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Configurational Temperature Density of States Simulations of Proteins

Nitin Rathore, Thomas A. Knotts IV, and Juan J. de Pablo
Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706

ABSTRACT A novel method has been implemented to compute the density of states of proteins. A united atom representation
and the CHARMM (Brooks et al., 1983) force-field parameters have been adopted for all the simulations. In this approach, an
intrinsic temperature is computed based on configurational information about the protein. A random walk is performed in
potential energy space and the configurational temperature is collected as a function of potential energy of the system. The
density of states is then calculated by integrating the reciprocal of temperature. Unlike previously available methods, this
approach does not involve calculations based on histograms of stochastic visits to distinct energy states. It is found that the
proposed method is more efficient than earlier, related schemes for simulation of protein folding. Furthermore, it directly
provides thermodynamic information, including free energies. The usefulness of the method is discussed by presenting results
of simulations of the 16-residue b-hairpin taken from the C-terminal fragment (41–56) of protein G.

INTRODUCTION

Computer simulations of complex systems, including bi-

ological molecules, face considerable challenges that are

partly attributed to an underlying rough free energy land-

scape. A system can easily become trapped in local energy

minima, thereby precluding adequate sampling of other re-

levant regions of configurational space. Several advanced

Monte Carlo techniques have been proposed to smooth out

such landscapes and to provide the resolution required to

accurately characterize phase transitions. (Berg and Neuhaus,

1991; Escobedo and de Pablo, 1996; Gront et al., 2000;

Hansmann and Okamoto, 1996; Sugita and Okamoto, 2000;

Yan and de Pablo, 2000; Yasar et al., 2000). These include

parallel tempering, umbrella sampling and multicanonical

ensemble techniques. Multicanonical methods (Berg and

Neuhaus, 1991) are particularly attractive in that energy

barriers can be artificially eliminated by assigning ‘‘weights’’

to different energy states, thereby circumventing some of the

problems associated with traditional sampling techniques.

The weight factors, however, are not known à priori and their

computation often requires tedious iterative calculations.

The central quantity of interest in these simulations is

the density of states, V(U), which represents the number of

accessible states for energy state U of the system. If the

density of states is known, efficient algorithms can be con-

structed to visit distinct energy states with uniform proba-

bility, regardless of their location on the energy landscape.

Recently, a new class of algorithms (Wang and Landau,

2001a,b) has emerged with the potential of providing a di-

rect estimate of the density of states in a self-consistent man-

ner. Like more established multicanonical algorithms, these

methods seek to overcome the problems associated with

local free energy barriers. A random walk is performed in

energy space to visit distinct energy states. The density of

states for each energy state is modified by an arbitrary

convergence factor each time a state is visited. A reasonable

estimate of V(U) is achieved in a self-consistent way by

systematically reducing the convergence factor. We have

shown recently how this method can be used to study helix-

coil and b-sheet-coil transitions of designer peptides on

a lattice (Rathore and de Pablo, 2002) and in a continuum

(Rathore et al., 2003). Our recent work has also shown (in

the context of a simple Lennard-Jones fluid) (Yan and de

Pablo, 2003), that the convergence of such methods can

deteriorate considerably with the size and complexity of the

system. Furthermore, the accuracy of these simulations

reaches a stage where additional calculations fail to improve

the quality of the results (Yan and de Pablo, 2003).

In this work, a variant of the random walk technique is

implemented to study protein folding in a continuum using

a united atom representation and the CHARMM19 potential

function (Brooks et al., 1983). This new approach is

different from earlier algorithms in that a running estimate

of V(U) is inferred from the instantaneous configurational

temperature of the system. It should be contrasted with

algorithms in which the density of states is estimated from

a histogram of random visits to different energy states. This

method has been implemented recently for simulation of

a Lennard-Jones fluid (Yan and de Pablo, 2003), where it

was shown to be an order of magnitude faster than related

algorithms. Given the computational demands of bio-

molecular simulations in general, it is of considerable

interest to pursue a similar implementation in the context of

proteins.

We begin with a brief description of the atomistic model,

the force field employed in this work, and the b-hairpin

fragment of protein G that is used to benchmark the proposed

algorithm. We then describe the simulation scheme in detail.

