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On Hydrophobicity and Conformational Specificity in Proteins

Erik Sandelin
Stockholm Bioinformatics Center, AlbaNova, Stockholms Universitet, Stockholm, Sweden

ABSTRACT In this study we examine the distribution of hydrophobic residues in a nonredundant set of monomeric globular
single-domain proteins. We find that the total fraction of hydrophobic residues is roughly constant and has no discernible
dependence on protein size. This results in a decrease of the hydrophobicity of the core as the size of proteins increases. Using
a normalized measure, and by comparing with sets of randomly reshuffled sequences, we show that this change in the
composition of the core is statistically significant and robust with respect to which amino acids are considered hydrophobic and
to how buried residues are defined. Comparison with model sequences optimized for stability, while still required to retain their
native state as a unique minimum energy conformation, suggests that the size-independence of the total fraction of hydrophobic
residues could be a result of requiring proteins to be conformationally specific.

INTRODUCTION

The hydrophobic effect, i.e., the tendency for nonpolar

molecules to aggregate in water, is widely believed to be the

main driving force behind the folding of globular proteins

(Kauzmann, 1954; Dill, 1990). When proteins fold it is

thermodynamically favorable to bury the hydrophobic

residues (Matsumura et al., 1988; Eriksson et al., 1992;

Lumb and Kim, 1995; Waldburger et al., 1995; Malakauskas

and Mayo, 1998), and as a consequence nonpolar amino

acids tend to be clustered in the interior of proteins (Perutz

et al., 1965; Chothia, 1976; Miller et al., 1987).

The role of polar residues in the interior of proteins is less

clear. Transfer experiments of amino acids from organic

solvents to water have shown that the burial of polar residues

is energetically unfavorable (Radzicka and Wolfenden,

1988; Wesson and Eisenberg, 1992; Dahiyat et al., 1997).

In protein structures it is indeed observed that polar residues

have a preference for surface positions compared to the core

(Chothia, 1976; Miller et al., 1987). However, if they are

able to form intramolecular hydrogen bonds, buried polar

amino acids can favorably contribute to the stability of

proteins (Pace et al., 1996; Takano et al., 2001; Bolon and

Mayo, 2001; Loladze et al., 2002). Furthermore, theoretical

calculations (Hendsch and Tidor, 1994) and mutational

studies in coiled coil systems (O’Shea et al., 1992; Lumb and

Kim, 1995; Ji et al., 2000) and globular proteins (Bolon and

Mayo, 2001), suggest that buried polar residues can help

proteins establish conformational specificity. But database

studies of related proteins (Russell and Barton, 1994;

Schueler and Margalit, 1995) and mutational studies on the

Arc repressor (Waldburger et al., 1995) also show that in

many cases they can be replaced by hydrophobic residues

without affecting the conformational specificity.

For globular proteins the relative size of the core grows

with protein size (Chothia, 1975; Janin, 1976; Teller, 1976;

Miller et al., 1987). With the different roles played by buried

nonpolar and polar residues, it is an interesting question how

this affects the balance between hydrophobic and polar

residues. Indeed, studies addressing this question have been

performed. A sequence-based study of the distribution of

hydrophobicity in single-domain enzymes found that the

relative hydrophobicity of the protein chains is essentially

constant and shows no discernible dependence on protein

size (Irbäck and Sandelin, 2000). This implies that the

hydrophobicity of the core has to decrease as the length of

the protein chains increases. Structure-based studies confirm

this. Kajander et al. (2000) found that as proteins grow in

size a larger and larger fraction of polar surface is buried,

whereas Bolon and Mayo (2001), consistent with Kajander

et al., observed an increase in the number of polar residues at

core positions. Given the thermodynamically favorable

effect of buried hydrophobic residues these findings might

be somewhat surprising. However, as noted above, buried

polar residues can contribute favorably to the formation of

protein structures.

In this article we aim at improving upon the previous

studies of the size-dependence of the composition of the

interior of proteins. Using a normalized measure and by

comparing with a background distribution of randomly

reshuffled sequences, we show that the observed decrease

in the hydrophobicity of the core (and the corresponding

increase of buried polar residues) is statistically significant

and robust as to how buried residues are defined and as

to which amino acids are considered hydrophobic. Fur-

thermore, we emphasize how this decrease is a direct

consequence of the size-independence of the relative hydro-

phobicity of protein chains.

