JSR

compartments (c9j). This is due to the finite time necessary

for calcium to equilibrate, via diffusion, over the entire

volume of the SR. This effect can be incorporated into the

model by letting c9j relax to cj using dc9j=dt ¼ (cj � c9j)/ta,
where ta is a relaxation time. A rough estimate of ta, which

has not yet been measured experimentally, is the aver-

age time for a calcium ion to diffuse from a local JSR

compartment to the bulk NSR. If we take the effective

diffusion coefficient of calcium ions in the SR to be ;150

(mm)2/s (Stern et al., 1999), then the time for an un-

obstructed calcium ion to diffuse over a distance 1 mm,

(which is roughly the average distance between the NSR

and the sarcolemma) is ;7 ms. However, the calcium ions

are confined within the SR, which is a complex tubular

network of diameter 25–50 nm (Forbes et al., 1985), and

so the diffusion (translocation) time can actually be much

longer. Thus, we will consider relaxation times within

a fairly wide range of 1–100 ms, and discuss in detail the

role of this time constant on the dynamical behavior of the

calcium system.

CALCIUM FLUXES ACROSS THE SARCOLEMMA

L-type calcium current

In this model, we have approximated the rate of spark

recruitment to be proportional to the whole cell ICa current
entering the cell at that time. Hence, a correct formulation of

whole cell ICa is an essential component of the model. The

whole cell ICa current can be written as ICa ¼ MPoiCa, where
M is the number of L-type channels in the cell, Po is the time-

dependent open probability of a single channel, and iCa is the
single-channel current. We model the open probability of

the L-type channel using Po ¼ d‘ fq, where d‘ is an

instantaneous voltage dependent activation gate, f is a slow

voltage dependent inactivation gate variable, and where q
describes calcium-induced inactivation. It is important to

note that L-type channels, within dyadic junctions where

a spark has just been activated, will see a calcium con-

centration that is much larger than cs. Thus, these channels

will have a much lower open probability as compared to

the open probability of channels in unrecruited dyadic junc-

tions. Hence, at a given time t, calcium entry into the whole

cell via ICa(t) should be dominated by those L-type channels

within unrecruited dyadic junctions. Since the average con-

centration sensed by these channels is roughly the same as

cs, then the calcium-dependent gate variable q should depend
on cs.
The kinetics of calcium inactivation is modeled using

a simple first order scheme that yields

q‘ ¼ 1

11 cs=~ccs
; tq ¼

q‘

ko
: (8)

The detailed parameters of the gate variables are given in

Appendix B, and are chosen so that the time course of ICa
is qualitatively similar to the most recent experimental

measurements in rabbit myocytes (Puglisi et al., 1999).

To explore the role of calcium-induced inactivation on the

overall dynamics of the system, it is essential to also

investigate more general inactivation schemes. However, we

found that simply generalizing Eq. 8 to higher order kinetics

led to an ICa time course that was different from experi-

mentally measured currents (Linz and Meyer, 1998; Puglisi

et al., 1999). Following an approach similar to Fox et al.

(2002), we modeled calcium-induced inactivation using

a simple phenomenological scheme with

q‘ ¼ 1

11 ðcs=~ccsÞg
; (9)

and with tq a constant in the range 10–50 ms. With this

model formulation the exponent g can be varied, and

a steeper cs dependence of calcium-induced inactivation can

be explored.

NaCa exchange current

The NaCa exchange current is taken directly from Luo-Rudy

II (Eq. 31 in Appendix B). The exchange current is sensitive
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to the intracellular sodium concentration (Nai). Higher Nai
reduces the transmembrane sodium gradient and so reduces

the efficiency of the NaCa exchange current at extruding

calcium from the cell, which should lead to higher intra-

cellular calcium. An investigation by Harrison and Boyett

(1995) used guinea pig ventricular myocytes to study pacing

rate dependent increases in twitch shortening. They showed

that when the pacing rate was increased from 0.5 to 3 Hz,

twitch shortening increased by 34%, whereas if sodium entry

(INa) was blocked by tetrodotoxin, twitch shortening

increased by only 8%. This result demonstrates that rate

dependent changes in Nai could have a substantial effect on

intracellular calcium. Thus, we felt it imperative to include

a phenomenological description of Nai, where Nai is taken to

be an increasing function of the pacing rate.

Role of the submembrane space

As mentioned in ‘‘Intracellular Compartments and Concen-

trations’’, we have divided the myoplasm into two spaces:

a submembrane space, which is the space in the vicinity of

the sarcolemma, and the bulk myoplasm, which is the

remainder of the cell volume. This compartmentation of the

myoplasm is motivated by the recent experimental and

modeling work of Weber et al. (2001). Here, it was shown in

particular that the NaCa exchange current INaCa, due to its

proximity to dyadic junctions, senses a calcium concentra-

tion that is different from the global cytosolic calcium

concentration. Consequently, modeling studies showed that

the time course of INaCa served as a much more efficient

calcium efflux mechanism when it is coupled to the larger

and faster concentration changes at the submembrane space

(cs) than when it was coupled to the bulk concentration (ci).
Likewise, by virtue of calcium-induced inactivation, the time

course of ICa should depend on the calcium concentration in

the vicinity of the sarcolemma. This effect is particularly

important since the calcium released from RyR channels

during calcium release is delivered into dyadic junctions that

are close to the sarcolemma. Thus, L-type channels sense

a much more rapid rise in calcium than that given by the rise

of the global cytosolic calcium concentration. To model the

effect of a submembrane space, we let the membrane

currents ICa and INaCa flow into a compartment of volume

ys � yi, before diffusing to the bulk myoplasm via a simple

relaxational current Id¼ (cs� ci)/ts, with ts a relaxation time

that we will take to be in the range 5–10 ms.

DYNAMICS OF CALCIUM CYCLING

In this section, we study calcium cycling by incorporating

the various currents described in previous sections into

a single model. Since our formulation of the SR release flux

does not explicitly depend on the calcium concentration

gradient between the JSR and the submembrane space, we

are free to formulate the dynamics of the SR calcium

concentration in terms of the total concentration in the SR,

rather than the free calcium concentration. An advantage of

using the total SR concentration is that it is the quantity that

is measured directly in experiments (Shannon et al., 2000b).

Calcium buffering in the cytosol will be taken into account

by incorporating the buffering to troponin C, SR, and

calmodulin sites, since these are the sites that bind the

majority of calcium released from the SR (Shannon et al.,

2000a). The buffering to SR and calmodulin sites are fast

and will be treated as instantaneous, whereas the time

dependent kinetics for the buffering to troponin C will be

accounted for.

The equations for calcium cycling can be written as

dcs
dt

¼ bðcsÞ
yi

ys
IrðtÞ �

ðcs � ciÞ
ts

��

�ICaðcs;VÞ1 INaCaðcs;VÞ
�
� I

s

trpn

�

dci
dt

¼ bðciÞ
ðcs � ciÞ

ts
� IupðciÞ � I

i

trpn

� �

dcj
dt

¼ �IrðtÞ1 IupðciÞ; (10)

where the flux out of the SR satisfies

dIrðtÞ
dt

¼ gICaðtÞQðc9jÞ �
IrðtÞ
tr

; (11)

and where

dc9j
dt

¼ cj � c9j
ta

: (12)

Here, Istrpn and Iitrpn describe the time dependent buffering

to troponin C in the submembrane and bulk myoplasm

respectively. The functions b(cs) and b(ci) account for the
instantaneous buffering to SR and calmodulin sites. The

details of the buffering kinetics and parameters are given

in Appendix C. Also, V denotes a time-dependent AP

waveform.