A comparison is made between the proposed scheme and

Wang and Landau’s original method. Results are presented

in the form of statistical errors in the estimated density of

states.
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METHODS

Model

The purpose of this work is to examine the performance of a new algorithm;

we therefore restrict our calculations to a system that has been thoroughly

characterized in the literature. The C-terminal domain (GEWTYD-

DATKTFTVTE) of protein G (protein data bank code 1GB1) is used in

this work to assess the usefulness of the proposed method. This peptide has

been studied extensively by various groups (Dinner et al., 1999; Garcia and

Sanbonmatsu, 2001; Lee and Shin, 2001; Pande and Rokhsar, 1999; Zhou

et al., 2001) using a variety of force fields and solvent treatments. The

consensus from previous work is that it forms a b-hairpin in solution.

Thermodynamic and structural studies have shown that this hairpin exhibits

many of the basic features of protein folding, including the formation of

a hydrophobic core and hydrogen bonds that stabilize the native

conformation. Fig. 1 shows a schematic representation of this peptide in

its native hairpin configuration.

The CHARMM19 force field is used with a united atom representation

where the nonpolar hydrogen atoms are combined with the heavy atoms to

which they are bonded. We use the EEF1 model parameters (Lazaridis and

Karplus, 1999), where the partial charges on the amino acids are modified

to neutralize the side chains and the patched molecular termini. The

interactions between atoms are described by the following potential energy

function:

A 1–3 exclusion principle is used for the nonbonded energy. The 1–4

Coulombic interactions are scaled down by a factor of 0.4. This is consistent

with the original parameterization of CHARMM19. A cutoff of 12 Å is used

for both the electrostatic and van der Waals terms. A force shift scheme is

employed for the Coulombic interactions. For Lennard-Jones interactions,

a simple cut and shifted potential is employed.

An implicit solvent model based on the solvent accessible surface area

(SASA) is employed, with solvation parameters as proposed by Ferrara et al.

(2002). Electrostatic screening effects are approximated by a distance

dependent dielectric function and a set of partial charges with neutralized

side chains. The model assumes that the mean solvation energy is

proportional to the SASA of the solute. For a solute having M atoms with

Cartesian coordinates r, the solvation term is given by

Vsolvation ¼ +
M

i¼1

siAiðrÞ; (2)

where si and Ai(r) are the atomic solvation parameter and SASA of atom i,

respectively. The computations of the atomic solvation parameter and the

SASA are performed as indicated in Ferrara et al. (2002). The SASA model,

however, only accounts for the free energy cost of burying a charged residue

in the interior of a protein. The solvent screening effect is approximated by

using a distance-dependent dielectric function, e(r) ¼ r. Although this is an

oversimplified way of accounting for solvent polarization effects, it is

consistent with the formulation of the SASA model parameters and previous

simulations of proteins.

Outline of the method

The internal energy of a system is related to the entropy S and the volume V

through

dE ¼ T dS� p dV; (3)

where T is the temperature and p is the pressure. The temperature of the

system is related to the density of statesV(N, V, E) by Boltzmann’s equation

(McQuarrie, 1976) according to

1

T
¼ @S

@E

� �
V

¼ kB
@ lnVðN;V;EÞ

@E

� �
V

; (4)

where kB is Boltzmann’s constant. The above equation can be written in

terms of the potential energy, U, of the system and integrated to determine

the density of states from knowledge of the temperature:

lnVðN;V;UÞ ¼
ð

1

kBT
dU; (5)

where V(N, V, U ) now represents the density of states for an energy state

with potential energy, U. Equation 5 requires that the temperature be known

as a function of the potential energy. Following our recent work (Yan and de

Pablo, 2003), we propose to use the configurational temperature (Butler

et al., 1998; Jepps et al., 2000; Rugh, 1997) for this purpose. The details of

the original Wang-Landau method and the proposed scheme are provided

below.

Wang-Landau density of states (WLDOS)

The random-walk algorithm, as originally proposed by Wang and Landau

(Wang and Landau, 2001a,b), has recently been used to study protein

folding transitions on a lattice (Rathore and de Pablo, 2002). A slightly

modified, more efficient version has also been implemented for simulations

of proteins in a continuum (Rathore et al., 2003).

