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ABSTRACT We present a theoretical treatment and simulation algorithm for the dynamics of Helfrich elastic membrane
surfaces in the presence of general harmonic perturbations and hydrodynamic coupling to the surrounding solvent. In the limit of
localized and strong interactions, this harmonic model can be used to pin the membrane to intracellular/intercellular structures.
We consider the case of pinning to the cytoskeleton and use such a model to estimate the macroscopic diffusion constant for
band 3 protein on the surface of human erythrocytes. Comparison to experimental results suggests that thermal undulations of
the membrane surface should play a significant role in protein mobility on the red blood cell.

INTRODUCTION

Biological membranes are essential for life as we know it

(Gennis, 1989; Lipowsky, 1991; Lodish et al., 1995). The

central role played by membranes and membrane dynamics

in biological processes has generated strong interest in

simulation algorithms for lipid bilayers in recent years.

Perhaps the most prevalent studies to date have involved

molecular dynamics (MD) simulation on atomically detailed

lipid/water models (Feller, 2000; Pastor, 1994; Tobias et al.,

1997; Tieleman et al., 1997; Marrink et al., 2001). Unfortu-

nately, the usual computational limits inherent to fully

atomic models preclude MD from simulating processes that

occur on length scales significantly larger than several

nanometers and/or timescales significantly longer than tens

of nanoseconds. Many membrane-dependent biological pro-

cesses cannot be studied with MD for this reason. Rep-

resentative examples of processes inaccessible to direct MD

simulation include lateral diffusion of lipids/proteins in

complex environments (Jacobson et al., 1995; Koppel et al.,

1981), cellular motility (Pollard et al., 2000; Stossel, 1993;

Theriot and Mitchison, 1991; Howard, 2001), lipid raft

dynamics (Sheets et al., 1995; Simons and Ikonen, 2000),

long-ranged membrane-mediated protein-protein interac-

tions (Marcelja, 1976; Owicki et al., 1978; Lague et al.,

1998; Dan et al., 1993; Goulian et al., 1993; Kim et al., 1998;

Weikl, 2002), and budding in multicomponent membranes

(Kumar and Rao, 1998; Kumar et al., 2001).

Various simulation methodologies have emerged in

attempts to bridge the gap between slow biological processes

and the limitations of MD. A number of models represent

each lipid molecule by one or more simple shapes (spheres,

ellipsoids, or rods) in flexible or rigid configurations. The

majority of such models include explicit solvent in the form

of hydrophilic spheres (Shillcock and Lipowsky, 2002;

Yamamoto et al., 2002; Lopez et al., 2002; Smit et al., 1993;

Groot and Rabone, 2001; Goetz and Lipowsky, 1998;

Soddemann et al., 2001; Ayton et al., 2001), whereas a few

have succeeded in capturing fluid membrane behavior

without solvent (Drouffe et al., 1991; Noguchi and Takasu,

2001; Farago, 2003; Brannigan and Brown, 2003). Hybrids

of particle-based and continuous methods, such as tethered

membranes, are able to investigate macroscopic properties

while retaining some mesoscopic resolution (Kantor et al.,

1987; Ho and Baumgartner, 1990; Baumgartner and Ho,

1990; Lipowsky and Zielenska, 1989; Kumar and Rao,

1998; Ayton and Voth, 2002). Although many of these

models hold promise for illuminating various biological

processes, simulations of simplified membranes have so far

been conducted primarily for model testing and the mea-

surement of material properties.

Historically, theoretical studies of membrane biophysics

predate simulations. The work of Helfrich (1973) estab-

lished an elastic model for membrane energetics that has

since seen use in diverse studies ranging from the ‘‘flicker’’

effect in red blood cells (Brochard and Lennon, 1975) to the

interaction between membrane-bound proteins (Dan et al.,

1993; Goulian et al., 1993; Kim et al., 1998; Golestanian

et al., 1996; Weikl, 2002) and the formation of the im-

munological synapse (Qi et al., 2001). When combined

with stochastic low-Reynolds-number hydrodynamic cou-

pling to the surrounding solvent (Milner and Safran, 1987;

Schneider et al., 1984; Brochard and Lennon, 1975;

Granek, 1997; Brown, 2003) the Helfrich picture provides

a means to study bilayer dynamics as well as thermody-

namics/energetics.