The free concentration in the cytosol (ci) and the

submembrane space (cs) are in units of mM, whereas the

total concentration in the SR and the JSR is scaled by

a constant factor ysr=yi, so that cj is in units of mmol/l

cytosol. All fluxes have been divided by the volume of the

cytosol yi, and have units of mM/s. Thus, currents can be

converted to amperes by multiplying by the factor 2Fyi,
where F is Faraday’s constant. Also, the volume of the

cytosol will be taken to be 10 times the volume of the

submembrane space (yi=ys ¼ 10). The parameters used in

the model are given in Tables 1–4. It should be noted that the

above equations do not mathematically forbid unphysiolog-

ical draining of the SR, where cj becomes less than zero.

However, for physiologically plausible parameters, such as

the ones used in our simulations, cj is always positive.
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The constant g will be taken to have units of sparks/mM,

so that gICa gives the rate, in units of sparks/s, that sparks are
recruited in the whole cell. The release function Q(c9j) is

taken to have the simple form

Qðc9jÞ ¼
0 0\c9j\50mM

c9j � 50 50mM# c9j\115mM

uc9j 1 s c9j $ 115mM;

;

8<
: (13)

where u is an adjustable constant, and where s is fixed by the
condition that the release function is continuous. Here, the

flux Q(c9j) is expressed in units of 10�3 mM/s, which, for

a typical JSR load of c9j ¼ 100 mM, yields a local release

current of ;1 pA, which is roughly the same as the ex-

perimental estimate of local release flux (Cheng et al., 1993).

With the above choice of units we will use g ¼ 1.5 3 104

sparks/mM. Thus, for a total calcium entry, during a 1-s

cycle, of
R
ICa dt; 2:5mM; ;4 3 104 sparks are recruited.

The constant u is adjusted so that the fractional release is

consistent with the experimental results of Bassani et al.

(1995). The fractional release is defined as

f ðc0j Þ ¼
c
0

j � c
min

j

c
0

j

; (14)

where c0j is the total SR concentration just before an AP

upstroke, and where cmin
j is the minimum total SR

concentration shortly after the upstroke. To compute the

fractional release, we clamp the voltage from Vmin ¼ �80

mV to Vmax ¼ 30 mV. Under these conditions, ICa quickly
peaks and decays during which the SR concentration crosses

a minimum value. By computing the minimum value cmin
j for

various initial SR loads, we can compute the function f (c0j ).
In Fig. 3 A we plot the fractional release f versus the initial

SR load c0j for the parameters given in Tables 1–4.

An important experimental observation that has to be

incorporated into any model of EC coupling is graded

release. In an important experiment, Wier et al. (1994)

measured peak SR flux and peak ICa during depolarizations

to various test potentials. In a similar manner, we held the

membrane voltage at a V(t) of �80 mV, and depolarized to

various test potentials (Vmax). As expected, and similar to

Wier’s results, peak ICa and peak Ir were bell shaped as

a function of Vmax (Fig. 3 B), and peak SR flux was graded

with respect to peak ICa. The parameters were adjusted to

give a gain ðImax
r =Imax

Ca Þ of ;10 for Vmax in the range 0–30

mV (Wier et al., 1994).

VOLTAGE CLAMP PACING

Pacing protocol

In the experiment of Chudin et al. (1999), intracellular

calcium transients were measured as the cell was paced with

various AP clamps. The AP clamp used in that experiment

can be modeled effectively using

TABLE 1 Physical constants and ionic concentrations

Parameter Definition Value

F Faraday constant 9.65 3 104 C/mol

R Universal gas constant 8.314J mol–1K–1

T Temperature 308 K

Nao External sodium

concentration

140 mM

Cao External calcium

concentration

1.8 mM

yi Cell volume 10�4 ml

ys Submembrane volume 0.1 vi

TABLE 2 L-type channel parameters

Parameter Definition Value

PCa Constant defined in Luo-

Rudy II model

5.4 3 10�4 cm/s

�iiCa Adjustable proportionality

constant

25 mmol C–1 cm–1

tf Voltage dependent

inactivation gate constant

30 ms

ko Transition rate to open state 8 s–1

~ccs Calcium inactivation

threshold

0.5 mM

TABLE 3 Exchanger and uptake parameters

Parameter Definition Value

cup Uptake threshold 0.5 mM

yup Uptake strength 250 mM/s
�IINaCa Adjustable strength of

exchanger 2 3 104 mM/s

ksat Luo-Rudy II constant 0.1

j Luo-Rudy II constant 0.35

Km,Na Luo-Rudy II constant 87.5 mM

Km,Ca Luo-Rudy II constant 1.38 mM

TABLE 4 SR release parameters

Parameter Definition Value

g Release current strength 1.5 3 104 sparks/mM

u Release slope 11.3 s�1

tr Spark lifetime 20 ms

ta Relaxation time of c9j to cj 50 ms

ts Submembrane diffusion

time constant

10 ms

VðtÞ ¼ Vmin 1 ðVmax � VminÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t � mT

xT

� �2
r

mT# t#mT1 xT

Vmin mT1 xT\t\ðm1 1ÞT;

8<
: (15)
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where T is the period (pacing cycle length), x ¼ APD/T,
where APD denotes the action potential duration, and where

m denotes the mth beat. The parameter x fixes the shape of

the AP, and depends on the pacing period. The action

potentials are fitted using Vmin ¼ �80 mV and Vmax ¼ 30

mV. The ratio x ¼ APD/T was fitted to the experimental

values using a function of the form

xðTÞ ¼ a

a1 T
: (16)

In Fig. 4 A, we plot the experimental values for x as a function
of T, as well as the values given by a fit with a ¼ 2/3.

Intracellular sodium and the rise of the
calcium transients

The average whole cell sodium concentration Nai depends

on the amount of sodium injected into the cell during pacing,

and so depends on the pacing period T. Since our model does

not describe intracellular sodium dynamics, we introduce

a function Nai(T), which gives the internal sodium con-

centration at steady state as a function of period T. Faber
and Rudy (2000) have suggested that Nai increases from

;10 mM to close to 15 mM, as the pacing period is

decreased from 2 s to 100 ms. Hence, we model the in-

tracellular sodium concentration using a simple function of

the form

NaiðTÞ ¼
a

11 bT
1=2 ; (17)

where the constants a, b are chosen so that Nai(1 s) ¼ 9.6

mM and Nai(.2 s) ¼ 18.5 mM. In Fig. 4 B, we plot cmax
i and

cmin
i after steady state has been reached for the above set of

parameters. On the same graph we include the experimental

data of Chudin et al. (1999). As we can see, both quantities

rise with decreasing period, as cmax
i � cmin

i remains fairly

constant. On the same graph we plot the same quantities

when intracellular sodium concentration is kept constant at

Nai ¼ 10 mM. In this case there is only a small rise in cmax
i .