We begin with a brief description of this earlier formalism. The goal of

the method is to perform a random walk in energy space with probability

proportional to the reciprocal density of states, i.e.,

pðUÞ} 1

VðUÞ : (6)

If V(U) was known with sufficient accuracy, a random walk would lead

to flat energy histograms. The density of states however, is not known à

FIGURE 1 United atom representation of the native hairpin structure of

the C-terminal fragment of protein G.
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priori. In the Wang-Landau method, it is generated ‘‘on the fly’’ as the

simulation proceeds. At the beginning of the simulation, V(U) is assumed to

be unity for all energy states U. Trial Monte Carlo moves are accepted with

probability

PaccðU1 ! U2Þ ¼ min 1;
VðU1Þ
VðU2Þ

� �
; (7)

where U1 and U2 are the energy of the system before and after a trial move.

After each trial move, the corresponding density of states is updated by

multiplying the current, existing value by a convergence factor f that is

greater than unity ( f[ 1), i.e., VðUÞ ! VðUÞf : Every time that V(U ) is

modified, a histogram of energies H(U) is also updated. This V(U)

refinement process is continued until H(U) becomes sufficiently flat. Once

this condition is satisfied, the convergence factor is reduced by an arbitrary

amount. Here we follow Wang and Landau’s recommendation and set

fnew ¼
ffiffiffiffiffiffi
fold

p
: The energy histogram is then reset to zero (H(U ) ¼ 0) and

a new simulation cycle is started, continuing until the new histogramH(U) is

flat again. The process is repeated until f is smaller than some specified

value, e.g., ffinal ¼ exp(10�8). The density of states estimate changes

throughout the course of the simulation and detailed balance is not satisfied.

Only toward the end of a calculation, when f ! 1; is detailed balance

approached. Also, because the value of the convergence factor decreases

with the progress of the simulation, configurations generated at different

stages of simulation do not contribute equally to the estimated density of

states. In fact, toward the final stages of convergence, the convergence factor

is so small that the configurations sampled in these stages contribute only

negligibly to the final estimate of V(U).

Configurational temperature density of
states (CTDOS)

An intrinsic temperature, based entirely on configurational information, can

be associated with an arbitrary configuration of a system (Jepps et al., 2000)

according to

1

kBTconfig

¼ �+
i
=i � Fi

� �
+

i
jFij2

� � ; (8)

where subscript i is used to denote a particle, Fi represents the force acting on

particle i, and =i ¼ [@/@xi, @/@yi, @/@zi] (xi, yi, and zi are the Cartesian

coordinates of particle i). This configurational temperature can be par-

ticularly helpful in diagnosing programming errors (Butler et al., 1998) in

Monte Carlo simulations, where kinetic energy is not explicitly involved.

In the configurational temperature density of states (CTDOS) approach

pursued here, temperature is calculated as a function of energy by

introducing the above mentioned configurational temperature estimator.

For each energy state both the numerator and denominator of Eq. 8 are

accumulated separately. Also, histograms are collected for the density of

states and potential energy of the system. The total force acting on each

particle and the second derivatives of the energy function are evaluated at

each step of the simulation, regardless of whether a trial Monte Carlo move

is accepted or not. These forces and their derivatives are accumulated and

temperature is computed for the current energy state using Eq. 8. At any

stage of the simulation two independent estimates of the density of states are

therefore available: one computed from the histogram of visited states, and

the other from integration of the estimated configurational temperature

according to Eq. 5.

In the earlier stages of the simulation, when the convergence factor

is large, the detailed balance condition is severely violated. As a result,

thermodynamic quantities computed during this time (including the

configurational temperature) are incorrect. To avoid carrying this error to

later stages, the accumulators for the configurational temperature are reset at

the end of early stages, once the density of states has been determined from

the current temperature estimate. As the convergence factor decreases (e.g.,

ln f\ 10�5), the violation of detailed balance has a smaller effect, and the

temperature accumulators need not be reset anymore. The dynamic estimate

of V(U) therefore only serves as a guide to perform the random walk. The

actual density of states is computed from the final estimate of configurational

temperature, and not from the histogram of visited energy states. All

configurations sampled during the simulation now contribute equally to the

temperature accumulator, thereby eliminating the problem of nonequal

configurational contributions encountered in the original Wang-Landau

scheme.

The Monte Carlo algorithm employed here comprises two types of trial

moves discussed in detail in previous work (Rathore et al., 2003). Briefly,

the first type consists of hybrid molecular dynamics/Monte Carlo displace-

ments; the second type consists of nonlocal pivot attempts. To facilitate

convergence and sampling, this implementation is merged with a parallel

tempering (or replica exchange) formalism. Multiple noninteracting replicas

of the protein molecule are simulated in different boxes. Each simulation

box represents an energy window, and the energy ranges in these boxes are

assigned so that windows corresponding to adjacent boxes overlap with each

other. Configurations in different boxes are swapped at regular intervals

during the simulation according to criteria discussed in the literature

(Rathore et al., 2003). This ensures that systems in smaller windows do not

get trapped in particular configurations as a result of the bounds imposed by

the window size.

