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Hydrodynamic Forces Applied on Intercellular Bonds, Soluble
Molecules, and Cell-Surface Receptors

Harish Shankaran and Sriram Neelamegham
Bioengineering Laboratory, Department of Chemical Engineering, State University of New York, Buffalo, New York

ABSTRACT Cells and biomolecules exposed to blood circulation experience hydrodynamic forces that affect their function.
We present a methodology to estimate fluid forces and force loading rates applied on cellular aggregates, cell-surface proteins,
and soluble molecules. Low Reynolds-number hydrodynamic theory is employed. Selected results are presented for biological
cases involving platelets, neutrophils, tumor cells, GpIb-like cell-surface receptors, and plasma von Willebrand factor (vWF)-like
soluble proteins. Calculations reveal the following: 1), upon application of constant linear shear, cell aggregates and
biomolecules experience time-varying forces due to their tumbling motion. 2), In comparison to neutrophil homotypic aggre-
gates, the maximum force applied on neutrophil-platelet aggregates is approximately threefold lower. Thus, alterations in cell
size may dramatically alter adhesion molecule requirement for efficient cell binding. Whereas peak forces on homotypic cell
doublets are tensile, shear forces dominate in heterotypic doublets with radius ratio\0.3. 3), The peak forces on platelet GpIb
and von Willebrand factor are of comparable magnitude. However, they are orders-of-magnitude lower than those applied on
intercellular bonds. Charts are provided to rapidly evaluate the magnitude of hydrodynamic force and rotation time-period
occurring in any given experiment. The calculation scheme may find application in studies of vascular biology and receptor
biophysics.

INTRODUCTION

Flowing blood plays an important role in both initiating and

regulating biological processes in circulation. For example,

high shear stresses have been shown to contribute to platelet

activation, and subsequent aggregation and secretion in

models of arterial thrombosis (Kroll et al., 1996; Shankaran

et al., 2003). This process is triggered by the binding of

a plasma protein von Willebrand factor (vWF) to the platelet

receptor Glycoprotein Ib (GpIb). The critical role of vWF

and GpIb suggests that one or both of these molecules may

undergo structural/functional changes upon application of

fluid shear (Kroll et al., 1996). Gene expression and protein

synthesis in endothelial cells is also altered upon application

of arterial shear stresses (Davies, 1995; Nollert et al., 1992).

In addition to controlling cellular activation in the above

examples, hydrodynamic shear also controls the rates of cell-

cell collision, deformation, receptor-ligand bond formation,

and adhesion. In a prominent example, fluid shear has been

shown to allow optimal L-selectin-mediated leukocyte

rolling only above a minimum-threshold shear rate (Finger

et al., 1996; Taylor et al., 1996).

In this article, we apply low Reynolds-number hydrody-

namic theory to study the nature and magnitude of forces

applied on cellular aggregates, soluble molecules, and cell-

surface receptors. Currently, well-defined solutions exist for

the estimation of forces applied on particles localized near

a substrate under fluid flow (Goldman et al., 1967). This

analysis has aided estimation of the biophysical properties

of receptor-ligand bonds formed by adhesion molecules

belonging to the selectin family (Alon et al., 1995; Smith

et al., 1999). Equations also exist for analytical computation

of the hydrodynamic forces applied on aggregates com-

posed of two equal-sized particles (Arp and Mason, 1977;

Tha and Goldsmith, 1986). This has been applied in studies

of neutrophil, platelet, and red blood cell homotypic

aggregation (Goldsmith et al., 2000, 2001; Shankaran and

Neelamegham, 2001b; Tees et al., 1993). Here, we present

methods for the analytical computation of fluid forces on

doublets composed of unequal-sized particles separated by

a finite distance. We are interested in this problem since, as

elaborated later, many biological particles can be repre-

sented as a pair of (un)equal spheres linked by a rigid

tether. We apply this methodology to estimate the mag-

nitude and loading rates of forces applied on intercellular

bonds linking cellular aggregates, including neutrophil-

platelet, neutrophil-neutrophil, neutrophil-tumor, platelet-

platelet, and platelet-tumor aggregates. Such homotypic and

heterotypic aggregates in vivo often regulate the progress of

inflammatory diseases, cardiovascular ailments, and cancer

metastasis. Besides analyzing cell aggregation, this meth-

odology also allows estimation of the forces applied on

microdomains of cell-surface receptors like GpIb on plate-

lets, and on soluble molecules like vWF. Our results

illustrate the importance of particle size ratio in determining

both the direction and magnitude of force applied. Such

analysis is important since it will allow us to: 1), translate

data from single molecule studies (e.g., atomic-force

microscopy measurements) to predict ensemble behavior

in suspension; 2), design appropriate in vitro experimental
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systems to apply the range of hydrodynamic forces that are

relevant in vivo; and 3), understand the fundamental

mechanisms of fluid flow-initiated biological phenomena.

METHODS

We consider the hydrodynamic interaction between a pair of interacting,

unequal-sized spheres of radii a1 and a2, the surfaces of which are separated

by a tether of length d (Fig. 1). The center-to-center separation distance

between the spheres is a1 1 a2 1 d. By convention, the larger sphere is

labeled 1 and the smaller sphere is 2. This doublet is assumed to behave as

a rigid dumbbell, where the individual spheres do not undergo free rotation

about the tether. It is subjected to a linear shear flow. In particular, a simple

shear of magnitude G with equal extensional and rotational components is

chosen. In this analysis, the key geometric parameters that determine the

hydrodynamic behavior of the doublet are: 1), the radius of the larger sphere,

a1; 2), the radius ratio l ¼ a2/a1; and 3) the dimensionless separation

distance, d ¼ d/a1. Other flow parameters that influence the magnitude of

applied force and force loading rates are the shear rate, G; the orientation of

the dumbbell axis with respect to the flow direction; and the fluid viscosity,m.

The key assumptions made are as follows:

1. We employ Stokes hydrodynamic theory for our calculations. This

is a valid assumption under the low-particle Reynolds-number or

creeping-flow conditions that are typical in vivo in the microcirculation

and for most experiments in vitro (Fung, 1984).

2. We assume that cellular doublets behave as rigid dumbbells. In this

regard, although it is possible to consider the free or partially damped

rotation of the spheres comprising the doublet based on previous work

(Adler, 1981; van de Ven and Mason, 1976), this type of motion is

likely to be more important as cells approach each other and collide.

After collision and bond formation the doublets more closely resemble

a rigid dumbbell, with little or no rotary motion of the cells about the

bond. This assumption is supported by video-microscopy observations

that red blood cell and neutrophil doublets behave as rigid dumbbells

after cell-cell collision (Goldsmith et al., 2001; Tees et al., 1993). Cell-

surface receptors are also modeled as a small sphere linked to the cell

via a tether. This is supported by electron microscopy observations that

suggest that a number of cell-surface receptors, especially those

involved in cell adhesion, resemble beads tethered to the cell surface

(Drescher et al., 1996; Fox et al., 1988; Ushiyama et al., 1993). Some

soluble proteins in suspension that are either dimers or that have

structural symmetry also lend themselves to this simplified model of

two spheres linked by a tether (Fowler et al., 1985).

3. Effects of rotary Brownian motion are neglected in our calculations.

Although this feature affects the trajectory (not the force) of soluble

molecules at low shear rates, it has a negligible effect on the forces and

loading rates of cell doublets and cell-surface receptors (see Discussion).