Hence, in this model, the overall rise in calcium concentra-

tion during rapid pacing is primarily due to the accumulation

of sodium in the cell.

Calcium transients and currents during
rapid pacing

We studied the effects of pacing rate by pacing the calcium

system with the clamped AP waveform at different cycle

lengths (T). Results of pacing the model at a slow rate, with

pacing cycle length of T ¼ 1 s, and a fast rate, with cycle

length T ¼ 0.25 s, are shown in Figs. 5 and 6, respectively.

Both sets of figures show the steady state values of ci, whole
cell ICa, and the NaCa exchange current INaCa. The results of
Fig. 6 show clearly that as the whole cell calcium transient

alternates, so do the calcium-dependent currents. We ex-

plored the dynamics of the model more fully by calcu-

lating the peak calcium transient values at different pacing

periods (Fig. 7). On the same graph, we plot the experimen-

tal data of Chudin et al. (1999). It is clear from the graph that

as the period is decreased, the calcium system undergoes

a period-doubling bifurcation, qualitatively similar to the

experimental findings.

ANALYSIS OF BEAT-TO-BEAT DYNAMICS

Map reduction with linear instantaneous buffering

To understand the nonlinear dynamics of the calcium

system, it is useful to reduce the dynamics of the model

ODEs to a system of discrete maps. Using this approach, it

is possible to understand the dynamical instability that is

responsible for calcium alternans. To make the analysis more

tractable, we first focus on the simple case where all

cytosolic calcium buffering is linear and instantaneous; in

this case, b(cs) ¼ bs, and b(ci) ¼ bi, where bi and bs are

constants. This simplification is introduced mainly because it

allows us to derive a simple analytical condition for the onset

of calcium alternans, which makes transparent the physio-

logical mechanisms that underlie this phenomenon. In the

section ‘‘Map reduction with instantaneous nonlinear

buffering’’, we then show that a more elaborate map derived

with instantaneous, albeit nonlinear, buffering can yield

predictions of calcium dynamics that are in reasonable

quantitative agreement with the full model ODEs.

FIGURE 3 (A) Fractional SR release f ver-
sus initial SR load c0j . For all points, the initial

conditions are cs(0)¼ ci(0)¼ 0.1 mM, f(0)¼ 1,

d(0) ¼ 0, q(0) ¼ 0.8, Ir(0) ¼ 0 mM/s. (B)

Relationship between peak ICa and peak SR

flux. The solid line is Imax
r (Vmax), and the

dashed line is Imax
Ca (Vmax). Both curves have

been normalized to their peak values. The

initial conditions are identical to those given

above except that the initial total SR load is

fixed at cj(0) ¼ 100 mmol/l cytosol.
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Recall that our basic model (Eqs. 10–12) consists of four

variables that represent the average concentrations in the

cytosol, ci(t); the submembrane space, cs(t); the JSR, c9j(t);
and the SR, cj(t). Furthermore, let us define cni [ ci(nT),
cns [ cs(nT), c

n
j [ cj(nT), and c9nj [ c9j(nT), to be these

concentrations at a time t ¼ nT just before the nth AP

upstroke. The abruptness of the AP upstroke makes this

a natural choice of variables for the discrete map. A mapping

between these concentrations at the nth and nth 1 1 AP

upstrokes can be constructed by integrating the model ODEs

from time t¼ nT to time t¼ (n1 1)T. A major simplification

is that the concentrations in the cytosol and the submem-

brane space are to a very good approximation equal before an

AP upstroke (cns � cni ) and only differ significantly from each

other during the upstroke of the calcium transient. This is due

to the fact that the volume of the submembrane space is

much smaller than the volume of the cytosol ðyi=ys � 1Þ;
and hence cs relaxes quickly to ci. Hence, the two con-

centrations are essentially equal except when ci is rapidly

varying. Similarly, the concentrations in the SR and in the

JSR can be assumed to be equal just before an AP upstroke

(cnj � c9nj ) as long as the time for calcium to diffuse between

these two compartments (ta ;50 ms) is much smaller than

the pacing interval ðta � TÞ: Using the fact that both

cns � cni and c
n
j � c9nj , it is straightforward to obtain from Eq.

10 the map

c
n11

i ¼ c
n

i 1a½Rðcni ; c
n

j ; TÞ
� Uðcni ; c

n

j ; TÞ1Dðcni ; c
n

j ; TÞ�; (18)

FIGURE 4 (A) Plot of the ratio x ¼ APD/T

versus T. The circles correspond to values of x

computed from the experimental AP clamps,

and the line is the corresponding fit. (B)
Maximum and minimum of bulk myoplasmic

calcium concentration during steady state as

a function of pacing period T at relatively slow

pacing rates. The solid lines are for the case

when the internal sodium concentration in-

creases with decreasing period according to

Eq. 17. The filled circles correspond to the

experimental data points from Chudin et al.

(1999). The dashed line corresponds to the case

when intracellular sodium is fixed at Nai ¼ 10

mM.

FIGURE 5 Calcium transients and currents

during steady state for a pacing period of T ¼
1 s. (A) Plot of ci versus t. (B) Plot of ICa versus

t. (C) Plot of INaCa versus t.
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cn11

j ¼ cnj 1 ½�Rðcni ; c
n

j ; TÞ1Uðcni ; c
n

j ; TÞ�; (19)

where a¼ bi/(11 biys/bsyi), and where we have defined the

quantities

Rðcni ; c
n

j ; TÞ ¼
ððn11ÞT

nT

IrðtÞdt;

Uðcni ; c
n

j ; TÞ ¼
ððn11ÞT

nT

IupðtÞdt;

Dðcni ; c
n

j ; TÞ ¼
ððn11ÞT

nT

½�ICaðtÞ1 INaCaðtÞ� dt; (20)

which represent the total amount of calcium release (R) and
uptake (U) in one beat as well as the net total amount of

calcium (D) that enters the cell. Both R and U are always

positive whereas D can be either positive or negative

depending on whether the amount of calcium that enters the

cell through the L-type channels is larger or smaller than the

amount of calcium extruded from the cell by the NaCa

exchange current in one beat. The currents that appear in the

integrals above must be calculated by integrating the full set

of ODEs (Eqs. 10–12) for the variables (cs(t), ci(t), cj(t), and
c9j(t)) using as initial conditions cs(nT) ¼ ci(nT) ¼ cni and

cj(nT) ¼ c9j(nT) ¼ cnj , and values of the gate variables d‘(nT)
and f‘(nT) for ICa that are determined by the periodic

clamped AP waveform.

Calcium alternans

In the rest of this section, we further analyze this map to

pinpoint the condition for the onset of alternans. The fixed

point of the map cni ¼ c0i and cnj ¼ c0j is defined by the

conditions R ¼ U and D ¼ 0, which implies that at steady

state the total uptake during one cycle should be equal to the

total release, and the net total flux into the cell over one

period should be zero.

To obtain a simple analytical condition for the onset of

alternans, we assume that the beat-to-beat variation of the net

free calcium that enters the cell in one beat is much smaller

than the variation of the total amount of calcium pumped into

the SR (jDj � U). This limit is physiologically relevant

since the total calcium uptake in one beat is typically 3–4

FIGURE 6 Calcium transients and currents

during steady state for a pacing period of T ¼
0.250 s. (A) Plot of ci versus t. (B) Plot of ICa
versus t. (C) Plot of INaCa versus t.