Finally, to explore how such a size-independence could

arise, we study how requirements on stability and confor-

mational specificity affect the distribution of hydrophobicity

in a set of model sequences and structures. To this end we

use the two-dimensional HP lattice model (Lau and Dill,

1989) for which it is possible to systematically explore this
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issue. This model contains only two types of amino acids, H
(hydrophobic) and P (polar), the only interaction is pairwise

attraction between hydrophobic residues, and the chain

conformation is restricted to a two-dimensional lattice.

Admittedly, this is a crude model of proteins which

obviously has its limitations. These limitations must be

carefully considered when deciding if the model is ap-

propriate for addressing a certain question. For example, it

has been shown that the additivity of the interaction scheme

is insufficient to produce proteinlike thermodynamic coop-

erativity (Chan, 2000; Shimizu and Chan, 2002), and

contributions from other types of interactions (in addition

to hydrophobic) need to be incorporated to address more

refined questions about the thermodynamics of protein

folding (Kaya and Chan, 2000a,b). However, for studying

the mapping between protein sequences and their native

structures the HP model is useful. By invoking the con-

sistency principle (Gõ, 1983) or principle of minimal

frustration (Bryngelson and Wolynes, 1987), it has been

argued (Chan et al., 2002; Cui et al., 2002) that for

a proteinlike sequence, in the native conformation, there

are no significant conflicts between the different interactions

involved in the folding process, and hence it is reasonable to

adopt the ‘‘working assumption’’ (Chan et al., 2002) that the

native conformation must also be a unique or near-unique

most-favored conformation when only considering its

hydrophobic-polar pattern. The adoption of this working

assumption is further encouraged by results from recent

mutagenesis experiments (Cordes et al., 1999, 2000) which

are consistent with findings from evolutionary studies of the

HP model sequence-structure map (Bornberg-Bauer, 1997;

Bornberg-Bauer and Chan, 1999; Chan and Bornburg-

Bauer, 2002; Cui et al., 2002). Furthermore, it has also

recently been found that HP model sequences exhibit the

same type of hydrophobicity correlations as real proteins

(Irbäck and Sandelin, 2000).

This article is organized as follows. In the next section

(Methods), in the subsections Functional Protein Sequences

and HP Model, we present the sequences studied. Surface

Calculations describes the method used to calculate the

accessible surface areas, Observables defines the observables

studied, and Correlations shows the rank-order correlation

method. Results and the Summary and Discussion sections

follow.

METHODS

Functional protein sequences

For this study we select a nonredundant database of protein structures which

we hope display statistical properties representative of functional (globular)

folding units. To this end, by selecting one representative from each

homologous superfamily, we start with all nonhomologous single-domain

proteins from the November 2000 release of the structural classification

database CATH (Orengo et al., 1997).

Using the Protein Quaternary Structure database (http://pqs.ebi.ac.uk),

we select proteins classified as monomeric. This leaves us with 244

nonhomologous single-chain, single-domain, monomeric proteins. From

this set we further remove proteins containing nonstandard residues in their

PDB-entry (as indicated by the HETATM record).

A close inspection of the remaining proteins revealed a number of

nonglobular proteins: three membrane proteins (1fio, 1vmo, and 1c4r), three

ribosomal proteins (1a32, 1rss, and 1cqm), a virus capsid protein (1em9), an

inhibition protein (1dvo), and a subunit fragment from RNA polymerase

(1sig). Furthermore, this inspection also revealed seven proteins where

CATH’s single-domain classification is ambiguous (1d2p, 1cs6, 1eqf, 1eg3,

1d2o, 1dq3, and 1e4f) and four proteins which SCOP (Murzin et al., 1995)

classifies as multidomain (1esl, 1ak2, 1plr, and 1eu4).

Of the remaining 127 proteins 89 had PDB-entries containing enough

information to calculate their accessible surface areas (see Surface

Calculations). A list of all the 89 proteins used can be found in the Appendix.

The sequences of these proteins are transformed into binary hydropho-

bicity strings by classifying amino acids as either hydrophobic or polar. Our

calculations are performed using two different sets of hydrophobic amino

acids. In the first set, referred to as Set 1, we take Leu, Ile, Val, Phe, Met, and

Trp as hydrophobic, and in the second set, Set 2, in addition to the six amino

acids above, we take Pro, Cys, and Ala as hydrophobic.