Although simulations involving dynamic elastic sheets

have seen some recent use in biophysics (Laradji, 1999; Qi

et al., 2001; Brown, 2003) the main use of such models has

been in analytical theory. In this article, we describe a normal

mode decomposition for elastic membrane sheets in quasi-

planar geometries. When interactions with the membrane can

be treated harmonically, the transformation to normal modes

allows for exact time evolution analogous to such trans-

formations in crystals (Ashcroft and Mermin, 1976) and
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molecules (Atkins, 1990). The power of this approach is that

it enables the study of membrane dynamics in situations

involving interaction with external perturbations, but with

the flexibility to choose long time steps, thus making

simulation of slow biological processes feasible.

In this work, we apply this simulation methodology to

the mobility of membrane-bound proteins on the surface of

the red blood cell. The motion of proteins on the

erythrocyte surface (Cherry, 1979; Koppel et al., 1981;

Schindler et al., 1980; Sheetz et al., 1980; Sheetz, 1983) is

known to exhibit deviations from the purely diffusive

behavior predicted by the fluid mosaic model (Singer and

Nicolson, 1972; Saffman and Delbruck, 1975). Although

such deviations are certainly not unique to red blood cells

(Jacobson et al., 1995; Saxton and Jacobson, 1997; Flem-

ing, 1987; Winckler et al., 1999; Saxton, 1990b), band 3

protein on the surface of erythrocytes has been particularly

well studied in this context. It is now generally accepted

that transmembrane proteins with significant intracellular

domains exhibit two diffusion constants on the erythrocyte

surface: a microscopic diffusion constant over short length

scales and a smaller macroscopic diffusion constant over

length scales longer than tens of nanometers (Tsuji and

Ohnishi, 1986; Tsuji et al., 1988; Edidin et al., 1991;

Corbett et al., 1994; Kusumi and Sako, 1996; Tomishige,

1997; Tomishige et al., 1998). This behavior is attributed to

interactions between mobile proteins and the underlying

spectrin network of corrals as proposed in the matrix

(Sheetz, 1983) or skeleton fence (Kusumi et al., 1993)

model (see Fig. 1).

Although the skeleton fence model appears consistent

with experiment (at least in the case of red blood cells), the

mechanism by which the protein escapes from corrals has not

been definitively established. Previous theoretical studies

have either used very general models to fit the experimental

data (Saxton, 1995) or have assumed that rearrangements of

the spectrin network are necessary for a protein to escape

confinement (Saxton, 1989, 1990a,b; Boal, 1994; Boal and

Boey, 1995; Leitner et al., 2000; Brown et al., 2000). In

recent work (Brown, 2003), we considered the possibility

that fluctuations of the lipid bilayer could assist proteins in

escaping localized corrals. Although our study provided

qualitative support for this hypothesis, the modeling did not

allow for explicit coupling between spectrin and the lipid

bilayer. The present work extends our earlier model to

include pinning between the lipid bilayer and underlying

spectrin network via the harmonic pinning interactions

discussed above. Our models again indicate support for the

theory that thermal bilayer fluctuations are involved in

protein mobility over the cell surface.

The organization of this article is as follows. In the next

section, we introduce the equations that govern the dynamics

of our pinned membrane and are the basis of our Fourier

space Brownian dynamics method. We then show that the

Fourier representation provides us with a convenient way of

performing simulations by evolving membrane configura-

tions stochastically in time. Analytical results for our model

are presented and subsequently used to study the importance

of membrane fluctuations in protein mobility over the

surface of the red blood cell. In the last section, we discuss

the results and conclude.

A PINNED MEMBRANE MODEL

We begin by specifying the Hamiltonian for a lipid bilayer as

the Helfrich bending energy (Helfrich, 1973) at zero surface

tension plus a harmonic potential,

H ¼
ð
A

dr
Kc

2
½=2

hðrÞ�2 1 1

2
VðrÞh2ðrÞ

� �
; (1)

where Kc is the bending modulus, A ¼ L2 is the projected

area of the membrane, r ¼ (x, y) is the position in the xy
plane, and h(r) specifies the local displacement of the

membrane away from the flat configuration defined by h(r)
¼ 0. In general, Eq. 1 may be supplemented with a term to

account for nonvanishing surface tension (Safran, 1994). We

assume a negligible surface tension in this study for sim-

plicity and because this condition is appropriate to the

application we consider later. The function V(r) is at this

point arbitrary, but will later be chosen to represent localized

pinning to the cytoskeleton.