FIGURE 7 Peak values of the bulk myoplasmic calcium concentration

during steady state as a function of pacing period T at fast pacing rates. The

open circles correspond to the experimental results of Chudin et al. (1999).

The filled circles correspond to the model predictions.
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times larger than the amount of calcium extruded from the

cell via the NaCa exchange current (except in diseased states

such as heart failure where the uptake and extruded amounts

can become comparable). In this limit, the total diastolic

amount of calcium in the cell (i.e., including both the

myoplasm and the SR) can be assumed to remain

approximately constant from beat to beat, or

c
n

i =a1 c
n

j � c
0

i =a1 c
0

j : (21)

The above relation allows us to reduce the system of two

coupled maps Eqs. 18 and 19 to a single map. One last

simplification comes from our numerical finding that the

amount of calcium uptake is roughly proportional to the peak

concentration of the calcium transient, which is the sum of

the diastolic value of ci and the total amount released from

the SR, or cnpeak [ cni 1 aR(cni , c
n
j ). This proportionality

relation can be written

aUðcni ; c
n

j Þ � wðTÞcnpeak ¼ wðTÞ½cni 1aRðcni ; c
n

j Þ�; (22)

where the proportionality constant w(T) is cycle length

dependent and always less than unity owing to the fact that

the amount of calcium uptake cannot exceed the peak

calcium concentration. Combining the above, we obtain the

one-dimensional map defined by Eq. 19 with U approxi-

mated using Eq. 22 and cni eliminated in favor of cnj using Eq.
21. A condition for the onset of alternans can now be readily

obtained by substituting cnj ¼ c0j 1 dcnj into the map, where

dcnj is a small perturbation around the periodic fixed point.

Linearizing the map one obtains dcn11
j ¼ �Gdcnj , where

G ¼ ð1� wðTÞÞ �1� a
@R

@c
n

i

1
@R

@c
n

j

 !
; (23)

and where the partial derivatives are evaluated at the fixed

point. This fixed point undergoes a period doubling

bifurcation when G ¼ 1, and is unstable when G[ 1.

The above analysis shows that calcium alternans under

a clamped periodic APwaveform can arise from a sufficiently

steep nonlinear dependence of calcium-release R on both SR

load (cnj ) and diastolic calcium level (cni ), with the latter

influencing the trigger for release via calcium-induced

inactivation of the L-type calcium current. These concentra-

tion-dependent restitution properties of the calcium system

have a similar destabilizing role as APD-restitution (i.e.,

dependence of APD on diastolic interval) has for electrical

alternans. In particular, the condition G[ 1 for the onset of

calcium alternans is directly analogous to the condition

APD-restitution-slope [ 1 for the onset of electrical

alternans (Nolasco and Dahlen, 1968). Of course, predicting

the onset of either calcium or electrical alternans in the more

complex case where the AP is unclamped requires a careful

consideration of the bidirectional coupling between the

voltage and calcium systems.

To test the predictions of the stability condition given by

Eq. 23 against the full model equations, we study how the

onset of alternans depends on various model parameters. The

condition for the onset of alternans, given by Eq. 23, predicts

that at a given cycle length, an increase in the slope of the SR

load dependence of release should promote alternans. In Fig.

8 A, we plot cmax
i versus T for various values of the release

slope u. Recall that u is the slope of the steep part of the

release function given in Eq. 13. From the graph, it is clear

that the onset of the period doubling bifurcation is sensitive

to the release slope u. As u is increased, the period-doubling

bifurcation occurs at higher values of T, and the degree of

alternans become more pronounced.

A further prediction of Eq. 23 is that the onset of alternans

should also depend on the functional relationship between

the release and the diastolic calcium level cni . This functional
dependence is primarily due to the calcium-induced in-

activation of the L-type calcium channel, i.e., larger diastolic

calcium should yield less release. Thus, by varying the

steepness of calcium-induced inactivation, which is con-

trolled by the parameter g, it is possible to probe the effect

on dynamics of a steeper cni dependence of release. In Fig. 8

B, we plot cmax
i versus T for different exponents g, while

keeping the load dependence of release fixed. From the

graph, it is clear that the period of onset and the magnitude

of alternans increases with increasing g. This shows clearly

that the dynamical behavior of the model depends cru-

cially on the calcium-induced inactivation of the L-type

current.

The stability condition given by Eq. 23 also reveals that

the onset of alternans depends on the strength of the uptake

current. The prediction is that a larger uptake current (i.e.,

larger w(T)) should actually stabilize the periodic fixed point,
since G decreases with increasing w(T). To check this

prediction in the model, in Fig. 8 C we plot the bifurcation

diagram for different values of the strength of the uptake

current (yup). From the plot, we see that decreasing the

strength of the uptake current increases the period at which

alternans occurs, which is consistent with the predictions of

the stability analysis.

Finally, in Fig. 8D, we plot the bifurcation diagram for the

case when the release slope (u) is very large. Here, we find

that the calcium system can undergo a transition to more

complex dynamical behavior as the period is decreased. In

this particular case, we observe a transition from a period 2

to a period 4, and then a subsequent transition to chaotic

(aperiodic) dynamics.

Map reduction with instantaneous
nonlinear buffering

Here, we only make the approximation that buffering to

troponin C is instantaneous. This approximation is valid

since the binding kinetics of troponin C to calcium ions

occurs on a time scale of;30 ms, which is fast compared to

the movement of calcium ions in the cytosol. Thus, buffering
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to troponin C can be accounted for by simply adding a term

BTKT/(ci 1 KT)
2, with KT ¼ kToff=k

T
on, inside the square

brackets of Eq. 34 in Appendix C. In this way the time-

dependent kinetics of calcium binding to troponin C can be

eliminated from Eqs. 10. Applying the approximations

discussed in the section ‘‘Map reduction with linear

instantaneous buffering’’, (cs(nT) � cni , c9j(nT) � cnj , f(nT)
� f‘(V(nT)), q(nT) � q‘(c

n
i ))), all dynamical variables at

times t ¼ nT can be uniquely defined by the concentrations

cni and cnj . Thus, integrating the model ODEs from t ¼ nT to

t ¼ (n 1 1)T defines a unique two-variable mapping

fcni ; cnj g ! fcn11
i ; cn11j g:

In Fig. 9, we compare the steady-state peak calcium

concentration (cmax
i ) versus pacing cycle length (T) obtained

with the map and the full model ODEs. The map predicts

reasonably well the amplitude of alternans and their

existence over a finite range of cycle lengths. It should be

noted that the quantitative discrepancy between the map and

ODE results is more pronounced for short cycle lengths. This

is because the map derivation is based on the assumption that

there is sufficient time for the dynamical variables of the

ODEs to relax to values that are defined by cni , c
n
j , and

f‘(V(nT)), just before an AP upstroke. This assumption loses

progressively its validity as the pacing cycle decreases. For

instance, we assumed that c9j(nT) � cnj . However, in the

model ODEs, the time constant of the exponential relaxation

of c9j(t) to cnj is 50 ms. Thus, for cycle lengths in the range of

100–200 ms, c9j(t) lacks sufficient time to fully relax to cnj
before the next AP upstroke.