The main product of the simulation is the density of states over a specified

potential energy range, which is determined to within a multiplicative

constant. Once V(U) is known, thermodynamic quantities such as free

energy F(T ), internal energy U(T ), entropy S(T ), and specific heat capacity

C(T) can be determined according to:

FðTÞ ¼ �kBT ln +VðUÞe�bU
� 	

; (9)

UðTÞ ¼ hUiT ¼
+UVðUÞe�bU

+VðUÞe�bU ; (10)

SðTÞ ¼ UðTÞ � FðTÞ
T

; (11)

CðTÞ ¼ hU2iT � hUi2T
kBT

2 : (12)

RESULTS AND DISCUSSION

Density of states simulations were performed for the

b-hairpin described above (in a continuum solvent). As

mentioned earlier, multiple mutually overlapping energy

windows were constructed to enhance sampling and facil-

itate convergence. Fig. 2 a shows the time evolution of

potential energy as sampled by each separate box during the

course of a simulation. Fig. 2 b shows the accumulated

histogram of visited energy states in the overlapping energy

windows. Also shown in Fig. 3 are snapshots of in-

stantaneous configurations belonging to different locations

of the energy landscape explored by the CTDOS simulation.

It is evident from Figs. 2 and 3 that this scheme does

facilitate a random walk in energy and configuration space.

At the end of a simulation, the density of states estimates

from different windows can be overlapped and merged to

give V(U) for the entire energy range of interest. Fig. 4

shows such merged estimates obtained using the two

schemes considered here: WLDOS (Wang-Landau) and
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CTDOS (configurational temperature). It should be noted

that Eq. 8 exhibits finite-size effects of order O(1/N). For
the b-hairpin considered here, the number of sites is 160, and

the error is expected to be of order 10�2. This small error,

however, may accumulate when integrated over a wide

energy range and become significant, leading to a systematic

error in the CTDOS estimate of V(U). Fig. 5 shows the

difference between the logarithm of V(U) evaluated from

a random walk and that determined from configurational

temperature in one of the energy windows. The difference is

calculated after matching the two lnV(U ) estimates on the

left side of the energy range.

The discrepancy arising from finite-size effects can be

fitted to a quadratic function of the form D ln V(U) ¼ a(U �
Umin)

2 1 b(U � Umin) with a ¼ �1.2895 3 10�6and b ¼
0.00277. This simple function provides a means of reducing

finite-size effects. We can conduct two preliminary canonical

molecular dynamics simulations and get the average

potential energy and configurational temperatures. Using

linear interpolation we can then compute the systematic error

in the lnV(U) and subtract it from the estimated value to

arrive at a better density of states.

To compare the performance of the original Wang-Landau

scheme to the CTDOS method we computed the statistical

errors in the two estimates as a function of simulation time.

Five independent simulations were conducted with the same

code but using different strings of random numbers. The

resulting five independent estimates of V(U), consistent to
within a multiplicative constant, were matched by shifting

each lnV(U) so as to minimize the total variance. The total

variance is given by:

FIGURE 2 (a) Time evolution of potential energy and (b) histogram of

visited energy states in different, mutually overlapping energy windows

during a CTDOS simulation.

FIGURE 3 Typical configurations sampled by the peptide during the

random walk on the energy landscape. These range from fully folded (a) to

completely unfolded ( f ).

FIGURE 4 Logarithm of the density of states as obtained from Wang-

Landau (WLDOS) and configurational temperature (CTDOS) simulations.
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e ¼ +
l