4. The fluid is considered to be Newtonian. This is a good assumption in

vitro where dilute cell suspensions are subjected to shear. Whole blood,

however, behaves as a non-Newtonian fluid below shear rates of ; 100/s

and it has a high density of red blood cells. Further, blood viscosity

may vary in the radial direction in vivo, due to the inward migration of

erythrocytes from the vessel wall resulting in a cell-depleted peripheral

plasma layer. Despite these limitations, we suggest that as a starting

point, a reasonable manner in which this complex fluid can be handled

is by incorporating a shear-rate-dependent local viscosity in Eq. 2

below, while continuing to use the force coefficients provided here.

5. Finally, we only consider the case of a linear shear field, the rationale

being that irrespective of the exact nature of the flow encountered, in the

length scale of molecular/cellular size, the flow can be approximated to

a linear shear. Thus the results provided here can be applied to any

general flow field by substituting the local value of the shear rate G, in

the expressions for the hydrodynamic force (Shankaran and Neelameg-

ham, 2001a,b).

Hydrodynamic forces applied on the spheres of
a rigid dumbbell in linear shear flow

The hydrodynamic force felt by a pair of neutrally buoyant interacting

spheres subjected to low Reynolds-number flow can be written as (Brenner

and O’Neill, 1972)

F ¼ �mðRU1FEÞ; (1)

whereF is the 13 12 force-torque vector,R is the 123 12 grand resistance

matrix, U is the 13 12 relative velocity-spin vector, F is the 123 12 shear

resistance matrix, and E is a 1 3 12 shear vector. For convenience, we

choose to solve this equation in the particle-fixed coordinates (Xi) (Fig. 1). In

the above expression,R andF are flow-independent resistance matrices that

are functions of a1, d, and l. Our computations of these matrices are based

on the work of Jeffrey and colleagues (Jeffrey, 1992; Jeffrey and Onishi,

1984), and are accurate for nontouching spheres (d [ 0) with l $ 0.01,

although reasonable estimates are obtained for l down to 0.002 (see Eqs. A5

and A6 in Appendix, section A1). E is obtained in a straightforward fashion

from the rate-of-strain tensor (Eq. A7, Appendix, section A1). The relative

velocity-spin vector U is determined using knowledge of doublet motion in

the linear shear field (Nir and Acrivos, 1973), along with net force and

torque balance equations (Eq. A8, Appendix, section A1). Once the

parameters on the right-hand side of the above equation are defined, the force

applied on the individual spheres is computed in the particle-fixed

coordinates. The normal force (Fn) acting along the line joining the centers

of the two spheres forming the dumbbell, and shear force (Fs) acting

perpendicular to this direction, can then be readily evaluated and expressed

in the form (Appendix, section A1) of

Fn ¼ anmGa
2

1 sin
2
u1 sin 2f1;

Fs ¼ asmGa
2

1½ðcos 2u2 cosf2Þ
2
1 ðcos u2 sinf2Þ

2�1=2; (2)

where an and as are force coefficients that are functions solely of the

dumbbell geometry (d and l). u1, f1, u2, and f2 are angles describing the

orientation of the dumbbell with respect to the flow (Fig. 1). The maximum

value of Fn is anmGa21 at f1 ¼ (2n 1 1)p/4 and u1 ¼ p/2, and the highest

value of Fs is asmGa21 at f1 ¼ np/2 and u1 ¼ p/2 (which is equivalent to u2
¼ np for all f2, and u2 ¼ (2n 1 1)p/2 when f2 ¼ np). It should be noted

FIGURE 1 Coordinate system. Biological particles are modeled as a pair

of (un)equal spheres of radii a1 and a2 (a1[a2) separated by a rigid tether of
length d. Space-fixed coordinate system is designated xi. x3 coincides with

the direction of fluid flow, x2 is the direction of the velocity gradient, and x1
is the vorticity axis. The origin O lies at the midpoint of the line joining the

centers of the two spheres. Xi describes the particle-fixed coordinates. X3 lies

along the line joining the centers of the two spheres. It is directed toward the

larger sphere. X2 is coplanar with the x1–x3 plane, and X1 is perpendicular to

X2 and X3. (u1, f1) and (u2, f2) are polar and azimuthal angles with respect

to the axes x1 and x2, respectively. (Figure adapted from Arp and Mason,

1977.)
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that Eq. 2 is of the same form as that reported by Tha and Goldsmith (1986)

for the case of equal spheres. Here, in the force equation, the prefactors an

and as, in addition to being functions of d, are also dependent on l—which

enables the extension of the equation to the case of unequal spheres.

Dumbbell rotation and dynamic force
loading rate

A rigid dumbbell suspended in shear flow rotates about a point termed the

center of free rotation, CR. Thus, the orientation of the doublet axis with

respect to the flow changes with time, t. This rotation of the doublet in a

linear shear field is described by Arp andMason (1977) and Jeffery (1922) as

du1

dt
¼ G

4

ðrDe Þ
2 � 1

ðrDe Þ
2
1 1

sin 2f1 sin 2u1;

df1

dt
¼ G

ðrDe Þ
2
1 1

½ðrDe Þ
2
cos

2
f1 1 sin

2
f1�: (3)

Here, rDe is the equivalent spheroidal axis ratio of the doublet, which is solely

a function of the particle geometry. rDe is numerically computed as discussed

in Appendix, section A2. The time-period T of doublet rotation is then

computed using TG=2p ¼ ½rDe 1 ðrDe Þ
�1�: Here, TG/2p is referred to as

dimensionless time-period.
Due to doublet rotation, the hydrodynamic force applied on the particle

varies with time. Combining Eqs. 2 and 3, it can be shown that the maximum

rates of normal and shear force loading are given by Eq. A13. The maximum

normal force loading rate occurs at u1¼ p/2 andf1¼ np, and the maximum

shear force loading rate occurs at u1 ¼ p/2 and a f1-value that is a function

of rDe :

Application of Stokes law to compute forces
felt by cell-surface receptors

A cell-surface receptor is modeled as a small sphere of radius a2 (sphere

2) attached to the larger cell of radius a1 (sphere 1) via a tether of length

d. The normalized distance of the center of sphere 2 from the surface of

sphere 1 is e ¼ (d 1 a2)/a1. If sphere 2 in the doublet is very small, then it

would be the dimensions of sphere 1 that primarily control the motion of

the doublet. Also, the disturbance to local fluid flow due to sphere 2 can

be neglected. For this case, Stokes law can be applied to compute the

force felt by a stationary sphere 2 placed in the velocity disturbance field

created by sphere 1. The steps involved for calculation of the velocity

disturbance field about sphere 1 in a linear shear field and the application

of Stokes law for force computations are discussed in Appendix, section

A3. It is shown here that for l� 1, e� 1 (small sphere 2 close to the

surface of sphere 1), the normal and shear forces applied on sphere 2 are

quantified by

Fn ¼ ð45=2ÞpmGa1a2 sin
2
u1 sin 2f1e

2
1Oðe3Þ;

Fs ¼ 15pmGa1a2½ðcos 2u2 cosf2Þ
2
1 ðcos u2 sinf2Þ

2�1=2

3 ðe� 2e2Þ1Oðe3Þ: (4)

The normal force is maximized at f1 ¼ (2n 1 1)p/4 and u1 ¼ p/2, where

it equals (45/2)pmGa1a2e
2. The shear force is maximized at f1 ¼ np/2 and

u1¼ p/2, where it takes the value 15pmGa1a2(e�2e2). It is noted that Eqs. 2
and 4 have similar forms with respect to their orientation dependence. A

methodology to include the disturbance velocity due to sphere 2 is also

briefly discussed in Appendix, section A3.