Chaotic dynamics

In this section, we analyze in more detail the chaotic

dynamics observed in Fig. 8 D. For this, we first plot in Fig.

10A cn11
j versus cnj for the same parameters as in Fig. 8D and

for a pacing cycle length where chaotic dynamics is observed

(T ¼ 0.19 s). The plot shows that the chaotic attractor can be

characterized to a good approximation by a one-dimensional

map of cn11
j as a function of cnj . The one-dimensional

character of this map is due to the fact that the net calcium

entry into the cell via ICa and INaCa is small in comparison to

FIGURE 8 Peak values of bulk myoplasmic

calcium concentration during steady state

pacing as predicted by the model ODEs. (A)
Peak calcium concentrations for different

values of the release slope u. In all cases we

fix g ¼ 1. (B) Peak calcium concentrations for

different values of the parameter g. In all cases

the release slope is fixed at u¼ 11.3 s–1, and tq
¼ 30 ms. (C) Peak calcium concentrations for

different values of the strength of the uptake

current vup. Here, we fix g ¼ 1 and u ¼ 11.3

s�1. (D) Peak calcium concentrations for large

release slope (u ¼ 43.3 s–1).

FIGURE 9 Peak values of the bulk myoplasmic calcium concentration

during steady-state pacing. The filled circles correspond to values predicted

by the model ODEs. The open circles are found using the two-dimensional

map described in the section ‘‘Map reduction with instantaneous nonlinear

buffering’’.

3678 Shiferaw et al.

Biophysical Journal 85(6) 3666–3686



the total amount of calcium that cycles through the SR in one

beat. Therefore, as in our previous analysis of the stability of

alternans, we can assume that the total calcium level inside

the cell remains constant. Hence, we can use Eq. 21, cni /a 1

cnj ¼ ctotal, where ctotal is the constant total concentration in

the cell, to reduce the two-dimensional map to a one-

dimensional map. Substituting this relation into Eq. 19 and

making use of Eq. 22 to approximate the uptake with

a constant factor w that only depends on period, we find that

the diastolic SR load cnj satisfies the one-dimensional map

cn11
j ¼ F(cnj ), where

Fðcnj Þ ¼ wctotal 1 ð1� wÞðcnj � Rðaðctotal � c
n

j Þ; c
n

j ÞÞ: (24)

Next, we make use of the well-known result that one-

dimensional maps that exhibit chaos must be nonmonotonic,

i.e., must have at least one extremum (Ott, 1993). Thus, the

presence of chaos in the present model implies that the map

cn11
j ¼ F(cnj ) should have this property, meaning that the

derivative dF/dcnj should change sign over a range of cnj . It
follows trivially from Eq. 24 that this condition is equivalent

to

dR

dc
n

j

\1 c
n

j \c
�
j

[1 c
n

j [c
�
j ;

(
(25)

where c�j corresponds to a local maximum of F. Therefore, if
the total derivative dR/dcnj increases rapidly over some range

of load, the above condition can be satisfied. To test whether

this condition is satisfied directly from the ODEs of the

model, we calculate R � cnj � cn;min
j versus cnj , where c

n;min
j

is the minimum SR concentration between times nT and

(n1 1)T. The result, which is shown in Fig. 10 B, shows that
the slope of R changes from dR/dcnj \ 1 to dR/dcnj [ 1 over

the range of SR loads explored by the chaotic trajectory. For

the same trajectory, we also check that the conservation

condition given by Eq. 21 holds, by plotting, in Fig. 10 C, cni
versus cnj . From the plot, we see that cnj is an approximately

linear function of cni , which confirms our assumption that cni
can be eliminated in favor of cnj using Eq. 21, and that the

dynamical system can be reduced to a one-dimensional

discrete map.

It is important to emphasize that the total derivative

dR=dcnj [ � a@R=@cni 1 @R=@cnj depends both on the steep-
ness of the relations between release and load, and release

and diastolic calcium, which is a consequence calcium-

induced inactivation of ICa. Hence, the degree of nonlinearity
of both relations contribute to the existence of a maximum in

the map independent of the strength of the uptake current w.
In contrast, the condition for instability (dF/dcj $ 1 or,

equivalently, Eq. 23) depends on both the steepness of these

relations and the strength of uptake. Finally, since the SR

concentration is difficult to measure experimentally, we also

plot, in Fig. 10D, the peak cytosolic calcium concentration at

one beat versus the next i.e., cn11
peak versus c

n
peak. Here, we find

again a nonmonotonic relationship, which is a direct

consequence of the condition given in Eq. 25.

Role of JSR-SR diffusional relaxation

In this section, we analyze in more detail the role of the JSR-

SR relaxation time (ta) on the model behavior. Since there

FIGURE 10 Plot of the beat-to-beat calcium

concentrations during a chaotic calcium tran-

sient that is generated using the model ODEs.

The parameters are the same as those used in

Fig. 8 D with T ¼ 0.19 s. (A) Plot of cn11
j

versus cnj . (B) Plot of the release R versus initial

SR load cnj . The straight line corresponds to

a line with slope 1. (C) Plot of cni versus c
n
j . (D)

Plot of peak calcium transients cn11
peak versus

cnpeak.
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are no experimental measurements of this quantity, we have

evaluated the model properties for a wide range of relaxation

times (1–100 ms). The primary effect of the relaxation time

is to simply change the amount of calcium released from the

SR. During release, the SR is drained by the current Ir that
depends on the concentration of unrecruited JSR compart-

ments (c9j). However, the average concentration of unre-

cruited JSR compartments is higher than the average

concentration in the SR, i.e., c9j [ cj, since these JSR

compartments have not been depleted, and are simply

relaxing to the average concentration in the SR. Given that

Q(c9j) is a monotonically increasing function, then a longer

delay time will allow more calcium to be drained from the

SR since c9j can remain large for a longer time. In Fig. 11, we

plot the maximum change in total SR concentration for

different initial SR loads (c0j ), and for a relaxation time of

100 ms and 1 ms. It is clear that more calcium is released, for

all initial JSR loads, when the relaxation time is large as

opposed to when it is small.

Role of spark lifetime

In the remainder of this section, we explore in more detail the

dependence of the nonlinearity responsible for calcium

alternans on the physiological parameters of the model. In

particular, we will focus on the role played by the spark

lifetime (tr). Here, we will analyze the simplest case when

ICa depends only on time, and where the relaxation time

between c9j and cj is instantaneous. In this case the release

from the SR is given by R � c0j � cmin
j , where c0j is the

concentration before ICa is turned on, and where cmin
j is the

minimum concentration in the SR. Also, since we have

eliminated the calcium dependence of ICa, the condition for

an unstable fixed point can be written as R9 ¼ @R/@cj[1 1

1/(1 – w(T)), where the partial derivative is evaluated at c0j .
Since ICa peaks rapidly and decays in a time tm ; 30 ms,

then most of the release occurs during the time tm. Thus,

during the time interval tm after ICa is turned on we can write

dcjðtÞ
dt

� �IrðtÞ

dIrðtÞ
dt

¼ gICaðtÞQðcjðtÞÞ � IrðtÞ=tr; (26)