HP model

As mentioned in the Introduction, we want to study how requirements on

stability and conformational specificity affect the balance between polar and

hydrophobic residues. To this end, we need a set of protein sequences

optimized for stability while still required to fold into their native state.

Unfortunately, to our knowledge, existing sequence optimization methods

for real proteins rely on either constraining the amino acid composition

(Koehl and Levitt, 1999) or excluding polar residues from the core (Gordon

et al., 1999; Marshall and Mayo, 2001), and thus they are of limited use for

such a study. Instead we turn to the two-dimensional HP lattice model (Lau

and Dill, 1989) for which it is possible to perform sequence optimization

without any constraints on the amino acid composition.

The HP model contains only two types of amino acids, H (hydrophobic)

and P (polar), and the chain conformation is represented as a self-avoid-

ing walk of length N on a two-dimensional lattice. The formation of

a hydrophobic core is favored by defining the energy as minus the number of

HH pairs that form a contact, i.e., they are nearest neighbors on the lattice but

not along the chain. For short chain lengths it is possible to make an

exhaustive enumeration of both sequence and conformation space.

Currently, the upper limit for exhaustive enumeration is N ¼ 25 (Irbäck

and Troein, 2002).

This is admittedly a coarse-grained model of proteins, but, as discussed in

the Introduction, although it has its limitations it should be appropriate for

the questions addressed in this article.

In this study we start with all sequences with a unique minimum energy

conformation for 14 # N # 25. We will refer to these sequences as

designing sequences and the number of sequences designing a given

structure will be called the designability of that structure (Li et al., 1996).

Furthermore, all structures with a designability[0 are said to be designable.

For N # 18 we were able to perform the enumerations by ourselves, and

for 18 \ N # 25 the designing sequences and their native structures were

kindly provided to us by Irbäck and Troein (see Irbäck and Troein, 2002).

From this set we select all structures with a designability [8 and their

corresponding designing sequences. Table 1 shows the number of sequences

and structures used for each N.

To study the influence of stability and conformational specificity on the

composition of the protein chains we want to select a set of designing

sequences optimized for stability in their native states. To this end, for each

of the designable structures in our dataset we select the designing sequence

with highest folding temperature (N # 18) or highest Boltzmann weight for

the native state (N [ 18). The folding temperature, Tf, is defined as the

temperature where the probability for the sequence to visit its native state is
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1/2. It was calculated by exhaustive enumeration of conformation space. For

longer chains, N[18, we were not able to perform this enumeration. Instead

we applied the multisequence method (Irbäck and Potthast, 1995; Irbäck

et al., 1999) to each structure to find the designing sequence with highest

Boltzmann weight.

The multisequence method is a protein design method which aims at

finding the sequence with largest Boltzmann weight for the target structure.

Rather than estimate the Boltzmann weight by repeatedly performing Monte

Carlo simulations for fixed sequence, it performs a single Monte Carlo

simulation which simultaneously explores both sequence and conformation

space. For coarse-grained models this method has been shown to be much

more efficient than conventional protein design methods (Irbäck et al.,

1999). Furthermore, if a sufficiently large number of Monte Carlo steps is

used the method guarantees that for all of the surviving sequences the target

structure will be a unique minimum energy conformation.

Here we apply the method in the following way. For a given structure we

start with the complete set of sequences designing this structure. Then their

Boltzmann weights for the native state are calculated by applying the

multisequence method for 2 3 106 Monte Carlo steps at temperature, T ¼
1/3. This corresponds to ;30 CPU seconds on a 1-GHz Pentium III pro-

cessor. As a test, we apply the method to all the 170 N¼ 18 structures in our

data set. For 161 of these it provides the sequence with the highest Tf and for

the remaining nine structures it finds the sequence with second highest Tf.

These results assure us that for the N [ 18 structures it will provide us

with sequences highly optimized for stability while still retaining the given

structure as a unique minimum energy conformation.

For N [ 20 we do not use all structures in our dataset but a random

sampling of them. This sampling is performed such that we get roughly the

same number of structures (;600) for each N. Table 1 shows the number of

maximally stable sequences in our dataset.