RESULTS

We evaluate the direction, magnitude, and loading rates of

hydrodynamic forces applied on cell doublets, cell-surface

receptors, and soluble proteins subjected to fluid shear under

physiologically relevant conditions. Cases listed in Table 1

are considered.

Time-variant forces applied on cell doublets
and biomolecules in linear shear flow

Fig. 2 depicts the periodic variation in normal (Fn) and shear

force (Fs) applied on a rigid dumbbell subjected to a linear

shear. Whereas Fn contributes to cycles of compressive

(Fn \ 0) and tensile (Fn [ 0) loading, Fs applies lateral/

tangential stresses. For these computations, the dimensions

TABLE 1 Radii and separation distances for biomolecules and cells

1. PMN-PMN

2. Platelet-

platelet

3. PMN-

platelet

4. PMN-

tumor cell

5. Platelet-

tumor cell

6. Platelet

receptor

7. PMN

receptor 8. vWF

a1* (mm) 3.75–7.5

(4.5)

1.0–2.0

(1.5)

3.75–7.5

(4.5)

6.0–10.0

(8.0)

6.0–10.0

(8.0)

1.0–2.0

(1.5)

3.75–7.5

(4.5)

0.013–0.026

(0.013)

a2* (mm) 3.75–7.5

(4.5)

1.0–2.0

(1.5)

1.0–2.0

(1.5)

3.75–7.5

(4.5)

1.0–2.0

(1.5)

0.002–0.005

(0.0035)

0.002–0.005

(0.0035)

0.013–0.026

(0.013)

dy (mm) 0.03–0.63

(0.63)

0.03–4.03

(4.03)

0.03–2.33

(2.33)

0.03–0.63

(0.63)

0.03–2.33

(2.33)

0.015–0.03

(0.03)

0.015–0.315

(0.315)

0.094–0.188

(0.094)

l 0.5–1.0 0.5–1.0 0.133–0.533 0.375–0.8 0.1–0.3333 0.001–0.005 0.0003–0.0013 0.5–1.0

d 0.004–0.168 0.015–4.03 0.004–0.621 0.003–0.105 0.003–0.388 0.0075–0.03 0.002–0.084 3.62–14.46

Table presents radius (a1, a2), separation distance (d), radius ratio (l ¼ a2/a1), and dimensionless separation distance (d ¼ d/a1) for biological species 1–8.
Values in parentheses denote typical radii and separation distances used in calculations for Figs. 2 and 5.

*Cell sizes are based on Ballard (1987) and Enderle et al. (2000). Tumor cell sizes vary depending upon tissue of origin. Lower limit of vWF globular domain

size corresponds to unimers (Fowler et al., 1985). The upper limit for vWF is a hypothetical value for multimeric vWF. Values for platelet and PMN receptor

dimensions are from Fox et al. (1988) and Ushiyama et al. (1993).
yA typical receptor length of 30 nm is employed in all cases (Becker et al., 1989; Fahrig et al., 1993; Fox et al., 1988; Patel et al., 1995; Ushiyama et al.,

1993). Cells are assumed to have a 15-nm glycocalyx (Patel et al., 1995; White, 1984), thus reducing the lower limit of receptor length (d) to 15 nm. It is

noted that glycocalyx height measurement is an active area of research, and various treatments may alter this height (van den Berg et al., 2003). The lower

limit of the separation distance between cells composing aggregates involving PMNs and platelets assumes that the receptor is located on the cell body. The

upper limit assumes that receptors and ligands are localized at the tip of 0.3-mm-long microvilli in the case of neutrophils (Erlandsen et al., 1993) and tumor

cells, and at the end of a 2-mm pseudopod in the case of activated platelets (White, 1984). The lower limit of separation for vWF is from Fowler et al. (1985).
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of the cells/molecules are based on the typical sizes and

separation distances provided in parentheses in Table 1. For

each particle, the dumbbell was set to rotate in the x2–x3 plane
(u1 ¼ p/2), starting with an initial orientation of f1 ¼ 0 at

t ¼ 0. Following this time, Eq. 3 was used to predict the

dumbbell orientation at any instant of time, and the applied

hydrodynamic force at that orientation was evaluated using

Eq. 2.

The results demonstrate that:

1. Fn is the dominant force applied on PMN-PMN doublets,

and it exceeds Fs by approximately threefold (Fig. 2 A).
Thus, the ability of receptor-ligand bonds to withstand

tensile loading is likely to determine the rate at which

these doublets form and break up under shear.

2. For platelet-tumor cell heterotypic doublets (Fig. 2 B),
the peak Fn and Fs are of comparable magnitudes. Since

the maximum force applied on platelet-tumor cell

aggregates is ; 33 lower than the forces on PMN-

PMN doublets, it may be expected that fewer bonds or

bonds with lesser strength would be sufficient to hold

these aggregates together.

3. For the case of platelet surface receptors (Fig. 2 C), in
sharp contrast to cell doublets, the peak Fs is ; 303

higher than Fn. Further, the magnitude of forces applied

are ; 1043 lower than that applied on cell-cell bonds.

4. The magnitude of force applied on soluble vWF

protomers (Fig. 2 D) is similar to that on platelet surface

receptors, although, in this case, the peak Fn exceeds the

peak Fs by ; 20-fold. Thus, fluid flow primarily exerts

extensional forces on vWF-like soluble molecules.

Although the magnitude of force applied on the particles

above varies by several orders of magnitude depending on

particle geometry, variations in particle rotation time-period

are less drastic. The rotation time-period of these objects

varied as: vWF (66 ms) [ PMN-PMN doublet (27 ms) [
platelet-tumor cell doublet (21 ms) � platelet surface

receptors (21 ms).

Overall, the results demonstrate that the geometry of the

dumbbell, quantified by the radius ratio (l ¼ a1/a2) and the

separation distance (d ¼ d/a1), dictate the magnitude and

direction of applied hydrodynamic forces and force loading

rates.

FIGURE 2 Hydrodynamic force applied on cell doublets, cell-surface

receptors, and soluble molecules. Cases considered are (A) PMN-PMN

doublets, (B) platelet-tumor doublets, (C) platelet surface receptors, and (D)

vWF-like soluble molecules. Dumbbells rotating in the x2–x3 plane (u1 ¼
p/2) were examined starting with the initial coordinate f1 ¼ 0 at t ¼ 0.

The shear rate was 600/s, fluid viscosity was 1 cP and other parameter val-

ues correspond to typical values in Table 1. The magnitude of normal

(continuous line) and shear forces (dashed line) are plotted as a function of

time. Cartoons (a–e) correspond to orientations of maximum shear (a, c, e),

tension (b), and compression (d) during doublet half-rotation. Points

corresponding to each of these orientations are labeled in the individual

panels.
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Magnitude of hydrodynamic force as a function
of particle geometry

One of our primary objectives is to provide figures/charts

that will allow the reader to rapidly and accurately evaluate

the magnitude of hydrodynamic force applied in any given

experiment. With regard to this goal, we computed the

normal (an) and shear force (as) coefficients for dumbbells

as a function of particle geometric parameters, d and l (Fig.

3, A and B). These figures provide force coefficient values for
cell doublets, receptors, and soluble molecules by solution of

the complete problem of two unequal interacting spheres

as discussed in Methods. When combined with Eq. 2,

knowledge of the coefficients readily yields the magnitude of

the hydrodynamic force. Our results indicate that below

a dimensionless separation distance d of 0.1, the force

coefficients are independent of separation distance provided

l[0.05. Cell doublets typically satisfy this criterion. In the

case of soluble proteins, however, d may be[0.1 (Table 1).