where we have dropped the uptake current since it is small

compared to Ir(t). To explore the dependence of the load

dependent nonlinearity on the spark lifetime, we study the

behavior of R9 for a range of tr while keeping z ¼ gtr fixed.
In Fig. 12 we plot the maximum slope R9max versus tr for

a range of z values. The important feature of the plots is that

R9max ! 1 as tr ! 0; regardless of the value of z. Thus, in
this case, a nonzero spark lifetime is essential to destabilize

the periodic fixed point, which cannot occur if R9max\2. This

result can be understood analytically by studying Eqs. 26 in

the limit tr ! 0: In this limit the dynamics of cj is described
by

dcjðtÞ
dt

¼ �zICaðtÞQðcjðtÞÞ; (27)

which is exactly solvable for a given release function Q(x).
Furthermore, it can be shown that if Q(x) is any mono-

tonically increasing function, then R9max # 1. This result

suggests that constructing a model with a steep load

dependence that can destabilize the periodic fixed point

requires that the release flux at a given time depends on the

SR concentration at earlier times. If the release flux depends

only on the instantaneous SR concentration, then the

periodic fixed point is always stable. Thus, in the model

formulation, the finite spark lifetime plays an important role

in the dynamical behavior of the model.

DISCUSSION

An important feature of the model is that the local release

flux during a calcium spark is treated phenomenologically

using an exponentially decaying time course, with a JSR

load-dependent amplitude and a fixed decay time constant.

The phenomenological model relies only on two essential

FIGURE 11 Dependence of the maximum change of total SR cal-

cium concentration on the initial SR load. The dashed line corresponds to a

JSR-SR relaxation time of ta ¼ 100 ms, and the solid line corresponds to

ta ¼ 1 ms.

FIGURE 12 Plot of R9max versus spark lifetime tr for different values of

the parameter z.
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properties of the local calcium dynamics. First, a strong

dependence of the local release flux on the initial JSR

concentration, and secondly, a finite lifetime of local release.

The former is an immediate consequence of the regenerative

nature of CICR, and the latter depends on the presence of

a strong negative feedback mechanism that shuts off release.

Thus, the model does not rely on a detailed spark termination

mechanism, which still has not been established experimen-

tally. An additional advantage of our approach is that we are

able to incorporate into the model experimental measure-

ments of the SR load dependence of release in the whole cell.

This is a crucial input into the model, as the steep de-

pendence of whole cell release on SR load has a profound

impact on the dynamical behavior. Thus, the model con-

struction takes into account both local properties of ex-

perimentally observed calcium sparks, and whole cell

measurements of calcium release.

Another important property of the model is that it is able to

reproduce the calcium alternans observed by Chudin et al.

(1999), when it is paced by a clamped AP waveform that is

fitted directly to that used in the experiment. At high pacing

rates, calcium accumulates in the cell, and the corresponding

increase in SR load and diastolic calcium levels promote

a dynamical instability. Furthermore, by reducing the

dynamics to a two-variable map, we have shown that the

dynamical stability of the calcium system is determined by

the functional dependence of the total release (R) on both the
SR concentration and the diastolic concentration just before

an AP upstroke. To our knowledge, only a steep dependence

of total release on SR load has been considered previously as

a possible mechanism for calcium transient alternans (Adler

et al., 1985; Eisner et al., 2000). The present model shows

that the dependence of release on diastolic calcium is also

a possible destabilizing mechanism that can act in conjunc-

tion with or independently from the dependence of release on

SR load. The physiological origin of the dependence of

release on diastolic calcium is the calcium-induced in-

activation of the L-type calcium current, i.e., a higher

diastolic calcium leads to a reduced entry of calcium into the

cell and hence to a smaller release.

The nonlinear dependence of release on SR load and

diastolic calcium can be viewed as concentration-dependent

restitution properties of the calcium system. This view point

is analogous to that of electrical restitution, which gives

a simplified description of the voltage dynamics by relating

the diastolic interval at one beat to the APD at the next. In

particular, the stability of the calcium system is determined

by the quantity G, defined in Eq. 23, in much the same way

that the stability of the voltage dynamics is determined by the

slope of the electrical restitution curve.

At high pacing rates, and if the SR load dependence of

release is made very steep, the calcium system can exhibit

chaotic behavior under a periodic voltage clamp. This result

can be understood by reducing the dynamics of calcium

cycling to a one-dimensional discrete map that is non-

monotonic, and hence can in principle exhibit chaos. In the

past, chaotic dynamics has been observed in unclamped

voltage measurements in ventricular tissue (Watanabe et al.,

1995). In that case, the chaotic voltage dynamics was

attributed to a biphasic (nonmonotonic) electrical restitution

function. An alternate explanation is that since voltage is

coupled to calcium, a chaotic dynamics of calcium cycling

can lead to a corresponding chaotic behavior of voltage.

Thus, even when the electrical restitution function is stable

(slope\1) and monotonic, the coupling between voltage and

calcium can lead to unstable voltage dynamics.

In the past, unstable voltage dynamics at the cellular level

has been linked to arrhythmias at the level of the whole heart

(Chialvo et al., 1990; Garfinkel et al., 1992). Thus, calcium

cycling, by having a destabilizing effect on voltage, may

promote arrhythmias in the heart. To address this possibility,

it is crucial to understand the bidirectional coupling between

voltage and calcium under unclamped conditions at a wide

range of pacing rates. Moreover, it is crucial to investigate

not only the dynamics at the cellular scale but also at the

tissue scale. The computational tractability of the phenom-

enological model presented here should serve as a useful

computational tool to begin to address these problems. More

detailed mechanistic models of calcium cycling, which at-

tempt to model calcium dynamics at the dyadic junction

level, are still far too computationally costly to be useful

in this regard. For instance, the most recent computational

model of Greenstein and Winslow (2002), requires a run

time of ;40 min on 10 parallel SGI Power Challenge

R10,000 processors to simulate a whole cell calcium

transient over a 1 s interval. On the other hand, the model

ODEs presented here require ;0.1 s of run time on a single

Compaq Alpha EV6.7 667MHz processor, for a simulation

over the same time interval. This computational speedup of

roughly five orders of magnitude is crucial to begin to

investigate, via numerical simulation, the possible link

between abnormalities in calcium cycling at the cellular

scale and arrhythmias in the whole heart.

The steep load dependence of release, which plays

a crucial role in the dynamical instability, is consistent with

the experimental work of Bassani et al. (1995). There are

several possible reasons why release should increase steeply

with SR load at high loads. One interesting possibility is that

increasing the SR load may induce regenerative release

between neighboring dyads. In other words, at high load,

a ‘‘spark’’ may be due to clusters of dyads (macrosparks),

rather than a single dyad. As the SR load is increased further,

these clusters will grow, and the amount released may

increase rapidly with small changes in SR load. This hy-

pothesis is supported by the fact that increasing SR load even

slightly more than cj ; 100 mmol/l cytosol leads to

spontaneous release (Bassani et al., 1995). Thus, the CICR

induced cooperativity between neighboring dyads may

underlie the nonlinear behavior of release at the whole cell

level. To clarify further, it should be noted that this nonlinear
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load dependence does not describe an arbitrarily defined

spontaneous release process, but rather, reflects an inherent

instability of the release mechanism.

