
Biophysical Journal Volume 86 January 2004 85–91 85

Small-World Communication of Residues and Significance for
Protein Dynamics

Ali Rana Atilgan,* Pelin Akan,y and Canan Baysaly

*School of Engineering, Bogazici University, Bebek 34342, Istanbul, Turkey; and yLaboratory of Computational Biology,
Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli 34956, Tuzla, Istanbul, Turkey

ABSTRACT It is not merely the position of residues that is critically important for a protein’s function and stability, but also their
interactions. We illustrate, by using a network construction on a set of 595 nonhomologous proteins, that regular packing is
preserved in short-range interactions, but short average path lengths are achieved through some long-range contacts. Thus,
lying between the two extremes of regularity and randomness, residues in folded proteins are distributed according to a ‘‘small-
world’’ topology. Using this topology, we show that the core residues have the same local packing arrangements irrespective of
protein size. Furthermore, we find that the average shortest path lengths are highly correlated with residue fluctuations,
providing a link between the spatial arrangement of the residues and protein dynamics.

INTRODUCTION

Proteins are tolerant to mutations with their liquid-like free

volume distributions (Baase et al., 1999); however, the

average packing density in a protein is comparable to that

inside crystalline solids (Tsai et al., 2000). It has been shown

that the interiors of proteins are more like randomly packed

spheres near their percolation threshold and that larger

proteins are packed more loosely than smaller proteins

(Liang and Dill, 2001).

At physiological temperatures, the conformational flex-

ibility is essential for biological activity that requires

a concerted action of residues located at different regions

of the protein (Baysal and Atilgan, 2002; Zaccai, 2000).

This cooperation requires an infrastructure that permits

a plethora of fast communication protocols. Highly

transitive local packing arrangements, giving rise to regular

packing geometries (Raghunathan and Jernigan, 1997)

cannot provide such short distances between highly sep-

arated residues for fast information sharing. On average,

random packing of hard spheres similar to soft condensed

matter is obtained for a set of representative proteins

(Soyer et al., 2000). This architecture is capable of

organizing short average path lengths between any two

nodes in a structure, but it cannot warrant a high clustering

similar to regular packing.

A network is referred to as a small-world network (SWN)

if the average shortest path between any two vertices scales

logarithmically with the total number of vertices, provided

that a high local clustering is observed (Watts and Strogatz,

1998). The former property of short paths is responsible for

the name ‘‘small world.’’ Neither regular configurations nor

random orientations seem to exhibit these two intrinsic

properties that are common in real-world complex networks

(Newman, 2000; Strogatz, 2001). Proteins function effi-

ciently, accurately, and rapidly in the crowded environment

of the cell; to this end, they should be effective information

transmitters by design. With their ordered secondary

structural units made up of a-helices and b-sheets on the

one hand, and their seemingly unstructured loops on the

other, proteins may well have the SWN organization

(Vendruscolo et al., 2002).

In this study, we treat proteins as networks of interacting

amino acid pairs (Atilgan et al., 2001; Bahar et al., 1997;

Yilmaz and Atilgan, 2000). We term these networks as

‘‘residue networks’’ to distinguish them from ‘‘protein

networks,’’ which are used to describe systems of interacting

proteins (Jeong et al., 2001). We carry out a statistical

analysis to show that proteins may be treated within the

SWN topology. We analyze the local and global properties

of these networks with their spatial location in the three-

dimensional structure of the protein. We also show that the

shortest path lengths in the residue networks and residue

fluctuations are highly correlated.