Surface calculations

The accessible surface area, ASA, of a molecule is defined by the center of

a probe as it moves over the surface of the molecule. For proteins, the probe

is commonly taken as a water molecule approximated as a sphere with radius

1.4 Å. Our calculations of the ASAs for our set of proteins were done using

software kindly provided to us by Dr. Patrice Koehl. The procedure follows

the scheme proposed by Shrake and Rupley (1973), but performs the

calculation based on the Legrand and Merz algorithm (Legrand and Merz,

1993).

The degree of burial of an amino acid X in a protein is defined as the

fraction of its current ASA and its ASA in a Gly-X-Gly tripeptide. A binary

classification into buried and nonburied is then done by using a cutoff on the

degree of burial. Four different cutoffs are used in this study: 45%, 30%,

15%, and 5%.

For HP sequences, a residue is classified as a core residue if it forms two

or three contacts (it is possible for the residues at the ends of the chain to

form three contacts). Furthermore, for the HP model, it is also useful to look

at the set of residues forming at least one contact as this set corresponds to

positions where a hydrophobic residue will always be energetically favored

compared to a polar. This set of residues will be referred to as buried residues

and includes core residues and residues that are partly exposed.

Observables

When establishing correlations between observables care must be taken as to

how you define your observables and how you quantify the significance of

the correlations. The latter problem will be addressed in the next section,

whereas the former will be discussed here and in particular we will discuss

areas where we believe we could improve upon previous studies.

In this study, for each protein, the N residues are classified as

hydrophobic or polar and buried or nonburied. Then we count the number

of buried residues, Nb, the number of hydrophobic residues Nh, and the

number of buried residues that are hydrophobic, Nbh. These numbers are

subsequently transformed into fractions:

fb ¼
Nb

N
fh ¼

Nh

N
fbh ¼

Nbh

Nb

: (1)

When studying the distribution of polar residues in the core, Bolon and

Mayo (2001) binned their data according to number of amino acids and

looked at the averages for each bin. Although they this way observed an

increase in the average fraction of polar residues at core positions, each

average was within the standard deviations of all the other means. Thus it is

difficult to quantify the significance of their observed correlation. Here, we

will look at the raw fractions introduced above, quantifying the significance

of observed correlations with rank-order analysis (see Correlations).

Another problem when establishing correlations is the presence of

intrinsic biases in the dataset. For example, Kajander et al. (2000) found that

the fraction of polar surface that is buried increases with protein size, and, in

particular, they showed that the burial of charged polar surface increases

faster than for uncharged polar and aromatic surfaces. However, since the

relative size of the interior of globular proteins (per definition) increases with

protein size, even if the different types of residues were randomly distributed

in proteins, we would still expect the fractions of all types of surfaces that are

buried to increase. Although Kajander et al. (2000) note that this intrinsic

bias exists, it is unclear from their study how much this bias quantitatively

affects their observations.

In this study we address this problem by normalizing fbh. If there were no

biases present for different types of residues to reside in different parts of the

protein, i.e., if polar and nonpolar residues were randomly distributed

throughout the protein, we expect the hydrophobicity of the core to behave

like fh. Hence, to account for possible intrinsic biases we normalize the

fraction of buried residues that are hydrophobic,

f̃bh ¼
fbh

fh
: (2)

Correlations

In this article we want to investigate the size-dependence of various

observables. To quantify their correlations with size we use the Spearman

rank-order correlation coefficient (Press et al., 1992), D. In contrast to the

more commonly used linear correlation coefficient, rank correlation is not

relying on any assumptions about the underlying distributions for the data

points. Hence it is more robust when determining the significance of

a correlation.

In rank correlation, pairs of quantities (xi, yi), i ¼ 1, . . . . , N, are replaced

by their respective rank in the sample, i.e., xi and yi are transformed to

integers Ri and Si, taking on values 1, . . . . , N. Irrespective of the distribution

TABLE 1 Number of HP model sequences used

N All Maximally stable

14 76 6

15 294 22

16 427 33

17 1450 99

18 2709 170

19 5964 432

20 12173 766

21 30576 545

22 55111 610

23 126981 618

24 219520 535

25 479310 626
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of xi and yi, both Ri and Si will be distributed uniformly (Press et al., 1992).

There exists several measures for detecting correlations between uniform

sets of integers, and we will use one, the sum squared difference of ranks, D,

defined as

D ¼ +
i

ðRi � SiÞ2
: (3)

To judge the significance of a correlation we will not look at the precise

value of D, but rather at the two-sided significance level of how much D

deviates from its null-hypothesis expected value, i.e., the expectation value

of D if the data is uncorrelated. This significance level will be denoted by PD.