An important question to consider is whether the JSR-SR

relaxation time can be the primary mechanism that underlies

calcium alternans at high pacing rates. Based on the available

experimental data on calcium alternans, we will argue that

this is unlikely to be the case. First, calcium alternans, when

induced under rapid pacing, typically occur around cycle

lengths of 200 ms. However, the relaxation time between c9j
and cj is at most 100 ms, and so there is more than enough

time for the JSR to relax to the SR concentration at the rates

when calcium alternans are observed. An even stronger

argument can be made by noting that alternans can be

induced at normal pacing rates (T ; 1 s) by application of

various external agents such as tetracaine (Diaz et al., 2002).

These external agents are known to have a direct effect on the

RyR channels, and are unlikely to change the mobility of

calcium inside the SR. Moreover, we find in our model

simulations that over a wide range of relaxation times (ta),

the dynamics of the calcium system does not exhibit

alternans at high rates unless a steep load dependence and

calcium-induced inactivation is invoked. These findings

suggest that the mechanism that underlies alternans is

crucially dependent on the RyR release mechanism rather

than the JSR-SR relaxation time.

Another possible physiological mechanism that may

underlie alternans is nonlinear buffering. The mathematical

analysis presented in the section ‘‘Map reduction with linear

instantaneous buffering’’ assumed for simplicity linear buf-

fering. Therefore, this analysis does not address the dynamical

role of nonlinear buffering. In our model simulations, we find

that nonlinear buffering in the cytosol cannot induce alternans

without a corresponding steep dependence of release on SR

load or on diastolic calcium. However, the onset and

amplitude of alternans does depend on the nonlinear buffering

kinetics. These results suggest that, with realistic experimen-

tally derived parameters, nonlinear buffering influences, but

is not solely responsible for, calcium alternans.

The rise in calcium at high rates depends primarily on the

corresponding accumulation of sodium, due to the activity of

the NaCa exchange current (Harrison and Boyett, 1995). As

the sodium concentration in the cell rises, the Nernst

equilibrium potential of the exchange current is shifted such

that calcium influx is favored. Another mechanism that

promotes calcium loading at high rates is that the AP

waveform spends more time per period at plateau potentials,

and so the time spent in the calcium efflux mode is reduced.

However, we found in our simulations that this effect alone,

keeping intracellular sodium fixed, is not enough to account

for the large increase of cmax
i at high rates. Thus, our results

suggest that sodium accumulation is essential for calcium

loading at high rates, and is probably what underlies the

positive force frequency relation that is observed in

ventricular myocytes.

CONCLUSIONS

In summary, we have presented a physiologically motivated

model of calcium cycling under AP clamp conditions. A key

feature of this model is to represent the release of calcium

from the SR as a sum of spatially localized events that

correspond to calcium sparks. The rate at which sparks are

recruited is assumed to be directly proportional to the whole

cell L-type calcium current (ICa). This assumption is con-

sistent with experiments of simultaneous measurements of

spark occurrence and whole cell ICa (Collier et al., 1999).
Moreover, this choice naturally yields graded release,

consistent with Stern’s local control hypothesis (Stern,

1992). An important advantage of this model is that it in-

corporates known constitutive relationships between exper-

imentally measurable quantities such as fractional release

and SR load. Furthermore, it is computationally tractable,

and can be used to explore the dynamical behavior of the

calcium system under a wide range of pacing rates. At high

rates, the model is able to reproduce sustained calcium alter-

nans, consistent with experimental observations (Chudin

et al., 1999).

By reducing the dynamics to a two-variable map of the

concentrations from one beat to the next, we were able to

analyze the nonlinear dynamics of the calcium system in

more detail. This analysis revealed that the dynamical

instability that underlies calcium alternans is due to the

functional dependence of release on both the SR load and the

diastolic calcium concentration. We also find that under

plausible physiological conditions, the calcium system can

exhibit chaos when it is driven by a periodic AP clamp. By

further simplifying the discrete map to one variable, we show

that the chaotic dynamics can be traced to a nonmonotonic

functional relationship between the peak calcium concentra-

tion at one beat versus that at the previous beat.

Furthermore, we found that the degree of nonlinearity is

sensitive to physiologically measurable quantities such as the

spark lifetime and the strength of the uptake current. Hence,

the model not only sheds light on the dynamical behavior of

the calcium system, but also gives insight on how

physiological properties of the calcium cycling machinery

influence the dynamics. An interesting future prospect is to

pace this model under unclamped conditions to explore the

full range of dynamical behavior of the coupled voltage and

calcium systems.

APPENDIX A: MODEL OF LOCAL DYNAMICS

In this appendix, we describe a simplified model of calcium dynamics within

the dyadic junction. The goal here is to test the assumptions behind our

phenomenological description of local calcium release during a spark (Eq.

4), using a plausible model of the local calcium dynamics. The relevant

dynamical variables are the free concentration in the local dyadic space cp,

and the free concentration cfjsr of the local JSR. Here, we have dropped the

superscript k, since there is no need to distinguish between different dyadic

junctions. We will assume constant linear buffering so that ctotalp ¼ Bpcp and

cjsr ¼ Bjsrc
f
jsr, where Bp and Bjsr are constants. Here, Bjsr will be chosen
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so that the free JSR concentration before release will be in the range 500–

1500 mM.

The free concentrations obey the ODEs

dcp
dt

¼ aðIrel � Id 1 iCaÞ

dc
f

jsr

dt
¼ �Irel 1 Itr; (28)

where Irel is the flux of calcium from the JSR, Id is the diffusion of calcium

into the submembrane space, iCa is the current from the local L-type

channels, and Itr is the diffusion of calcium from the NSR into the JSR. Here,

a ¼ Bjsryjsr/Bpyp, where yp and yjsr are the volumes of the dyadic space and

JSR, respectively. The release current is given by Irel ¼ gsa(c
f
jsr – cp), with gs

a constant that denotes the maximum conductance of the RyR cluster, and

where a is the open probability. To simulate CICR, the states of the RyR

cluster are modeled using a simple reaction scheme, where the transition rate

from closed to open states is proportional to the square of cp. This yields da/

dt¼ (a‘� a)/ta, with a‘¼ c2p/(c
2
p 1 c�2p ) and ta¼ 1/(kd(c

2
p 1 c�2p )), where kd

is the deactivation rate. The threshold for regenerative release is determined

by the concentration c�p. Given the small volume of the dyadic space, a brief

opening of the L-type channels is sufficient to raise cp to levels much higher

than in the myoplasm. Thus, to ensure that regenerative release can only be

initiated by the local L-type channels, and not by a rise of calcium in the

submembrane space, it is crucial that the threshold c�pis larger than the peak

concentration in the submembrane space (;10 mM). Thus, in this model we

will use a high threshold c�p ¼ 65 mM, which is further supported by the fact

that, under normal conditions, release from a dyadic junction typically does

not trigger release from neighboring junctions.