METHODS

Spatial residue networks

We utilize 595 proteins with sequence homology \25% (Fariselli and

Casadio, 1999). We form spatial residue networks from each of these

proteins using their Cartesian coordinates reported in the protein data

bank (PDB) (Berman et al., 2000). In these networks, each residue is

represented as a single point, centered on either the Ca or Cb atoms; in

the latter case, Ca atoms are used for glycine residues. Because the

general findings of this study are the same irrespective of this choice, we

report results from the networks formed of Cb’s for brevity. Given the Cb

coordinates of a protein with N residues, a contact map can be formed for

a selected cutoff radius, rc, an upper limit for the separation between two

residues in contact. This contact map also describes a network that is

generated such that if two residues are in contact, then there is a

connection (edge) between these two residues (nodes) (Atilgan et al.,

2001; Bahar et al., 1997; Yilmaz and Atilgan, 2000). An example

network formed for the protein 1ice is shown in Fig. 1. Thus, the

elements of the so-called adjacency matrix, A, are given by
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Aij ¼
Hðrc � rijÞ i 6¼ j
0 i ¼ j

:

�
(1)

Here, rij is the distance between the ith and jth nodes, H(x) is the Heaviside
step function given by H(x) ¼ 1 for x[ 0 and H(x) ¼ 0 for x # 0.

Network parameters

The networks are quantified by local and global parameters, all of which can

be derived from the adjacency matrix. The connectivity ki of residue i is the
number of neighbors of that residue:

ki ¼
1

N
+
N

j¼1

Aij: (2)

The average connectivity of the network is thus K¼ hkii, where the brackets
denote the average.

The characteristic path length, L, of a network is the average over the

minimum number of connections that must be transversed to connect residue

pair i and j. In computing the shortest path between a pair of nodes, we make

use of the fact that the number of different paths connecting a pair of nodes

i and j in n steps is given by, Bij ¼ ðAnÞij. Thus, the shortest path between

nodes i and j, Lij, is given by the minimum power,m, ofA for which (Am)ij is

nonzero. The characteristic path length of the network is the average,

L ¼ 2

NðN � 1Þ +
N�1

i¼1

+
N

j¼i11

Lij: (3)

Note that L is a measure of the global properties, reflecting the overall

efficiency of the network.

The clustering coefficient, C, on the other hand, reflects the probability

that the neighbors of a node are also neighbors of each other, and as such, it

is a measure of the local order. For residue i this probability may be

computed by

Ci ¼
1

2
+

N

j¼1
+

N

k¼1
AijAikAkj

kiC2

: (4)

Here ki C2 is the combinatorial coefficient, and ki is the connectivity

as defined in Eq. 2. The clustering coefficient of the network is the average

C ¼ hCii.

Random rewiring of the residue networks

For comparison purposes, we also generate random networks. The property

common to the actual residue network and its random variant is the contact

number of a given residue at a fixed cutoff radius. We rewire every residue

(node) randomly to another residue chosen from a uniform distribution such

that i), it has the same number of neighbors (i.e., ki and K are the same as the

residue network, but C and L change); and ii), the chain connectivity is

preserved by keeping the (i, i1 1) contacts intact for all cutoff distances, rc.

RESULTS

Within the framework of a local interaction network,

residues in proteins organize into a SWN topology (see the

Appendix for details). Our aim is to study the network

topology of residue interactions from a statistical perspective

so as to reveal the role of local arrangement on the overall

structure and dynamics of proteins. In the rest of this study,

we present the results from the residue networks that are

constructed using a 7-Å cutoff distance; we have verified that

the general conclusions of this work are not affected when an

8.5-Å cutoff distance is used instead.

Connectivity distribution of residues is
independent of their spatial location

The connectivity distribution of self-organizing networks

has been shown to have direct consequences on the relative

weight of i), optimal performance, and ii), tolerance to

disturbances of these networks (Newman et al., 2002). At the

extreme, scale-free networks are optimal for very fast com-

munication between various parts. They are also very robust

toward uncertainties for which they were designed, but are

highly vulnerable toward unanticipated perturbations (Carl-

son and Doyle, 2000). On the other hand, networks may be

designed to become more tolerant to attack at the expense of

some efficiency, by the utility of broad-scale or single-scale

connectivity (Newman et al., 2002). Therefore, the connec-

tivity distribution should also be an indicator of efficiency in

proteins.