Although in some cases we study subportions of the

membrane embedded within a larger system, we always

consider the total system to be periodic over a square with

sides of length L. This geometry allows us to express the

Hamiltonian in its Fourier representation,

H ¼ 1

2L2 +
kk9

h
�
k Kck

4
dkk9 1

1

L2 Vk�k9

� �
hk9; (2)

where the Fourier transform pairs are

FIGURE 1 Schematic illustration of the behavior of transmembrane

proteins in the red blood cell (the matrix or skeleton fence model). The

cytoskeleton immediately below the membrane hinders protein transport by

confining the protein temporarily to a localized corral (a). Jumps from one

corral to another occur slowly and have previously been postulated to result

from dynamic reorganization of the cytoskeletal matrix, by (b) dissociation

of spectrin tetramers, (c) thermal fluctuations in the shape of the

cytoskeleton, or (d) infrequent crossing events where the protein is

thermally kicked hard enough to force its way over a relatively static

cytoskeleton. This study considers a different possibility—that shape

fluctuations of the lipid bilayer may allow for corral hopping (e).
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hðrÞ ¼ 1

L2 +
k

hke
ik�r

hk ¼
ð
A

dr hðrÞe�ik�r
; (3)

and the k vectors are given by (2pm/L, 2pn/L) where m and

n are integers. The Fourier representation allows us to find

a set of decoupled eigenmodes, which we can evolve

separately in time. For V(r) ¼ 0, the modes are completely

decoupled in the Fourier representation, whereas for nonzero

V(r), decoupling is accomplished by further transformation

(see Appendix A). It is important to note that for most of our

applications, the amplitude of the k ¼ 0 mode is set equal to

zero so that the center of mass for the entire membrane does

not move. Motion of the center of mass of the membrane

corresponds to simple diffusion and is not typically of

interest. It is possible to allow for diffusion of the center of

mass as described in Appendix B.

Dynamics are described by the Langevin equation for a set

of hydrodynamically interacting Brownian particles (Doi

and Edwards, 1986) in the continuum limit. Inertia is

neglected as is appropriate for the low-Reynolds-number

environment of the cell (Purcell, 1977) and the assumption of

linear response gives (Granek, 1997)

@hðr; tÞ
@t

¼
ð‘
�‘

dr9Lðr� r9Þ½Fðr9; tÞ1 zðr9; tÞ�; (4)

whereL(r� r9) is the hydrodynamic interaction specified by

the Oseen tensor (Doi and Edwards, 1986),

Lðr� r9Þ ¼ 1

8phjr� r9j ; (5)

F(r, t) is the force per area given by the functional derivative
of the Hamiltonian,

Fðr; tÞ ¼ � dH

dhðr; tÞ ¼ �Kc=
4
hðr; tÞ � VðrÞhðr; tÞ; (6)

and z(r, t) is a Gaussian white random force (van Kampen,

1992) that satisfies the fluctuation-dissipation theorem

hzðr; tÞi ¼ 0

hzðr; tÞzðr9; t9Þi ¼ 2kBTL
�1ðr� r9Þdðt � t9Þ; (7)

and where the inverse of L(r � r9) is defined by

ð‘
�‘

dr9Lðr� r9ÞL�1ðr9Þ ¼ dðrÞ: (8)

Points on the membrane surface hydrodynamically interact

with the rest of the membrane (including periodic copies)

over the entire xy plane. Using the Fourier-transformed

Oseen interaction

Lk ¼
ð‘
�‘

dr
1

8phr
e
�ik�r ¼ 1

4hk
; (9)

we may rewrite the Langevin equation in its Fourier

representation as

@hkðtÞ
@t

¼ Lk +
k9

�Kck
4
dkk9 �

1

L2 Vk�k9

� �
hk9ðtÞ1 zkðtÞ

� �
;

(10)

where zk(t) are the Fourier space components of z(r, t)
(defined in the same way as in Eq. 3) that obey

hzkðtÞi ¼ 0

hzkðtÞzk9ðt9Þi ¼ 2kBTL2
L

�1

k dk;�k9 dðt � t9Þ: (11)

The thermodynamics and stochastic time evolution of the

membrane in Fourier space are completely specified by Eqs.