The diffusion of calcium away from the dyadic space is modeled using Id
¼ (cp� cs)/tp, where tp is chosen so that cp relaxes to cs in 0.05 ms, which is

roughly the same as the time for a calcium ion to diffuse across the 100 nm

dyadic cleft. Also, we model diffusion between the NSR and JSR with Itr ¼
(cfnsr � cfjsr)/ttr, where cfnsr is the free concentration of the bulk NSR, and

where ttr is chosen so that cfjsr relaxes to cfnsr in ;50 ms. To simulate

a spark, we will solve Eqs. 28 with cs and cfnsr held constant. The initial

concentrations in the dyadic space and the JSR are denoted by c0p and c0jsr ,

respectively, with c0p ¼ cs and c0jsr ¼ cnsr. A spark is initiated by the trigger

current, which will be a square pulse of 4 ms duration and amplitude 0.05

pA. All parameters of the model are listed in Table 6.

During a simulated spark, cp rises rapidly to ;200 mM within several

milliseconds, and then decays over the next 10–30 ms. The initial rise in cp is
due to the positive feedback of CICR, during which the open probability of

the RyR rises, and Irel� Id. However, this lasts only for a short time since Irel
rapidly decreases as cp approaches c

f
jsr , and Id increases as cp grows much

larger than cs. Since the JSR is being replenished in a timescale that is slower

than the diffusion away from the dyadic space, then within a few

milliseconds we have Id [ Irel, in which case cp begins to decline. Since

the threshold for activation c�p is high, the release flux is robustly terminated

as cp drops bellow c�p. Thus, in this local model, calcium diffusion away from

the dyadic space, in concert with JSR depletion and a high a threshold for

local CICR, yields a robust spark termination mechanism.

In Fig. 13 A, we plot the current flux from a JSR during a spark as

a function of time for different initial JSR loads. From the graph, we can see

that the duration of the release flux increases from 10 to 30 ms as the total

initial JSR concentration is increased from 70 to 150 mM. In Fig. 13 B, we

plot the maximum release current during a spark as a function of the dyadic

space concentration before CICR is initiated (c0p). It is clear from the plot that

the peak flux from the SR remains fairly constant as a function of c0p. On the

other hand, as seen in Fig. 13 C, if we vary the initial JSR load (c0jsr), the peak

release current changes substantially. These results corroborate our initial

assumption that the local release flux during a spark can be well

approximated by a strong JSR load dependence, and an effectively constant

spark lifetime.

APPENDIX B: IONIC CURRENTS

L-type calcium current

We model the L-type calcium current (ICa) based on the most recent

experimental measurements in rabbit myocytes at a temperature of 358C (see

Fig. 7 D in Puglisi et al. (1999)). The voltage gates are modeled using

d‘ðVÞ ¼
1

11 exp½�ðV � 5Þ=6:24� ;

f‘ðVÞ ¼
1

11 exp½ðV1 35Þ=8:6� : (29)

We have taken the d gate to be instantaneous since td is the fastest

timescale in the model (\5 ms), given that fast sodium currents are not

incorporated in the model. We will take the relaxation time of the f gate to

be a constant tf in the range 30–50 ms. This is different from the standard

formulation in Luo-Rudy II, where tf is taken to have a U-shaped

dependence on voltage. However, given that the inactivation properties of

the L-type current are both voltage and calcium dependent, it is difficult to

measure a purely voltage-dependent quantity such as tf. For a more

extensive discussion on this point, see the experimental article of Linz and

Meyer (1998). Moreover, we found that we could not reproduce the ex-

perimental measurements of Puglisi et al. (1999) using the standard form-

ulation of tf.

To model calcium-induced inactivation, we use ~ccs ¼ 0:5mM; and adjust

ko so that tq is in the 10–50 ms range, since experiments (Linz and Meyer

(1998); Puglisi et al. (1999)) have shown that calcium-induced inactivation

is typically faster than voltage inactivation. The single-channel L-type

current is the same as in Luo-Rudy II, and is given by

TABLE 5 Cytosolic Buffering parameters

Parameter Definition Value

BT Total concentration of

troponin C

70 mmol/l cytosol

BSR Total concentration of

SR binding sites

47 mmol/l cytosol

BCd Total concentration of

calmodulin binding sites

24 mmol/l cytosol

kTon On rate for troponin C 32.7/mMs

kToff Off rate for troponin C 19.6/s

KSR Dissociation constant for

SR binding sites

0.6 mM

KCd Dissociation constant for

calmodulin binding sites

7 mM

TABLE 6 Parameters for local dynamics

Parameter Definition Value

gs Maximum RyR cluster

conductance

120 s–1

c�p RyR activation threshold 65 mM

tp Diffusion flux time constant 0.0025 s

ttr JSR refilling time constant 0.05 s

yjsr JSR volume 10�6 yi
kd RyR deactivation rate 0.5 s–1 (mM)–2

a Buffer and volume ratio 50
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MiCa ¼ �iiCaPCa

4VF
2

RT

cs expð2aÞ � 0:341Cao
expð2aÞ � 1

� �
; (30)

where�iiCa is an adjustable constant. Note that the number of dyadic junctions

M, which is constant, is absorbed into�iiCa: Here, Cao ¼ ½Ca21�o corresponds
to the external calcium concentration, and a ¼ VF/RT.

NaCa exchange current

The sodium calcium exchange current as formulated in Luo-Rudy II is

given by

INaCa ¼ �IINaCa
1

K
3

m;Na 1Na
3

o

� 1

Km;Ca 1Cao

3
e
ja
Na

3

i Cao � e
ðj�1Þa

Na
3

ocs

11 ksate
ðj�1Þa ; (31)

where the external sodium concentration is Nao ¼ ½Na1�o: Also, �IINaCa is an
adjustable constant that will be used to adjust the strength of the exchanger.

Uptake current

The uptake current is taken to have the simple form

IupðciÞ ¼
yupc

2

i

c
2

i 1 c
2

up

: (32)

The parameters used in the model are given in Tables 1–4.

APPENDIX C: CYTOSOLIC CALCIUM BUFFERING

The amount of calcium in the bulk myoplasm that is bound to troponin C

will be denoted by [CaT]i, and satisfies

d½CaT�
i

dt
¼ I

i

trpn; (33)

where Iitrpn ¼ kTon ci(BT � [CaT]i) � kToff [CaT]i. The on and off rate constants

and the total concentration of troponin C (BT) have been reported previously

(Shannon et al., 2000a), and are listed in Table 5. The buffering to SR

membrane and calmodulin binding sites are approximated using the rapid

buffering approximation (Wagner and Keizer, 1994). This effect is taken

into account using

bðciÞ ¼ 11
BSRKSR

ðci 1KSRÞ2
1

BCdKCd

ðci 1KCdÞ2
� ��1

; (34)

where KSR and KCd are the buffer dissociation constants for the SR and

calmodulin buffers, respectively, and where BSR and BCd denote the total

concentration of the respective buffers. The values of these parameters are

known experimentally (Shannon et al., 2000a) and are listed in Table 5. Note

that for buffering in the submembrane space, we simply replace ci with cs,
and [CaT]i with [CaT]s.
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FIGURE 13 Local release flux Irel during

a calcium spark. (A) Plot of Irel versus t for

various JSR loads. The initial concentration

within the dyadic space is c0p ¼ 0.1 mM for all

cases. (B) Plot of the maximum release current

Imax
rel for different initial dyadic concentrations

c0p. The initial total JSR concentration c0jsr is

fixed at 100 mM. (C) Plot of Imax
rel for different

initial JSR loads. For all points c0p ¼ 0.1 mM.
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