In this range, since normal forces increase and shear forces

decrease with increasing d, it may be expected that the

dominant forces on soluble molecules are extensional in

nature. In the case of cell-surface receptors, l is very small

(l\0.0013), and d varies from 0.002 to 0.1. Here, changing

molecular length (d) alters the magnitude of the hydro-

dynamic forces as shown in the next section.

On comparing Fig. 3, A and B, it is evident that, whereas
an-values vary over 3–4 orders of magnitude upon changing

l, changes in as are smaller. Also, it is evident that when l¼
1, i.e., for homotypic doublets and dimeric molecules,

normal forces dominate over shear forces. However, when l

\ 0.3, as is greater than an—reflecting the fact that shear

forces may dominate in the case of some heterotypic

doublets.

We employed the results of Fig. 3, A and B, to quantify the
bounds of shear and normal forces applied on the

physiologically relevant biomolecules and cell doublets

listed in Table 1 (Fig. 3 C). Here, regions below the y ¼ x
solid line correspond to instances where shear forces

dominate over normal forces. The inset in Fig. 3 C depicts

cases where the forces are small in magnitude. This cor-

responds to the cases of cell-surface receptors and soluble

molecules. For any given experiment, involving molecules/

cells in Table 1, estimates of the applied force may be

obtained by using this plot in conjunction with known media

viscosity and shear rate.

Analytical expression for force applied on
cell-surface receptors

As discussed in Methods, for the case of a cell-surface

receptor where l \\ 1, complete consideration of the

hydrodynamic interaction between the spheres may not be

necessary. To test this, we compared the maximum hydro-

dynamic force estimated from the complete numerical

FIGURE 3 Normal and shear forces. (A) Normal force coefficient (an)

and (B) shear force coefficient (as) were computed over a range of

dimensionless separation distances (d ¼ d/a1) and radius ratios l (¼ a2/a1).

(C) The regions indicate the outer bounds of the normal and shear forces

obtained for the following cases: 1, PMN-PMN (dark green); 2, platelet-

platelet (pink); 3, PMN-platelet (blue); 4, PMN-tumor cell (red); and 5,

platelet-tumor cell (orange). Regions in the inset indicate ranges of forces

for these cases: 6, platelet receptors (dark blue); 7, PMN receptors (brown);
and 8, soluble vWF molecule (lime). The limits on the forces were obtained

by using the range of particle radii and separation distances listed in Table 1

for the hydrodynamic computations, and connecting individual points with

lines. All force data are shown normalized by mG. Multiplying the values in

the chart with the viscosity (in Pa/s) and the shear rate (in s�1) yields the

applied force in pN. Bold black line corresponds to Fn/mG ¼ Fs/mG.

Biophysical Journal 86(1) 576–588
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computation (Eq. 2) with the analytical approximation (Eq. 4;

see also Fig. 4). Here, we simulated the case of platelet

membrane receptors where the globular portion of the cell-

surface molecule was varied from 2 to 100 nm, i.e., a2 was
varied for constant a1 and d. Our results indicate that the

analytical approximation (Eq. 4) and complete solution (Eq.

2) were within 10% of each other for l\0.004 (Fig. 4). Since

this condition is satisfied for many cell-surface receptors

(Table 1), Eq. 4 represents a simple analytical expression that

can be used to obtain estimates of the magnitude of

hydrodynamic shear force applied on cell-surface receptors.

Period of rotation and dynamic force loading rates

We examined the effect of particle geometry on the period of

rotation, inasmuch as the time-period, 1), controls force

loading rates on intercellular bonds and cell-surface re-

ceptors (Merkel et al., 1999) and 2), limits the time available

for unstressed bond formation in cell aggregation studies

(Shankaran and Neelamegham, 2001b). In Fig. 5 A, we show
that the dimensionless time-period (TG/2p) is not a strong

function of either l or d, for d\1. For d[1, the time-period

increases sharply with increasing separation distance for all

l. Also, as l ! 0, TG/2p tends to 2. Based on these

computations, we conclude that TG/2p can be set equal to 2

for all cases of cell-surface receptors in Table 1. Such an

approximation is, however, not valid for cell aggregates and

soluble molecules. Our results are in agreement with the

findings of Adler (1981), who showed that the period of

rotation of doublets of rigid spheres is largely insensitive to

the separation distance.

FIGURE 4 Force applied on cell-surface receptors. Analytical approxi-

mation of the force on a receptor obtained by neglecting the disturbance

velocity due to the smaller sphere (dashed line) was compared with the

complete numerical computation that accounted for the hydrodynamic

interaction between the two spheres (continuous line). Shear force is

depicted using bold lines, whereas normal force is shown using lines of

normal weight. Calculations were performed for a1 ¼ 1.5 mm, d ¼ 30 nm,

and a2 ranging from 2 to 100 nm. Force predictions by both methods are

within 10% of each other for a2\6 nm. At a2 ¼ 100 nm, shear and normal

force are underpredicted by 30 and 50%, respectively, when the analytical

approximation is applied.

FIGURE 5 Period of rotation and dynamic force loading rates. (A) Chart

for the evaluation of dimensionless period of rotation (TG/2p) for a range of

d- and l-values. The chart in A along with dimension data in Table 1 were

used to compute the dimensional time-period (B) and maximum force

loading rates (C) over a range of shear rates for cases 1–8. As an example of

how to read these charts, from B we see that at a shear rate of 100/s PMN-

homotypic aggregates (Number 1) rotate with a period of 159 ms. In B, time-

periods are comparable for all objects except vWF-like molecules.

Maximum force loading rate (C) is normal in nature for 1–4, 8 (most cell

aggregates and soluble molecules), and shear for 5–7 (cell-surface receptors

and highly asymmetric heterotypic aggregates). Parameters correspond to

typical cases in Table 1 with media viscosity of 1 cP. 1, PMN doublet; 2,

platelet doublet; 3, PMN-platelet; 4, PMN-tumor cell; 5, platelet-tumor cell;

6, platelet receptor; 7, PMN receptor; and 8, vWF-like molecule.
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The data in Fig. 5 A, similar to Fig. 3, A and B, represents
a chart that the reader can use to estimate the period of rotation

for any given dumbbell. When applied to the cases listed in

Table 1 over a range of shear rates (Fig. 5B), we observed that
whereas the periods of rotation are of similar magnitude for

cell-surface receptors and doublets, the rotation rate of vWF-

like soluble molecules is considerably slower.

In Fig. 5 C, we computed the maximum force loading rate

for the cases shown in Table 1. As seen, the loading rate for

cell-surface receptors and soluble vWF is low. Cell aggre-

gates involving platelets experience moderate loading rates.

Intercellular bonds mediating PMN-PMN and PMN-Tumor

cell doublets experience the highest force loading rates.

DISCUSSION

Hydrodynamic forces and force loading rates were computed

for particle geometries relevant to cell adhesion, cell-surface

receptors, and soluble molecules in suspension. Our com-

putation of hydrodynamic forces follows from the complete

solution of the problem of a doublet of (un)equal spheres in

Stokes flow. It is distinct from first-order treatments of

hydrodynamic interaction such as the Oseen and the Rotne-

Prager-Yamakawa tensor, which are normally employed in

polymer literature (Bird et al., 1987). Whereas the ap-

proximation of a first-order dumbbell is reasonable for large

separation distances, our methodology allows the accurate

computation of forces over the entire range of separation

distances that are relevant to the aforementioned biological

objects.