Furthermore, to be certain that observed correlations are not the result of

intrinsic biases in the dataset we construct 1000 sets of proteins where the

sequences of our original set of proteins have been randomly reshuffled. For

each of these sets we calculate the rank-order correlations and count the

number of times these correlations have a lower PD than the PD observed for

the set of true sequences. This number is reported as ND.

RESULTS

Functional proteins

Fig. 1 shows data from the surface calculations for the

proteins in our data set, with residues with ASA \30%

defined as buried. The data in Fig. 1 a for the fraction of

buried residues, fb, is consistent with a fit to a function with

the form

1 � a3N�1=3
; (4)

with the constant a¼ 2.43. This behavior is expected for a set

of solid objects deviating in a similar manner from a spherical

shape and has been observed in monomeric proteins by

several authors before (Chothia, 1975; Janin, 1976; Teller,

1976; Miller et al., 1987). Furthermore, Fig. 1 confirms

the earlier finding by Irbäck and Sandelin (2000), that the

fraction of hydrophobic residues, fh, is independent of chain

length, with an average of 0.28 and 0.42 with six (Set 1, Fig.

1 a) and nine (Set 2, Fig. 1 b) amino acids as hydrophobic,

respectively.

Fig. 2 shows f̃bh for the two different sets of hydrophobic

residues and for two different definitions of buried residues.

As can be seen, the hydrophobicity of the core seems to be

decreasing with protein size. Furthermore, this holds true for

all of the four different definitions of core residues and

hydrophobic residues. We note, however, that in all four

cases the core is still more hydrophobic than expected if the

residues were randomly distributed in the protein, as

indicated by the solid line at f̃bh ¼ 1.

To quantify these observations we calculated the rank-

order correlations as described in Correlations. In addition

to the definitions above, these calculations were also

performed, for both sets of hydrophobic residues, with

buried residues defined by ASA\ 15% and ASA\ 5%. The

results are shown in Table 2. It shows PD and ND for the

rank-order correlation between fh and N, and between f̃bh and

N, for our full set of proteins and for the subset with N\300.

The values in Table 2 confirm the observations from Fig.

2. First we note that fh has no significant dependence on N, as

indicated by the high PD-values. This is true for both sets of

hydrophobic residues and also for the subset of proteins with

N \ 300. For all eight different definitions of burial and

hydrophobicity f̃bh shows a significant correlation with N. In

most cases the set with nine hydrophobic amino acids, Set 2,

seems to have more significant correlations. We also note

that the correlation is most significant when buried residues

are defined as having ASA\ 30% or ASA\ 15%. When we

restrict ourselves to shorter proteins the signal gets weaker

but is still significant, except in possibly the case with Set 1

and ASA\ 5% where PD is on the order of 10�2. We also

note that the ND-values confirm that our observed correla-

tions are true correlations.

HP model

For the HP model sequences, with core and buried residues

defined at the end of Surface Calculations, we count the

number of core residues, Nc, the number of buried residues,

Nb, the number of hydrophobic residues, Nh, the number of

core residues that are hydrophobic, Nch, and the number of

buried residues that are hydrophobic, Nbh. These numbers

are subsequently transformed into fractions:

fc ¼
Nc

N
fb ¼

Nb

N
fh ¼

Nh

N
fch ¼

Nch

Nc

fbh ¼
Nbh

Nb

: (5)

Since the number of sequences for each N is large (see Table

1) it is not useful to look at the raw data. Instead we look at

the averages of these fractions which we denote by h..i.

FIGURE 1 (a) The fraction of buried

residues, fb, and the fraction of hydro-

phobic residues, fh, as a function of

chain length, N with Leu, Ile, Val, Phe,

Met, and Trp considered hydrophobic,

and residues with ASA\ 30% consid-

ered buried. (b) fh with Leu, Ile, Val,

Phe, Met, Trp, Cys, Pro, and Ala

considered hydrophobic. The data for

fb in a is fitted to a function of the form

1 – a 3 N�1/3 with a ¼ 2.43.
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From Fig. 3 a we can conclude that although both hfci and

hfbi clearly increase with protein size, hfhi, just as for real

proteins, has no discernible size-dependence, as noted before

(Irbäck and Sandelin, 2000; Irbäck and Troein, 2002). More

surprisingly, hfhi seems to be unaffected by the restriction to

optimized sequences. Consequently, for both the set of all

designing sequences and designing sequences optimized for

stability, the average hydrophobicity of the interior is de-

creasing with protein size. As can be seen in Fig. 3 b both

sets of sequences show this behavior, although optimized

sequences on average have a more hydrophobic interior, as

shown by both hfci and hfbi. However, we note that the core

residues are still highly hydrophobic with \5% of the core

residues polar for N ¼ 25.