2, 10, and 11. Evolution in real space is realized by inverse

Fourier transforming via Eq. 3.

Time propagation

The Fourier space equations of the previous section are

suitable for developing a simple and efficient algorithm for

studying membrane dynamics through simulations. In a pre-

vious article (Brown, 2003) we described such an algorithm

for a free membrane sheet, but here we generalize to allow

harmonic interactions such as pinning (very strong and very

localized harmonic interactions). To proceed, we express the

Hamiltonian and the Langevin equations in terms of appro-

priately decoupled eigenmodes indexed by i with amplitudes

di and eigenvalues vi (see Appendix A for details),

H ¼ 1

L2 +
i

vid
2

i (12)

@diðtÞ
@t

¼ �vidiðtÞ1 ziðtÞ; (13)

where zi(t) are random forces that satisfy

hziðtÞi ¼ 0

hziðtÞzjðt9Þi ¼ kBTL2
dijdðt � t9Þ: (14)

The above equations represent a set of independent Ornstein-

Uhlenbeck processes characterized by (van Kampen, 1992):

PðdiÞ ¼
ffiffiffiffiffiffiffiffiffi
bvi

pL2

r
exp �bvi

L2 d
2

i

� �
; (15)

PðdiðtÞjdiðt9ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bvi

pL2ð1� e
�2viðt�t9ÞÞ

s

3 exp �bvi

L2

½diðtÞ � diðt9Þe�viðt�t9Þ�2

ð1� e�2viðt�t9ÞÞ

( )
;

(16)
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where b ¼ 1/kBT, P(di) is the equilibrium probability

distribution for the amplitude di and PðdiðtÞjdiðt9ÞÞ is the

conditional probability for mode i to have amplitude di(t) at
time t given that it had the amplitude di(t9) at earlier time t9.
The equilibrium probability distribution follows immedi-

ately from the Hamiltonian and the canonical distribution

(Chandler, 1987) whereas the conditional probability follows

from the solution to the Fokker-Planck formulation of the

Langevin equation (van Kampen, 1992).

A complete discussion of the independent modes used in

Eqs. 12–16 may be found in Appendix A. We do note here

that these equations reduce to the results of our prior work

(Brown, 2003) in the limit that V(r) ¼ 0. In this case, the

general transformations described in Appendix A imply that

the eigenmodes di are given by the real and imaginary parts

of the rescaled Fourier modes hk=
ffiffiffiffiffiffi
Lk

p
in the upper half-k

plane. Furthermore, the eigenvalues for these modes are

given by (real and imaginary parts share the same

eigenvalue)

vk ¼
Kck

3

4h
: (17)

Equations 12 and 13 then yield

H ¼ Kc

2L2 +
k

k
4jhkj2

_hhk ¼ �vkhk 1 zkðtÞ; (18)

which are identical to Eqs. 1 and 2 in our previous

publication (Brown, 2003). Similarly, Eq. 4 of our earlier

article follows immediately from Eqs. 15 and 16, provided

the rules for transforming probability distributions are

followed (van Kampen, 1992) and the fact that hk contains

independent real and imaginary contributions is taken into

account.

Returning to the general problem, we now specify

a method of simulation that allows us to evolve membrane

configurations. First, we pick amplitudes from the equilib-

rium distribution in Eq. 15 by drawing from a normal

distribution (Press et al., 1994). Real-space configurations

are obtained by inverting the diagonalization transformation

in Appendix A, and inverse Fourier transforming to get the

position space heights at each point. To evolve forward in

time from t9 to t, we again draw normally distributed

amplitudes di(t) conditional on the value of di(t9) from Eq.

16. Inversion to real space through the same procedure as

before leads to the membrane configuration at time t.
Because the Ornstein-Uhlenbeck process is Markovian

and therefore depends only on time differences, we can take

time steps that are as large or small as we desire; taking many

small steps up to time t gives a final result that is statistically
identical to one large step. The membrane can therefore be

evolved arbitrarily far into the future with complete

accuracy. Averages, correlation functions, and other statis-

tical properties are calculated by sampling from sufficiently

large ensembles of membranes generated by this technique.