A plot of the connectivity distribution is displayed in Fig.

2 for the residue networks studied here. We verify that the

connectivity distribution of the residue networks constructed

at a cutoff distance of 7 Å, which corresponds to the location

of the first coordination shell, conform to the Gaussian

distribution with a mean of 6.9 Å. It has been suggested that

FIGURE 1 Network construction from a protein. Here the structure of

human interleukin 1-b converting enzyme (PDB code: 1ice) is shown on the

left. The network constructed from the Cb coordinates of the residues (Ca for

Gly) at 7 Å cutoff is shown on the right.

FIGURE 2 Residue contact distribution at rc ¼ 7 Å, computed as an

average over all the residues in a set of 54 proteins. The familiar form of the

contact distribution is captured (see, for example, Fig. 4 in Miyazawa and

Jernigan, 1996). The contact distributions of core and surface residues are

also displayed. Gaussian distribution of coordination numbers is valid for

both the hydrophobic core and the molten surface.
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one of the main reasons for deviations from a scale-free

connectivity distribution is the limited capacity of a given

node (Amaral et al., 2000). In residue networks, this would

translate into the excluded volume effect, because the

number of residues that can physically reside within a given

radius is limited.

Globular proteins may be considered to be made up of

a core region surrounded by a molten layer of surface

residues. It is of interest to distinguish the topological dif-

ferences between the core and the surface. Thus, we have

also investigated the connectivity distribution of the core and

surface residues. We utilize the DEPTH program, which

differentiates between such residues by calculating the depth

of a residue from the protein surface (Chakravarty and

Varadarajan, 1999). We classify the core residues as those

residing at depths larger than 4 Å, based on a previous study

(Baysal and Atilgan, 2002). We find that the same type of

distribution of coordination numbers is valid for both the

hydrophobic core and the molten surface, as shown by the

separate contact distribution of the surface and core residues

(Fig. 2). The means for the respective cases are 5.0 and 8.4

Å. This demonstrates that, the same small-world organiza-

tion prevails throughout the protein, despite the heterogene-

ous density distribution.

Clustering of residues is independent of their
location in the core

We have further investigated the shortest average path length

Li and the clustering coefficient Ci of residue i as a function
of residue depth Di. For this purpose, we have again used

residue depth as a measure of its location in the folded

protein. To eliminate the size effect, we have studied a subset

of proteins of a fixed number of residues. In Fig. 3, Li and Ci

as a function of residue depth is shown for proteins of size

1506 10, 2106 10, and 3106 10; averages are taken over

24, 15, and 15 proteins in the respective cases.

As expected, the shortest path length decreases for residues

at greater depths, i.e., those in the core of the protein are

connected to the rest of the residues in a fewer number of

steps; moreover, this property is size dependent as corrobo-

rated by the logarithmic size dependence of the characteristic

path lengths (see Fig. 7). Perhaps much less expected, on the

other hand, is that the clustering coefficient approaches a fixed

value of ;0.35 beyond a depth of ;4 Å irrespective of the

size of the proteins studied. At greater depths, where the

residues are completely surrounded by other residues and are

not exposed to the solvent, the local organization of the

protein is always the same.

Shortest path lengths and fluctuations
are related

Residue fluctuations, which are both experimentally and

computationally accessible, provide a rich source of in-

formation on the dynamics of proteins around their folded

state. It is possible to discern the functionally important

motions in proteins using a modal decomposition of the

cross-correlations of the fluctuations (Bahar et al., 1998a).

Fontana and collaborators have elegantly demonstrated that

limited proteolysis, a biochemical method that can be used as

a probe of structure and dynamics of both native and partly

folded proteins, does not occur at just any site located on the

protein surface, but rather shows a good correlation with

larger crystallographic B-factors (see Tsai et al., 2002) and

references cited therein). Some correlation has also been

demonstrated between the residue fluctuations and the native

state hydrogen exchange data of folded proteins, the latter

providing information on the local conformational suscep-

tibilities of residues (Bahar et al., 1998b).