Geometric features regulating biological function:
adhesion molecule requirement for cell binding
is likely to be a function of cell size

The effect of key geometric parameters was examined. We

observed that for l[0.3, normal/axial forces (Fn) are higher

than shear/lateral forces (Fs). Shear forces dominate when

l\ 0.3. Thus, in the case of cell doublets, although normal

forces control the rate of homotypic aggregation, shear

forces may be important for heterotypic cellular aggregation.

Due to this geometric effect, the magnitude of shear force,

rather than normal force, is also likely to be critical in

mediating conformational changes in cell-surface receptors

and triggering cellular mechanotransduction.

For a fixed a1, the magnitude of force applied is a function

of the size of the smaller particle with radius a2. Thus, upon
comparison of L-selectin-mediated homotypic PMN aggre-

gation with P-selectin-mediated PMN-platelet aggregation,

we expect that the number and/or strength of bonds required

to hold PMNs and the smaller platelets together will be less

than that required for PMN-homotypic binding. In agree-

ment with this, although we have reported that L-selectin by

itself, in the absence of b2-integrin function, cannot mediate

stable PMN homotypic aggregation (Taylor et al., 1996),

P-selectin expressed at high levels, even in the absence

of integrins, can mediate stable PMN-platelet aggregation

(unpublished results). Thus, we suggest that the adhesion

molecule requirements for cell binding are a strong function

of particle size.

Testable hypothesis: longer molecules are more
efficient mechanotransducers

In the parameter space l[ 0.05 and d\ 0.1, the forces and

force loading rates are not strong functions of the separation

length d. Most cellular aggregates fall in this regime (Table

1). However, when l \ 0.01 or d [ 1, as in the case of

cell-surface receptors and soluble molecules, the effect of

separation distance on the applied force becomes pro-

nounced. Based on this, we predict that if a biomolecule

acts as a force transducer, increasing its molecular length

using genetic engineering techniques should decrease the

minimum shear stress required to trigger functional changes.

In thrombosis literature, this prediction is supported by

observations that ultralarge von Willebrand factor multimers

rather than the smaller protomer units contribute more readily

to shear-induced platelet activation (Kroll et al., 1996).

Brownian versus convective motion

It is relevant to compare the relative roles of Brownianmotion

and convective flow on our force and trajectory calculations.

With regard to soluble molecules like vWF, although

Brownian motion does not alter our normal force estimates,

it prevents us from accurately determining the force loading

rates. This conclusion is based on the computation of the

dumbbell rotary diffusivity, Dr (Brenner, 1974). Mathemat-

ically, Dr ¼ kT/(6Vpm
rK?), where k is the Boltzmann

constant, T is the temperature, Vp is the volume of the

dumbbell, and rK? is the dimensionless friction coefficient

for asymmetric doublet rotation. For equal-sized touching

spheres, rK? ¼ 1.87002, which yields the expression Dr ¼
kT/29.92pm a3

1: For vWF protomers/unimers, we estimate

using our grand and shear resistance matrices that rK? ¼
18.404 (calculations not shown), and thus Dr ¼ kT/
294.46pm a3

1: At 600/s the Peclet number (Per ¼ G/Dr)

(Brenner, 1974) for the vWF protomer is 0.285. Similarly, if

we consider dimeric vWF to resemble a dumbbell with

length twice that of a protomer but with similar-sized head-

domains, Per is 0.840. For large separations, rK? varies in

proportion to the square of the dimensionless separation

distance, as rK? ¼ 3/16(2 1 d)2. Given the magnitudes of

these Peclet numbers, the motion of these biopolymers is

governed not only by convection, which imposes Jeffery

orbits, but also thermal motion, which randomizes dumbbell

orientation. Thus, it is noted that: 1), Brownian motion does

not alter the extensional forces applied on the biopolymer at
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a given orientation. These forces can still be evaluated using

Eq. 2 and Fig. 3. 2), Due to the Brownian contribution to the

doublet trajectory, our calculations provide only approxi-

mate force loading rates. To determine exact force loading

rates on soluble biomolecules, Brownian dynamics simu-

lations (Ottinger, 1996) will have to be performed.

With respect to cell-surface receptors, we propose that

hydrodynamic forces are applied on a timescale that is larger

than that of random thermal forces. This is based on

a comparison of the timescales at which Brownian motion

affects receptor configuration to the timescale of cell rotation.

The latter controls the force loading rates due to convective

flow. In this case, we note that the rotary Brownian motion of

the dumbbell is negligible due to the large size of the cell (a1
and Per are large in the above calculation). Translational

Brownian motion is relevant and it applies a force in

a preferred direction over timescales t of ;M/z, where

Mð¼ ð4=3Þpa3
2r) is the mass of the globular head and

zð¼ 6pma2) is its friction coefficient. Assuming a2 ¼ 1 nm,

r¼ 1 g/cc, and m¼ 1 cP, we obtain t ; 1 ps for cell-surface

receptors. This is considerably smaller than the millisecond

timescale over which convective forces are applied (period of

rotation T ¼ 4p/G). Our proposition that convective effects

are distinct from Brownian motion is partially validated by

phenomena such as shear-induced platelet activation (Shan-

karan et al., 2003), where the magnitude of convective shear

rate determines biological function.

Finally, Brownian motion does not affect the forces,

periods of rotation, or force loading rates for cell aggregates

due to the large size and Peclet number for these objects.

Subpiconewton forces may be sufficient to cause
changes in GpIb and/or vWF function

The article generalizes biological objects of various

dimensions to doublets of rigid unequal-sized spheres.

Although this simplification may be valid for cell doublets,

in the case of cell-surface receptors subtle changes in the

protein structure within the globular portion (sphere 2) of the

receptor may occur, and this may have functional con-

sequences. In these cases, the value of a2 employed should

correspond to the flexible force-susceptible portion of the

receptor that is most likely to yield to an applied hydro-

dynamic force rather than the entire globular head of the

receptor. As an example, in support of the possibility that

fluid shear induces structural changes in GpIb, a recent

article has suggested that the globular functional domain of

GpIb has a handlike structure with a thumblike regulatory

portion shielding the GpIb binding site for vWF (Uff et al.,

2002). Upon application of hydrodynamic forces, it is sug-

gested that the thumb may move, thereby unmasking the

vWF binding site and allowing receptor recognition. For this

scenario, our calculations estimate that the dominant force

applied on the thumblike regulatory portion of 2-nm size

(i.e., a2 ¼ 2 nm rather than 5 nm for the entire GpIb globular

region) is a shear force (Fs) of magnitude ; (1.53 10�3)mG
pN. Thus, only ; 0.01 pN would be applied on this portion

of the molecule in whole blood at a shear rate of 2000/s. It

will be interesting to determine using molecular simulations

and/or single-molecule experiments if such small forces are

sufficient to cause changes in the GpIb internal structure. In

another example, we have shown that platelet activation

takes place via a two-step process where the binding of vWF

to GpIb is separable from subsequent platelet activation

(Shankaran et al., 2003). A possible mechanism involves the

shear-induced binding of vWF to GpIb in the first step. The

formation of the vWF-GpIb complex enlarges the apparent

globular head (sphere 2) of GpIb, and allows the application

of higher forces on this receptor in the second step. This

facilitates platelet activation. Overall, although we approx-

imate biological objects to dumbbells of rigid unequal

spheres, appropriate definition of the rigid spheres involved

in the interaction would enable the user to compute the

hydrodynamic force of interest.