These results suggest that even if buried polar residues are

energetically unfavorable, they still might be needed for

a protein to retain its native state as a unique minimum

energy structure. Consistent with this, we find that a sub-

stantial fraction of the designable HP structures have no

sequence designing them with a completely hydrophobic

core, i.e., a design procedure excluding polar residues from

the core would fail for these structures (see Table 3, row A).

For N¼ 25 these structures amounts to 14% of all designable

structures. Furthermore, there is also a substantial fraction of

designable structures for which the most stable designing

sequence does not have a completely hydrophobic core, i.e.,

fch \ 1.0 (see Table 3, row B).

SUMMARY AND DISCUSSION

Hydrophobicity plays a key role in the formation of protein

structures which makes it of utmost interest to understand the

distribution of hydrophobicity in protein sequences and

structures. In this article we have studied the distribution of

FIGURE 2 Shown are f̃bh for the two

sets of hydrophobic residues and for

two different cutoffs for defining buried

residues as indicated at the top of each

figure. The } shows the averages of f̃bh

in bins of size 100.

TABLE 2 Rank-order correlations for fh and f̃bh versus N

Hydrophobic Buried PD ND PD N\ 300 ND N\ 300

fh versus N Set 1 – 0.98 – 0.59 –

Set 2 – 0.25 – 0.24 –

Set 1 ASA\ 45% 1.0 3 10�4 1000 2.1 3 10�3 996

Set 1 ASA\ 30% 1.8 3 10�7 1000 2.0 3 10�5 1000

Set 1 ASA\ 15% 2.9 3 10�7 1000 6.7 3 10�5 999

f̃bh versus N Set 1 ASA\ 5% 3.0 3 10�4 1000 1.3 3 10�2 972

Set 2 ASA\ 45% 2.5 3 10�5 1000 6.0 3 10�3 985

Set 2 ASA\ 30% 8.3 3 10�8 1000 1.8 3 10�4 1000

Set 2 ASA\ 15% 2.6 3 10�7 1000 1.7 3 10�4 1000

Set 2 ASA\ 5% 3.7 3 10�7 1000 6.5 3 10�5 1000

Shown are PD and ND for the two different sets of hydrophobic amino acids and the four different cutoffs for defining buried residues. Data for both the full

set of proteins and proteins with N\ 300 is shown.
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hydrophobic residues in the interior of globular proteins, and

how this distribution is affected by requirements on stability

and conformational specificity.

We started from the observation by Irbäck and Sandelin

(2000) that the fraction of hydrophobic residues in globular

proteins is roughly constant and shows no discernible

dependence on protein size. This implies that for larger

proteins more and more polar residues are buried, which

indeed has been directly observed (Bolon and Mayo, 2001;

Kajander et al., 2000). Using a nonredundant set of mono-

meric single-domain proteins, we reconfirmed these obser-

vations. Furthermore, using a normalized measure and by

comparing with sets of randomly reshuffled sequences, we

showed that this change in the composition of the core is

statistically significant and robust with respect to which

amino acids are considered hydrophobic and to how buried

residues are defined.

Upon folding, the burial of hydrophobic residues is

thermodynamically favorable for the formation of the native

state. Given this it is somewhat surprising that the balance

between hydrophobic and polar residues seems unaffected

by the fact that the relative size of the interior of globular

proteins increases with protein size. However, as mentioned

in the Introduction, several experiments have shown that

buried polar residues can contribute favorably to the stability

of proteins and also be important for the conformational

specificity of proteins.