+
n

i¼1

lnViðlÞ1Ci �
1

n
+
n

j¼1

½lnVjðlÞ1Cj�
( )2

; (13)

where n is the number of runs (n¼ 5 for our calculations), l is
an index for all energy states, and the constants Ci (or Cj) are

the values by which ln V(U) is shifted. By minimizing the

total variance and by setting C1 ¼ 0, we get the remaining n
� 1 shifting constants. Once the constants are determined,

we estimate the statistical error by calculating the standard

deviation for each energy state. Fig. 6 shows the statistical

errors in the density of states as a function of the convergence

factor ( f ). For the conventional Wang-Landau scheme

(represented by solid squares), two different behaviors can

be observed, depending on the value of f. For large values of
the convergence factor, the error is proportional to the square

root of f. But as f gets smaller (ln f \ 10�6), the error

approaches a limiting value. Unlike more traditional Monte

Carlo algorithms, further simulations do not improve the

accuracy of the results. This is because the configurations

generated in the late stages of a simulation only contribute

negligibly to V(U). They only polish the density-of-states

estimate locally, but the global estimate remains essentially

unchanged. If good sampling and results are not achieved by

the time f reaches some threshold value (exp(10�6) in this

case), the final results can be inaccurate.

For the configurational temperature method (represented

as empty diamonds), the error decreases steadily as the

simulation proceeds. For the reasons discussed earlier, the

accumulators for the numerator and denominator of Eq. 8

were reset in the early stages (ln f\10�5) of the simulation.

We therefore see a nonmonotonic behavior for large f. As the
convergence factor decreases, the error in the CTDOS

estimate becomes progressively smaller. Fig. 7 shows how

the statistical errors change with CPU time. We can see that,

in contrast to the original WLDOS scheme, CTDOS does not

show any asymptotic behavior and the quality of results

improves steadily with simulation time. At the end of

a simulation, we find that the statistical error from the Wang-

Landau scheme is approximately five times as large as that

obtained from configurational-temperature calculations.

The proposed method exhibits a better performance than

that of the Wang-Landau original scheme. This is largely due

to the fact that the density of states is computed from the

knowledge of configurational information, rather than from

a histogram of stochastic visits to distinct energy states. Also,

because the proposed scheme involves computing V(U) by
integrating the estimated temperatures, it eliminates some of

the statistical noise involved in these computations. Finally,

as discussed earlier, in this method each configuration

generated during the simulation contributes equally to the

density of states estimate.

FIGURE 6 Statistical error in the density of states as a function of

convergence factor ( f ).

FIGURE 7 Statistical error in the density of states as a function of CPU

time.

FIGURE 5 Errors in density of states calculated from CTDOS due to

finite-size effects. The solid line represents a least-squares fit: D ln V(U) ¼
a(U� Umin)

2 1 b(U� Umin), where a¼�1.28953 10�6and b¼ 0.00277.
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Multicanonical methods are particularly useful for char-

acterizing the thermodynamic stability of proteins. Stability

can be investigated by introducing mutations in the amino

acid sequences and monitoring their effects on transition

temperatures and free energy. Other properties including

order parameters such as helicity, number of hydrogen bonds

or number of native contacts can also be determined ef-

ficiently. These methods, however, have not found wide-

spread applications in the study of proteins, partly as a

result of the difficulties associated with determining suit-

able weights for a simulation. One of the attributes of the

proposed CTDOS formalism lies in its ability to provide the

density of states of a protein in a systematic and self-

consistent manner. This attribute of CTDOS will facilitate

considerably the application of density-of-states based

Monte Carlo methods to the study of biological systems.

In this work we have used a complex potential energy

function to capture the physics of the folding of a b-hairpin,

thereby demonstrating that CTDOS works well with

complicated Hessians. Unfortunately, as with other multi-

canonical techniques, sampling deteriorates for larger

systems. However, the finite-size error associated with the

configurational temperature decreases as system size in-

creases, providing a more precise estimate of the density of

states with increasing system size.

CONCLUSION

A new algorithm to compute the density of states has been

applied to simulate the folding of a model protein in a

continuum. The method relies on estimating the density of

states from the instantaneous configurational temperature of

the system. By calculating the gradient of the forces, an

intrinsic temperature can be computed and integrated to give

the density of states. Unlike earlier techniques based on

stochastic visits to energy states, this scheme yields data

whose accuracy increases with simulation time.

The configurational temperature does suffer from finite-

size effects (of order 1/N). These effects can propagate as 1/T
is integrated to generate a density of states. We have shown

that by assuming that the finite-size effects are a weak linear

function of potential energy, a few preliminary canonical

simulations can be used to reduce these systematic errors in

the V(U) estimate. The CTDOS scheme is expected to work

better for larger systems, e.g., peptides in explicit solvents,

where finite-size effects in the configurational temperature

calculations are expected to be smaller. A detailed study

exploring various Wang-Landau schemes for protein

systems with explicit water is currently under way.
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