Charts to evaluate forces and force loading rates

Besides vascular biology and biophysics, the methodology

developed here may find broader application in other

biological and nonbiological areas. For this reason, we

provide Fig. 3, A and B, and Fig. 5 A, so that experimenters in

other disciplines may use these charts to determine force

coefficients and rotation time-periods for particles of their

interest. These force coefficients can be applied in Eq. 2 to

determine the hydrodynamic forces in other systems. Eqs. 2

and 3 can also be combined to model dynamic phenomena

like the extension of cell-surface microvilli during cell-

doublet rotation and the molecular unfolding of proteins and

other polymers upon application of shear.

Overall, it is felt that the current model will allow better

design of single molecule studies and in vitro experiments

that aim to determine force-sensitive structure-function

relationships that are physiologically relevant. The results

presented here thus provide a starting point using funda-

mental fluid mechanics theory to approach the complex issue

of how hydrodynamic forces regulate biomolecule function.

APPENDIX

A1. Computing hydrodynamic forces applied on
a pair of unequal interacting spheres

We compute the hydrodynamic force applied on a pair of interacting

neutrally-buoyant unequal-sized spheres subjected to a linear shear field.

Based on existing knowledge of the nature of interaction between

aggregating cells in suspension (Tees et al., 1993), we model this doublet

as two spheres of radii a1 and a2 linked by a rigid tether of length d. (Fig. 1).

This figure depicts two coordinate systems with a common origin located at

O, the midpoint of the line joining the centers of the spheres. These

coordinate systems are: 1), the space-fixed coordinate system which is

depicted by xi. Here, x3 lies in the direction of fluid flow, x2 is the direction of
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the velocity gradient, and x1 is the vorticity axis. i1, i2, and i3 are the unit

vectors in space-fixed coordinates. The flow considered is a linear shear flow

(u3 ¼ Gx2, u1 ¼ u2 ¼ 0) with shear rate G in /s. 2), The particle-fixed

coordinate system is depicted by Xi where X3 points from O to the center of

larger sphere (sphere 1), X2 is set to lie in the x1–x3 plane, and X1 is

orthogonal to X2 and X3. e1, e2, and e3 are unit vectors in particle-fixed

coordinates. u1 and f1 (Fig. 1) are polar and azimuthal angles with respect to

axis x1. u2 and f2 are the polar and azimuthal angles with respect to axis x2.
The transformation between space-fixed and particle-fixed coordinates is

then given by

i1
i2
i3

0
@

1
A¼

cosu2 sinf2 cosf2 sinu2 sinf2

�sinu2 0 cosu2

cosu2 cosf2 �sinf2 sinu2 cosf2

0
@

1
A3

e1

e2

e3

0
@

1
A:

(A1)

In this scheme, the velocity gradient tensor Gs for linear shear flow is

expressed in space-fixed coordinates as

Gs ¼
0 0 0

0 0 G
0 0 0

0
@

1
A: (A2)

The magnitude and nature of hydrodynamic forces acting on the spheres

composing the doublet can be estimated using Eq. A3 (Brenner and O’Neill,

1972). This is a general expression that is independent of the coordinate

system employed and the flow field applied:

F ¼�mðRU1FEÞ: (A3)

Here, F is the 1 3 12 force-torque vector, R is the 12 3 12 grand

resistance matrix, U is the 1 3 12 relative velocity-spin vector, F is the

12 3 12 shear resistance matrix, and E is a 1 3 12 vector derived from the

rate-of-strain tensor as described later. In this equation, the resistance

functions R and F relate the hydrodynamic forces and torques (F ) to the

particle and fluid velocities (U and E). The following sections describe the

mathematical evaluation of each of the terms in Eq. A3 for the case of

unequal interacting spheres. For convenience, in the current article, the

individual terms of this expression are expressed in particle-fixed

coordinates.

The approach suggested by Jeffrey and colleagues (Jeffrey, 1992; Jeffrey

and Onishi, 1984) is employed for the computation of the resistance matrices

R and F for interacting unequal spheres. According to these authors, the

forces and torques felt by a pair of interacting spheres placed in creeping

flow can be expressed according to the formula

In Eq. A4, F1 and T1 are the vectors that describe the forces and torques

applied on sphere 1 along the three orthogonal axes of the particle-fixed

coordinates. Similarly, U1 andV1 quantify the velocity and angular velocity

of sphere 1. uf1 is the undisturbed fluid velocity at the center of sphere 1. The

subscript 2 in all the aforementioned quantities refers to the quantities being

evaluated for sphere 2. m andvf are the viscosity and angular velocity of the

fluid. The quantities A, B, ~BB; C, ~GG; and ~HH constitute flow-independent

resistance tensors: A, B, ~BB; and C are second-rank tensors (3 3 3) which

combine to give the grand resistancematrix,R; ~GG and ~HH are third-rank tensors

(3 3 3 3 3); and Ef is the second-rank (3 3 3) rate-of-strain tensor. Taking

advantage of the symmetry properties of Ef, the third-rank tensors ~GG and ~HH

can be expressed as 33 6 tensors using the scheme suggested in Brenner and

O’Neill (1972). Consequently, the term involving ~GG and ~HH reduces to the 12

3 12 shear resistance matrixF, and Ef is replaced by the 13 6 vector S: The
terms in Eq. A4 then exactlymap to those in Eq. A3.Whenwritten in the form

of Eq. A4, R and F can be evaluated using expressions provided in Jeffrey

(1992) and Jeffrey and Onishi (1984) as discussed below.

Evaluation of grand and shear resistance matrices

Both the grand (R) and shear (F) resistance matrices expressed in particle-

fixed coordinates are related to 16 independent scalar functions, the XK
ij

and YK
ij terms in Eqs. A5 and A6 (Jeffrey, 1992; Jeffrey and Onishi,

1984).

F1

F2

T1

T2

0
BB@

1
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F
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These scalar resistance functions can be readily computed for any given

doublet based on their geometric parameters: the size of the larger sphere

(a1), the ratio of the spheres radii (l ¼ a2/a1), and the dimensionless center-

to-center distance, s (¼ 2(a2 1 a1 1 d)/(a2 1 a1)) (see Eqs. 3.20, 3.21, 4.19,
4.20, 5.9, 5.10, 6.12, 6.13, 7.14, and 7.15 in Jeffrey and Onishi, 1984, and

Eqs. 20, 28, and 36 in Jeffrey, 1992). It is evident that the relationship

between s and the dimensionless separation distance d(¼ d/a1) defined in

Methods is given by s ¼ 21 2d/(11 l). Here the terms XK
ij and YK

ij represent

dimensional quantities that are obtained from the corresponding dimension-

less resistance functions using Eq. 1.7 in Jeffrey and Onishi (1984) and Eq. 3

in Jeffrey (1992). The terms XK
ij ðl�1Þ and YK

ij ðl�1Þ refer to the evaluation of
these functions at the specified s-value, using the reciprocal of the l-value.

Each of the 16 scalar coefficients is written in the form of a convergent series

in powers of (1/s)m where m ¼ 1,2,3, . . . . For results presented in the current

article, these series were summed to m ¼ 100. The coefficients thus

determined were compared with the tables provided in Jeffrey (1992) and

Jeffrey and Onishi (1984). For l $ 0.01, the coefficients XA
ij ; YA

ij ; and YB
ij

were within 0.5% of the tabulated values, whereas the rest of the coefficients

were accurate to within 7%. In addition, the coefficients computed here were

found to be within 3% of the tabulated values in Arp and Mason (1977) for

equal-sized spheres with 0.0002 # d # 18.