Thus, repeatedly, residue fluctuations around the folded

state emerge as a measurable that can be related to the

dynamics of the protein. One would expect an indirect

correlation between the fluctuations and shortest path

lengths: The former are smaller for highly connected

residues, which are in turn connected to the rest of the

molecule, on average, in a shorter number of steps. Our

analysis on numerous proteins has shown that residue

fluctuations are also highly correlated with the shortest path

lengths, Li. In this study residue fluctuations are computed

by the Gaussian network model of proteins, which was

shown to be in excellent agreement with crystallographic

B-factors (Bahar et al., 1999; Baysal and Atilgan, 2001b;

Ming et al., 2003). According to this model, average residue

FIGURE 3 The depth dependence of the characteristic path length (open
symbols) and the clustering coefficient ( filled symbols) for proteins of fixed

sizes (N ¼ 150: squares, 24 proteins; N ¼ 210: triangles, 15 proteins; N ¼
310: circles, 15 proteins). The characteristic path length consistently

decreases for residues at greater depths; moreover, its value depends on

system size. On the other hand, at depths[4 Å, the clustering coefficient

attains a fixed value of;0.35 irrespective of system size and the location of

the residue. Even for the surface residues, the clustering coefficient is

independent of system size, although its value is location dependent and

somewhat higher than 0.35.
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fluctuations are given by, DR2
i

� �
a G�1
� �

ii
. Here G is the

Kirchoff matrix whose diagonal entries represent the

packing density of the ith residue, and the off-diagonal

elements are given by the negative of the adjacency matrix

elements given by Eq. 1.

Example comparisons between the fluctuations and path

lengths are displayed in Fig. 4 for a, b, a 1 b, and a/b

proteins. Note that the correlation that emerges between the

fluctuations and path lengths exceeds the expectations from

the simple inference outlined above, based on connectivity

arguments. Therefore, there is an intriguing balance between

these two measurables, one of which (Li) is more readily

associated with the global features and the other (fluctua-

tions) with the local features of the network.

An illustrative example of how the SWN
perspective supplements biophysical knowledge

CI2 is a model protein that has been extensively studied

for understanding protein function, folding, and stability

(Fersht, 2000). In Fig. 5, we display how the ideas of

shortest path lengths may be applied to gain a better

understanding of the processes invoked in response to

binding of CI2 to subtilisin novo. Residue Ile-56 of the

inhibitor, which is in the binding pocket of the substrate

(McPhalen et al., 1985), is shown with its accessible

surface. Upon binding, the impact is absorbed by the

covalently bonded neighboring residues, Thr-55 and Val-

57. The former has noncovalent interactions with Phe-69,

and the latter with Arg-67. These two residues are in turn

linked to Leu-68. In our earlier work, we have shown that

these three residues have the highest capacity of inducing

change in the overall protein while resisting perturbations

from the rest of the protein (Baysal and Atilgan, 2001a).

Considering the size of the impact experienced by the

protein upon its interaction with subtilisin novo, which is

substantially larger than CI2 (275 residues in the enzyme

versus 83 residues in the inhibitor), the energy that is

generated upon complexation must be dissipated efficiently

and effectively. Thus, this process necessitates fast relax-

ation through the shortest possible path (small L). Other-
wise, small displacements of residues 67–69 will generate