The procedure described here is analogous to Brownian

dynamics with hydrodynamic interactions (Ermak and

McCammon, 1978) with the distinction that eigenmodes

are being evolved rather than positions. We have chosen

a harmonic model to allow for arbitrarily large time steps.

Although the mathematical derivation is tedious, it should be

stressed that the eigenmode picture described above and in

Appendix A is simply a normal mode decomposition for

membrane surfaces evolving under overdamped stochastic

dynamics.

As an illustration of our method, we present several

examples that demonstrate pinning of the membrane with

harmonic potentials. In this section and in following

sections, we choose physical parameters appropriate to the

membrane of the red blood cell as listed in Table 1. As a first

example, we pin the membrane around the border of a square

corral by using V(r)¼ g[d(x)1 d(y)], where g is sufficiently

large to keep the membrane pinned along the two edges (the

other two sides are automatically pinned by the periodic

boundary conditions). In practice, we have used g ¼ 53 106

ergs cm�2 throughout this work. This value was chosen to be

large enough to ensure that the sheet is effectively pinned.

Increasing g leads to no changes in any results reported in

this or subsequent sections. One realization of the membrane

generated using our simulation technique is shown in Fig. 2.

Although thermal fluctuations are apparent in the middle of

the sheet, all motion at the edges has been quenched by the

pinning interaction.

As a second example, we demonstrate pinning above the

xy plane in Fig. 3. We have used

VðrÞ ¼ g+
i

dðr� RiÞ; (19)

where the pinning sites are located at discrete Ri points in the

plane with an additional term for pinning above the plane as

in Eq. A19. Pinning the membrane over points distributed in

three dimensions is mathematically possible, but forcing

large amplitude, high curvature geometries results in

structures inconsistent with the assumptions of our model.

TABLE 1 Parameters for band 3 on the erythrocyte membrane

Parameter Description Value Reference

Kc Bending modulus 2 3 10�13 ergs *

h Cytoplasm viscosity 0.06 poise *

T Temperature 378C Body temp.

g Pinning constant 5 3 106 ergs cm�2

h0 Depth of cytoplasmic

domain of band 3

6 nm y

D Band 3 diffusion constant 0.53 mm2 s�1 z

l Lattice spacing 7 nm §

tD Random walk time step 23 ms §

*Brochard and Lennon (1975) and Zilker et al. (1992).
yZhang et al. (2000).
zTomishige et al. (1998).
§Brown (2003).
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We will concentrate only on planar pinning geometries in

this work with the exception of this particular example. We

introduce at this point a new length scale L # L, which
represents the size of the membrane that has been sampled

from a possibly larger periodic box of linear dimension L.
These subregions have no restriction on the height of the

center of mass. In Fig. 3 we see that over dimensions of L,
the membrane is free to lie entirely above the z ¼ 0 plane. A

similar simulation, but with L ¼ L, results in a steeper cone-
shaped protrusion in the center of the square to enable the

sheet to attain negative displacements around the periphery.

We now use Eq. 19 to examine distributions of pinning

sites that are more relevant to the applications discussed later

in this article. We start by using the simplest geometry of

a square membrane pinned at the corners. Typical membrane

configurations and their time evolutions generated by our

Fourier space Brownian dynamics method are shown in Fig.

4 for both pinned and free membranes. The longer

wavelength modes are seen to persist longer than the shorter

wavelength modes which are evolving on this timescale.

This behavior is to be expected based on the form of Eq. 17.

As noted in Figs. 2 and 4, the center of mass is restricted to

be zero because we have explicitly set the hk¼0 ¼ 0. All

configurations are therefore forced to have regions both

above and below the plane defined by h(r) ¼ 0. In a more

realistic membrane, we expect, in general, a nonzero center of

mass for individual corrals and the possibility of dome-

shaped configurations where the membrane is mostly above

the plane. These configurations would be dominated by

wavelengths ;2L that are not present in the system with

a single corral where the longest wavelength mode is L. To
allow these longer wavelength modes, we make the system

size larger while placing pinning sites spaced by L. Within

individual corrals, the center of mass need not be zero,

although the total center of mass of the wholemembrane must

still lie in the xy plane. Increasing the system size has a large

effect on undulations in the membrane as can be seen in Figs.