Expressions for strain and relative velocity-spin vector

In Eq. A4 the strain vector E and relative velocity-spin vector U are

expressed in the particle-fixed coordinate system. E is made up of the

elements of the fluid rate-of-strain tensor. To compute E;we first employ Eq.

A1 to transform the velocity gradient tensorGs from space-fixed coordinates

to obtain the tensor G expressed in particle-fixed coordinates (Shankaran

and Neelamegham, 2001a). This tensor is then split into the symmetric rate-

of-strain tensor S ¼ 1/2 (G 1 GT) and the vorticity tensor L ¼ 1/2 (G �
GT). The 13 12 E vector is then expressed in terms of the components of S:

E ¼�

S11

S22

S33

S23

S13

S12

S11

S22

S33

S23

S13

S12

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: (A7)

The relative velocity-spin vector U requires knowledge of two vectors for

each of the particles, namely: 1), the vector describing the relative velocity

between each of the spheres and the undisturbed fluid velocity at the sphere

center (U � uf) and 2), the vector quantifying the relative angular velocity

between the sphere and the fluid (V � vf). Among these parameters, the

fluid angular velocity is written as vf ¼ �1/2 e: L where e is the unit

isotropic alternating triadic. Also, for a rigid dumbbell, V1 ¼ V2 ¼ VD, the

angular velocity of the dumbbell.

Evaluation of U, uf, and V
D requires an understanding of doublet motion

in a linear shear field. 1),Wedefine the center of free rotationCR of the doublet

to lie at a distance a1§ from the origin O and along the doublet axis. For the

case of equal spheres, CR coincides with O, i.e., § ¼ 0. As l ! 0, sphere 2

rotates about the center of sphere 1, i.e., §! (11 l1 d)/2. If the linear fluid

shear is expressed with respect to an origin placed at CR, the position vectors

of the centers of spheres 1 and 2with respect toCR are expressed as r1¼ (0, 0,

r/2–a1§) and r2¼ (0, 0,�r/2–a1§), where r is the distance between the centers

of spheres 1 and 2. The following results are then obtained: 1), the fluid

velocity at the centers of spheres 1 and 2 is expressed as uf1 ¼ r1 � G and

uf2¼ r2 � G and 2), the motion of the doublet composed of unequal spheres is

described as the sum of a rigid-body rotation about CR with an angular

velocity VD, and a drift velocity along the center-to-center line a1bS33 (Nir

and Acrivos, 1973). Here, b is the axial drift velocity parameter. Both for

the case of equal spheres and for l ! 0, CR is fixed in space with respect

to a coordinate system moving with the fluid. Thus, the drift velocity in

both cases is 0, i.e., b ¼ 0. Also, the angular velocity of any solid body of

revolution can be expressed in terms of the fluid rate-of-strain tensor and

the fluid angular velocity vector as VD ¼ ðnDS23 1v
ð1Þ
D ;�nDS13 1v

ð2Þ
f ;

v
ð3Þ
f Þ (Bretherton, 1962), where nD is the angular velocity coefficient of

the rigid dumbbell. Combining the above, the particle velocities are

expressed as U1 ¼ ½ðr=2� a1§ÞVð2Þ
D ;�ðr=2 �a1§ÞVð1Þ

D ; a1bS33] and

U2 ¼ ½ð�r=2� a1§ÞVð2Þ
D ;�ð�r=2� a1§ÞVð1Þ

D ; a1bS33], where the super-

scripts (1) and (2) indicate the components of a vector along the particle-fixed

axes X1 and X2, respectively. Overall, the 13 12 U vector can be written as

U ¼

ð�nDS131v
ð2Þ
f Þðr=2�a1§Þ�u

ð1Þ
f1

�ðnDS231v
ð1Þ
f Þðr=2�a1§Þ�u

ð2Þ
f1
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ð3Þ
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�ð�nDS131v
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f Þðr=21a1§Þ�u
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Computation of force-torque vector

Substituting Eqs. A5–A8 into Eq. A3 results in expression of the various

components of the forces and torques on the two spheres in terms of three

unknown parameters: 1), the parameter §, which describes the location of CR

with respect to O; 2), the angular velocity coefficient, nD; and 3), the axial

drift velocity parameter, b. These unknowns are determined by applying the

condition of zero net force and torque on the dumbbell as detailed below.

F
ð1Þ
1 1F

ð1Þ
2 ¼ 0; (A9a)

ðr=2�a1§ÞFð1Þ
1 1ð�r=2�a1§ÞFð1Þ

2 1T
ð2Þ
1 1T

ð2Þ
2 ¼ 0; (A9b)

F
ð3Þ
1 1F

ð3Þ
2 ¼ 0: (A9c)

Here, Eqs. A9a and A9c are statements of the fact that the net force along X1

and X3 are zero, whereas Eq. A9b sets the torque about CR in the direction of

X2 to equal zero. Solution of Eqs. A9a and A9b together yield values of nD
and §, whereas Eq. A9c yields b. All three parameters are solely functions of

l and s. Values of nD, §, and b computed here in the limit s ! 2 compared

well with values tabulated in Nir and Acrivos (1973) for the case of touching

spheres. Also, the nD-values were found to match results provided in Arp

and Mason (1977) for equal-sized spheres.

Once nD, §, and b are obtained by solution of Eq. A9, these parameters

are substituted back into Eq. A3 to obtain the values of hydrodynamic force

and torques applied on the individual spheres for a given doublet orientation.

To remain consistent with the notation of Tha and Goldsmith (1986), we

express the solution of hydrodynamic forces applied on the spheres in the

following form,

F
ð1Þ
1 ¼F

ð1Þ
2 ¼ a

ð1Þ
mGa

2

1 cos2u2 cosf2; (A10a)

F
ð2Þ
1 ¼F

ð2Þ
2 ¼ a

ð1Þ
mGa

2

1 cosu2 sinf2; (A10b)

F
ð3Þ
1 ¼ F

ð3Þ
2 ¼a

ð3Þ
mGa

2

1 sin
2
u1 sin2f1: (A10c)

In the above equations a(i) are the force coefficients that are functions solely

of the dumbbell geometry. Note that the force coefficients for F
ð1Þ
i and F

ð2Þ
i

are equal. From the definition of the coordinate system, it is clear that the

normal force (Fn) acts along the line joining the centers of the two spheres,

and is given by F
ð3Þ
1 (Eq. A11). The shear force (Fs) acts perpendicular to this

direction and is expressed by the vector sum of F
ð1Þ
1 and F

ð2Þ
1 (Eq. A12),

Fn ¼ F
ð3Þ
1 ¼anmGa

2

1 sin
2
u1sin2f1; (A11)

Fs ¼ ½fF
ð1Þ
1 g2

1fF
ð2Þ
1 g2�1=2

¼ asmGa
2

1½ðcos2u2 cosf2Þ
2
1ðcosu2sinf2Þ

2�1=2: (A12)

In the above expression, the coefficients an and as are solely functions of

dumbbell geometric parameters, s and l. an is termed normal force

coefficient and as is called the shear force coefficient. The a21 term suggests

that forces scale as a square of the particle size. The additional parameters in

the equation capture the effects of shear rate, fluid viscosity, and doublet

orientation on the applied normal and shear force. Values of hydrodynamic

force coefficients computed in the limit s ! 2 compared well with results

presented in Nir and Acrivos (1973) for the case of touching spheres.