relatively large displacements in the rest of the protein,

leading to unfolding through a cascade of events. Here,

the perturbation is directly communicated to Ala-35 and

Ile-76, which have been identified as the stabilizing

residues of CI2 (de Prat Gay et al., 1995). With the aid

of these stabilizing contacts, a redistribution of the pop-

ulations of conformations occurs, and the energy landscape

is reshaped on the one hand (Kumar et al., 2000; Tsai et al.,

1999), and the flexibilities of the residues that are not in

direct contact with the substrate is substantially increased,

on the other. These tradeoffs help maintain the equilibrium

around the native state (Baysal and Atilgan, 2001a). Note

that the redistribution path involves the coordination of

highly connected residues (contact numbers of Ala-35,

FIGURE 4 A good correlation between the shortest path lengths (�) and residue fluctuations (d) is observed. Four examples, one of each from a, b, a1 b,

and a/b class of proteins, are displayed.
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Leu-68, and Ile-76 are 11, 10, and 10, respectively) dis-

tributed according to a SWN. Note also that the per-

turbation is propagated to this region through two

alternative pathways, creating a redundant link.

CONCLUDING REMARKS

We have shown that the protein structure may be

classified as a SWN, balancing efficiency and robustness.

We find that the same local organization of core residues

appears irrespective of the protein size. Moreover, a

remarkable correlation exists between residue fluctuations

and shortest path lengths. Recent developments of elastic

network models for studying large amplitude motions in

proteins have been successful in predicting functional

mechanisms (Atilgan et al., 2001; Bahar et al., 1998a,

1999; Keskin et al., 2002). In particular, the cohesive

domain-like behavior of proteins is well understood by

these models. A similar network construction based on

the average structure is used here with a different per-

spective. Instead of a statistical mechanical approach

whereby the system energy is described by the additive

local interactions of harmonic springs, a graph theoretical

viewpoint is taken by considering pathways of intercon-

nections. That the two approaches, both originating from

the packing characteristics, lead to the same information

(Fig. 4) calls for further attention.

Most theoretical and computational biophysical methods

available today will give information on equilibrium states.

The nonequilibrium dynamical information is usually

inferred from the study of different equilibrium states and

interpolating. The idea of following pathways on networks is

an attractive one for studying not-far-from-equilibrium

phenomena such as the attainment of new equilibrium states

upon binding. However, one first needs to validate the

limitations of coarse graining. In particular, the extent to

which quantum mechanical effects can be neglected or

incorporated into the models must be assessed; e.g., in CO

binding to myoglobin (Kriegl et al., 2003) the relaxation

pathway in the protein is of utmost interest (Ansari et al.,

1985). Consequently, this unifying network perspective will

let us explore protein dynamics such that, apart from

distinguishing structurally important residues in folding,

binding, and stability, we will be able to locate the routes

through which a perturbation is communicated in a protein,

and estimate the timescales on which a response is generated.

As such, it will complement newly developing experimental

techniques such as femtosecond spectroscopy (Pal et al.,

2002).

The spatiotemporal nature of the hypothesized process

calls for deeper investigation on particular proteins. The

global rules deduced here for proteins are also expected

to have applications in bioinformatics problems such as

identifying interaction surfaces in protein docking and

distinguishing misfolded states.

APPENDIX: RESIDUES IN PROTEINS ORGANIZE
IN A SMALL-WORLD-NETWORK TOPOLOGY

In SWNs, the measure of global communication between any two nodes,

characterized by the characteristic path length, L, has the same order of

magnitude as a random network. At the same time, the local structure needs

to be organized such that the probability that the neighbors of a node are also

neighbors of each other is high; in a random network, such a construction

does not exist. The latter property is quantified by the clustering coefficient,

C (Watts, 1999), which is at least about one order of magnitude larger in

FIGURE 5 Shortest paths to relieve the impact upon binding of CI2. Ile-

56 that is in the binding pocket and that makes many contacts with the

substrate, subtilisin novo, is shown with its accessible surface in yellow.