To explore how such a size-independence of the

hydrophobic/polar composition could arise, we studied

how this composition is influenced by requirements on

stability and conformational specificity. Although it is a well-

known fact that functional proteins are only marginally

stable (Dill, 1990), it is an interesting limiting case to study

how the balance between hydrophobic and polar residues is

affected by optimizing a set of sequences for stability under

the constraint that they retain their native state as a unique

most-favored conformation. Unfortunately, existing se-

quence optimization methods for real proteins do not allow

for a freely varying amino acid composition. Instead, for this

study, we used the two-dimensional HP lattice model where

sequence optimization can be performed without constrain-

ing the composition. Starting with the set of all sequences

which have a unique minimum energy conformation, we

found that for both the set of all sequences and the subset of

sequences optimized for stability the average fraction of

hydrophobic residues, just as for real proteins, shows no

dependence on chain length. Furthermore, the restriction to

optimized sequences has very little effect on the average

fraction of hydrophobic residues.

These model results suggest that conformational specific-

ity requires a careful balance of hydrophobic and polar

residues and the requirement on proteins to be conforma-

tional-specific for their native state imposes constraints on

the composition of the sequences. This suggestion is further

supported by the fact that the HP model sequences with

unique minimum energy conformations have earlier been

shown to differ significantly from random sequences in that

they exhibit hydrophobicity correlations along the chain

similar to what is seen in real proteins (Irbäck and Sandelin,

2000).

The HP model is obviously a coarse-grained model and

care must be taken to not extrapolate these model results too

far. However, as discussed in the Introduction, there are

theoretical arguments, boosted by experimental observa-

tions, that this model should indeed be useful for studies,

such as this, interested in the mapping between sequence

and structure. Furthermore, although the HP model has its

limitations, it is an interesting observation that in a simple

model where conformational specificity is just a matter of

counting the number of ways you can fold a self-avoiding

walk to obtain a certain number of HH contacts, buried polar

FIGURE 3 Data for the HP model.

(a) The size-dependence of the average

of the fraction of hydrophobic residues,

hfhi, for all designing sequences and for

optimized designing sequences. Also

shown is the average fraction of core

residues, hfci, and the average fraction

of buried residues, hfbi, for all design-

able structures. In b we show the size-

dependence of the average fraction of

core residues that are hydrophobic,

hfchi, and the average fraction of buried

residues that are hydrophobic, hfbhi.
Shown is data for all designing sequen-

ces and for optimized designing se-

quences.

TABLE 3 Data for the HP sequences

N 14 15 16 17 18 19 20 21 22 23 24 25

A 0% 0% 0% 0% 0% 3% 4% 6% 8% 11% 14% 14%

B 0% 0% 0% 0% 0% 6% 8% 13% 16% 22% 27% 33%

Row A shows the percentage of designable structures for which none of the

designing sequences have a completely hydrophobic core, i.e., fch\ 1.0 for

all sequences. Row B shows the percentage of designable structures for

which the most stable designing sequence have fch \ 1.0.
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residues, despite being energetically unfavorable in this

model, are required by a substantial number of proteins to

retain their conformational specificity.

Of course, it would be interesting to see if our observations

for optimized sequences persist for more realistic models and

for real proteins. Hopefully, future improvements in protein

design algorithms and computational power will make such

a study feasible.

APPENDIX

The complete list of the 89 PDB entries used in this study is as follows:

1hst, 1enh, 1hyp, 1ycr, 1r69, 1bkr, 1maz, 2end, 1ad6, 1col, 153l, 1pbw,

1pah, 1poa, 1nfn, 1a7d, 1a0b, 2gmf, 2lis, 1dvk, 1bd8, 1cem, 1brf,

2ovo, 1abo, 1mjc, 1lop, 1dsl, 1hoe, 1noa, 1amx, 1thv, 1xnb, 1czt,

1bfg, 1rie, 1qlg, 1air, 1igd, 4fxc, 1ubi, 1mol, 2cba, 1tml, 1nar, 1tri,

1qtw, 1vcc, 1vhh, 1hka, 1a6f, 2rn2, 1fil, 1ekg, 2gar, 1chd, 1thm,

1phr, 1zon, 1tah, 2pth, 1lba, 1ovb, 1c25, 1avp, 1udg, 1uch, 2blt,

1ytn, 1vfy, 1mwp, 1gzi, 1bk7, 1mir, 1quv, 1jet, 1qgi, 1d0b, 1c1k,

1cwy, 1dde, 1psz, 1qjv, 1c44, 1f82, 1dvn, 1b04, 1qmy, 1qnx.
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