A2. Computation of period of rotation and
dynamic force loading rate

The rotation of a rigid dumbbell about CR in a linear shear field is described

by Eq. 3 in the manuscript text. In this equation, rDe is the equivalent

spheroidal axis ratio of the rigid dumbbell, which is given by

rDe ¼ fð1� nDÞ=ð11 nDÞg1=2: rDe can be evaluated based on knowledge

of nD which we computed in Appendix, section A1, above. The rDe values

computed here were in agreement with those tabulated in Adler (1981) for

unequal spheres.

The dynamic force loading rate can be written as dF/dt ¼ (@F/@f1)(df1/

dt) 1 (@F/@u1)(du1/dt). It can be shown that both the maximum shear and

normal force loading rates occur in the equatorial x2–x3 plane where u1¼p/2

and du1/dt ¼ 0. Combining Eqs. 3, A11, and A12, it can be shown that for

a dumbbell rotating in the equatorial plane the force loading rates are given by

dFn

dt
¼ 2anmG

2
a
2

1

ðrDe Þ
2
11

cos2f1½ðr
D

e Þ
2
cos

2
f11sin

2
f1�; (A13a)

dFs

dt
¼�2asmG

2
a
2

1

ðrDe Þ
2
11

sin2f1½ðr
D

e Þ
2
cos

2
f11sin

2
f1�: (A13b)

Analysis of Eqs. A13a and A13b reveals that the maximum normal and shear

force loading rates can be written as

ðdFn=dtÞjmax ¼ 2anmG
2
a
2

1fðr
D

e Þ
2
=f11ðrDe Þ

2g;

ðdFs=dtÞjmax ¼ kðrDe Þ2anmG
2
a
2

1;

where

kðrDe Þ ¼�3ðrDe Þ
2
131x

4½ðrDe Þ
2
11�

sinð2fmax

1 Þ;

f
max

1 ¼�tan
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðrDe Þ

2�3�x

3ðrDe Þ
2�51x

s !
and

x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðrDe Þ

4�14ðrDe Þ
2
19

q
: (A13c)

The maximum normal force loading rate is obtained when f1 ¼ np, and the

maximum shear force loading rate is obtained when f1 ¼ fmax
1 : Thus, the

orientation at which the maximum shear force loading rate occurs is

a function of rDe : In Eq. A13c, k(r
D
e ) is a prefactor that varies from a value of

1 at rDe ¼ 1 to an asymptotic value of (3/4)�3 as ! ‘.

A3. Application of Stokes law to calculate force
applied on doublet when sphere 2 is much
smaller than sphere 1

Detailedmodeling of doublet kinematics (Appendix, sectionA1) results in an

exact estimation of the magnitude of forces applied on the molecules. In

addition,wedemonstrate here that for a sufficiently small sphere 2, Stokes law

can be applied to derive simple, albeit approximate, analytical expressions.

For this analysis, we consider the fact that a linear shear field constitutes

the sum of two components: a purely rotational flow and an extensional flow.

Whereas the rotational flow induces the tumbling motion of the cell/sphere/

doublet, the extensional flow exerts both normal and shear forces on cell-

surface molecules. Evaluation of the local flow in the vicinity of the larger

sphere with radius a1 yields information that can be applied with Stokes law

to estimate hydrodynamic forces.

For this analysis we first consider the disturbance in the local flow due to

the presence of a sphere of radius a1 under purely extensional flow. In this

case, the velocity at a distance r from the surface of a sphere of radius a1 can

be expressed along the x1, x2, and x3 axes of the space-fixed coordinate

system as in Batchelor (1967),

u
ð1Þ ¼ 2r

3
QðrÞsin2

u1 cosu1 sinf1 cosf1G=2; (A14a)
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u
ð2Þ ¼ ðr sinu1 sinf1MðrÞ12r

3
QðrÞsin3

u1

3cos
2
f1 sinf1ÞG=2; (A14b)

u
ð3Þ ¼ ðr sinu1 cosf1MðrÞ12r

3
QðrÞsin3

u1

3sin
2
f1 cosf1ÞG=2; (A14c)

where M(r) ¼ 1 � a51/r
5 and Q(r) ¼ 5/2 (� a31=r5 1 a51=r7Þ: The above

expression is valid for a1\r\‘. We now wish to express the fluid velocity

in spherical polar coordinates (r, u1, and f1), inasmuch as knowledge of

fluid velocity in the r-direction can be readily used to evaluate normal forces,

whereas the fluid velocity in the u1 and f1 are required for calculation of

shear forces. Upon transformation of Eq. A14 into spherical coordinates,

fluid velocity in the r, u, and f directions can be expressed as

ur ¼ u
ð1Þ
cosu11u

ð2Þ
sinu1 cosf11u

ð3Þ
sinu1 sinf1; (A15a)

uu ¼ u
ð1Þ
sinu11u

ð2Þ
cosu1 cosf11u

ð3Þ
cosu1 sinf1; (A15b)

uf ¼ u
ð2Þ
sinf11u

ð3Þ
cosf1: (A15c)

We now model a cell-surface receptor bound to sphere 1 as a smaller sphere

of radius a2 attached via a thin tether of length d such that a1e¼ a2 1 d. The

center-to-center distance between spheres 1 and 2 thus equals r ¼ a1(11 e).
Substituting expressions for M(r) and Q(r) into Eq. A15 above, and applying

Taylor series expansions (1 1 e)�2 ; 1 � 2e 1 3e2 1 O(e3) and (1 1 e)�4

; 1 � 4e 1 10e21O(e3) for small e, we get

ur;15=4Ga1 sin
2
u1 sin2f1e

2
; (A16a)

uu;5=4Ga1 sin2u1 sin2f1ðe�2e2Þ; (A16b)

uf;5=2Ga1 sinu1 cos2f1ðe�2e2Þ: (A16c)

Given the knowledge of ur, uu, and uf, upon application of Stokes law we

can now estimate the force applied on this smaller sphere in the radial and

tangential directions, i.e., Fr ¼ 6pma2 ur, Fu ¼ 6pma2 uu, and Ff ¼ 6pma2
uf. It is clear that the normal force Fn applied on the sphere equals Fr,

whereas Fs ¼ (F2
u 1F2

f)
1/2. This yields the following expressions for normal

and shear force,

Fn ¼ ð45=2ÞpmGa1a2 sin
2
u1 sin2f1e

2
1Oðe3Þ; (A17a)

Fs ¼ 15pmGa1a2½sin2
u1ðcos2 u1 sin

2
2f11cos

2
2f1�

1=2

3ðe�2e2Þ1Oðe3Þ: (A17b)

Using the trigonometric relations, sinu1sinf1¼ sin u2 cosf2, sin u1 cosf1¼
cos u2, and cos u1 ¼ sinu2sinf2 (Arp and Mason, 1977), A17 reduces to

Eq. 4 in Methods.

The analysis in this section thus far has neglected the disturbance/fluid

velocity due to the presence of a finite-sized second sphere 2. When a2 �
a1, the current problem approaches that of a sphere near an infinite plane

wall, which to order e, is subjected to a linear shear flow with an orientation-

dependent shear rate G* ¼ 5/2G [sin2 u1(cos
2 u1 sin2 2f1 1 cos2 2f1)]

1/2

(Eq. A16). Hydrodynamic forces that account for the disturbance velocity

due to sphere 2 in such a scenario have been previously computed (Goldman

et al., 1967). For the dimensions encountered in problems involving cell-

surface receptors where the tether length d is sufficiently large compared to

the globular domain size a2 (see Table 1), use of an asymptotic correction

factor 1 1 (9/16)[a2/(d 1 a2)] (Goldman et al., 1967) in the Stokes law

equation yields a force value within 3% of that computed in Appendix,

section A1 (results not shown).
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