Thr-55 and Val-57 (shown in red) are bonded to this residue, and they have

their side chains pointing toward the very stable residues of the inhibitor,

Arg-67 and Phe-69 (shown in orange). These are in turn connected to the

most stable residue of CI2, Leu-68 (shown in yellow). To avoid unfolding,

the impact is finally communicated to the stabilizing residues Ala-35 and Ile-

76 (shown in purple), which propagate it to the rest of the protein.

FIGURE 6 In a SWN, characteristic path length, L, is on the same order of

magnitude as its randomized counterpart, whereas clustering density, C, is at

least one order of magnitude larger. The variation of the ratios L/Lrandom
(right ordinate) and C/Crandom (left ordinate) in the residue networks with

the cutoff distance, rc, used in forming the networks is shown. Note that as

rc ! ‘ both L and C approach 1, because every node will be connected

to every other node at this limit. (Inset) Radial distribution function of the

residue networks. All data are averages over 595 nonhomologous proteins.
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SWNs than in their randomized counterparts (Watts and Strogatz, 1998).

The final condition for a small-world behavior in a network is that the

average path length should scale logarithmically with the total number of

vertices (Davidsen et al., 2002). These conditions are summarized as:

L � Lrandom � Lregular

C � Crandom

L} logðNÞ: (A1)

We first study the ratios L/Lrandom and C/Crandom to understand if the first

two of these conditions are met in residue networks. The results are

presented in Fig. 6 as a function of the cutoff distance, rc. We find that L
is on the same order as Lrandom for all values of rc (right y-axis). For

shorter distances (rc # 8.5 Å) the average path length in real proteins is

found to be ;1.8 times that of random networks; the ratio gradually

decreases towards the theoretical limit of 1 as rc is increased. The

clustering coefficient, C, of the residue networks, on the other hand, is

;9–13 times that of random ones for rc # 8.5 Å. For larger rc, the ratio

rapidly falls to 1 (left y-axis).
The final condition of Eq. A1 for a small-world behavior in a network is

that the average path length should scale logarithmically with the total

number of vertices (Davidsen et al., 2002). Such a scaling is observed for the

proteins studied in this work. A representative case for rc ¼ 7 Å is shown in

Fig. 7. Note that in reproducing this figure, we have clustered the proteins

used in this study according to size such that a point corresponding to protein

size N corresponds to an average over all proteins in our set that fall in the

range N 6 10. Also shown in this figure is the logarithmic scaling of the

randomized counterparts of the residue networks. Note that the slope of the

latter is 1/log K, a well-known result for Poisson and Gaussian distributed

random graphs (Newman et al., 2001).

Thus, interactions within proteins behave like SWNs in the cutoff

distance range of up to;8.5 Å. We note that Vendruscolo et al. (2002) have

studied a set of 978 proteins at a cutoff distance of 8.5 Å with the network

perspective. They find that L is 4.1 6 0.9 and C is 0.58 6 0.04; they do not

show the logarithmic dependence of L on system size, N (last condition in

Eq. A1). Nevertheless, based on the small value of the average path length

and the relatively large value of the clustering coefficient, they conclude that

native protein structures belong to the class of small-world graphs

(Vendruscolo et al., 2002), a valid assertion for the 8.5-Å cutoff. To clarify

the physical meaning of a cutoff distance in the context of network topology,

we look at the radial distribution function for residues in proteins (Fig. 6,

inset). Cutoff values of ;6.5–8.5 Å have been used in studies where coarse

graining of proteins is utilized (Bagci et al., 2002; Dokholyan et al., 2002;

Miyazawa and Jernigan, 1996). The lower bound corresponds to the first

coordination shell of the protein; i.e., the range within which residue pairs

are found with the highest probability (6.7 Å for the set used here; first hump

in the inset to Fig. 6). A great portion of the contribution to this shell is due to

chain connectivity; all (i, i 1 1) and most (i, i 1 2) pairs fall within this

range. Nonbonded residue pairs also exist in this coordination shell. How-

ever, the contribution of nonbonded pairs to higher order coordination shells

may also be significant (Woodcock, 1997). For Cb–Cb interactions in pro-

teins, the second shell occurs at 8.6 (the second hump in the inset to Fig. 6).

Above, we have shown that residues in proteins form small-world net-

works for the first and second coordination shells. Beyond the second coor-

dination shell the clustering coefficient, C, which is a local property, looses

physical significance.

It should be further noted, though, that by reexamining the conditions in

Eq. A1 for large proteins, we find that at higher levels of coarse graining,

larger cutoffs will again lead to the SWN architecture. We find that L/Lrandom
holds at all cutoff distances (Fig. 6). Similarly, the logarithmic dependence

of L on size holds for all cutoff distances studied (rcut\ 30 Å) and similar

curves to those in Fig. 7 are obtained. We also find that C/Crandom is larger

for the larger-sized molecules. For example, the ratio C/Crandom is 52, 19,

and 9.8 at 7, 10, and 13 Å cutoffs, respectively, for the 996-residue protein

1alo. These numbers are 17, 7.5, and 4.1 at the respective cutoffs for the 250-

residue protein 1ctm, representative of the average size of the proteins

studied in this work.

The larger (smaller) values of C/Crandom for larger (smaller) proteins is

due to the following: C is constant in the interior (Fig. 3), and the overall C
will fall with N, only due to the decrease in the fraction of surface residues

(D\4.5 Å). This fraction is 0.65, 0.58, and 0.53 for the subgroups of Fig. 3

with protein sizes of 150, 210, and 310 residues, respectively. On the other

hand, using well-established results for random graphs; i), Crandom ¼ K/N,
and ii), K a log(N), the larger the system the smaller Crandom. Thus, C

decreases less slowly than Crandom with the increase in N leading to higher

values of C/Crandom.

Partial support provided by the Devlet Planlama Teskilati (DPT) Project

(grant number 01K120280), Bogazici University Research Foundation

Project (grant number 02R102), and Sabanci University Internal Research

Grant (grant number A0003-00171) are acknowledged.

REFERENCES

Amaral, L. A. N., A. Scala, M. Barthelemy, and H. E. Stanley. 2000.
Classes of small-world networks. Proc. Natl. Acad. Sci. USA. 97:11149–
11152.

Ansari, A., J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. T. Iben, T. B.
Sauke, E. Shyamsunder, and R. D. Young.1985. Protein states and
protein quakes. Proc. Natl. Acad. Sci. USA. 82:5000–5004.

Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and
I. Bahar. 2001. Anisotropy of fluctuation dynamics of proteins with an
elastic network model. Biophys. J. 80:505–515.

Baase, W. A., N. C. Gassner, X.-J. Zhang, R. Kuroki, L. H. Weaver, D. E.
Tronrud, and B. W. Matthews. 1999. How much sequence variation can
the functions of biological molecules tolerate? In Simplicity and
Complexity in Proteins and Nucleic Acid. H. Frauenfelder, J.
Deisenhofer, and P. G. Wolynes, editors. Dahlem University Press,
Berlin, Germany.

Bagci, Z., R. L. Jernigan, and I. Bahar. 2002. Residue packing in proteins:
uniform distribution on a coarse-grained scale. J. Chem. Phys. 116:2269–
2276.

Bahar, I., A. R. Atilgan, M. C. Demirel, and B. Erman. 1998a. Vibrational
dynamics of folded proteins: significance of slow and fast modes in
relation to function and stability. Phys. Rev. Lett. 80:2733–2736.

Bahar, I., A. R. Atilgan, and B. Erman. 1997. Direct evaluation of thermal
fluctuations in proteins using a single parameter harmonic potential.
Fold. Des. 2:173–181.

FIGURE 7 In a SWN, the characteristic path length, L, should show

a logarithmic dependence on the system size, N. Thus, the relation L a

log(N) should hold up to a cutoff value of;8.5 Å. An example case for rc ¼
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