5 and 6. The average amplitudes are higher, indicating the

dominance of the modes with wavelength 2L, and the center

of mass of the membrane in a single corral is no longer

constrained to be at zero. These pinning configurations are

expected to be more closely related to the actual situation on

the surface of the red blood cell than those of Fig. 4.

One might expect that allowing the k ¼ 0 mode to evolve

in time via diffusive dynamics within a simulation box of

size L would capture the dominant features obtained by

sampling from a larger geometry. We can (with some

ambiguity) indeed treat the k ¼ 0 mode dynamically (see

Appendix B). This generalization allows configurations

where the center of mass is nonzero, thus recovering in

a rough sense what was gained by including the ;2L
wavelength modes for the larger systems. One configuration

of the membrane which includes the k¼ 0 mode is shown in

Fig. 7. We note, however, that the method shown in

Appendix B is crude. We cannot capture all of the features of

the larger systems because of the requirement that the

membrane be periodic at opposite edges of the corral. In

other words, the wavelength;2Lmodes that we expect to be

in the red blood cell membrane are not actually present here.

We have found that including the k ¼ 0 mode does not lead

to good agreement with larger simulations.

Height autocorrelation function

Although the simulation technique described in the previous

section is useful and efficient, analytical results are

preferable when they are available. The most fundamental

quantity that characterizes dynamic membrane fluctuations

is the autocorrelation function for the height h(r,t). This
quantity is directly measurable by light scattering and other

experimental techniques. Past studies of membrane dynam-

ics have used height autocorrelation functions in uncon-

strained geometries (Milner and Safran, 1987; Schneider

et al., 1984; Brochard and Lennon, 1975; Zilman and

Granek, 1996) to explain, for example, the flicker effect in

erythrocytes (Brochard and Lennon, 1975) and relaxation

dynamics in membrane sponge phases (Zilman and Granek,

1996). Starting with Eqs. 12–14, the time correlation

function of the eigenmodes di(t) is

FIGURE 2 Membrane configuration for a square sheet pinned along the

border of the simulation box (L ¼ 112 nm) and using physical parameters

(Kc,h,T,g) from Table 1. Notice that half of the membrane is above the plane

and half is below, as expected for hk¼0 ¼ 0.

FIGURE 3 Membrane configuration with L ¼ 112 nm embedded in

a larger system of size L ¼ 3L (the rest of the system outside of the corral is

not shown). The pinning occurs at the corners at z ¼ 0, and at the center of

the corral at a height of z ¼ 40 nm (small spheres indicate pinning sites).

Note that the entire system must have its center of mass at zero, but within

this corral, the center of mass is clearly above zero.
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hdiðtÞdið0Þi ¼ hd2

i ie
�vi t ¼ kBTL2

2vi

e
�vi t: (20)

Expanding the height h(r, t) in terms of these eigenmodes

(see Appendix A),

hðr; tÞ ¼ +
i

viðrÞdiðtÞ; (21)

with coefficients vi(r) defined in Eq. A17, we arrive at an

expression for the autocorrelation function

hhðr; tÞhðr; 0Þi ¼ +
i

v
2

i ðrÞhdiðtÞdið0Þi ¼ kBTL2 +
i

v
2

i ðrÞ
2vi

e
�vi t:

(22)

An important related quantity, the mean-square height

hh2ðrÞi, is given by setting t ¼ 0.

To gain intuition about the relative importance of each of

the modes, we again examine a free membrane with V(r) ¼
0 and L ¼ L. The results in this case are particularly simple

FIGURE 4 Time evolution of both a free (top) and pinned membrane (bottom) of corral lengthL¼ L¼ 112 nm using the physical parameters for a red blood

cell listed in Table 1. The membrane configuration is constructed by sampling from Eqs. 15 and 16, reconstructing the Fourier modes, and inverse transforming.

The red spheres are located at points where the membrane has been explicitly pinned. The long wavelength modes relax at a slower rate compared to the short

wavelength modes as expected from the free membrane results in Eq. 17. The center of mass of each configuration is forced to be zero because we have set the k
¼ 0 mode equal to zero. For this geometry, pinning quenches undulations.

FIGURE 5 Comparison of the free membrane

and a larger membrane with square pinning. The

pinning sites are located at every multiple of L ¼
112 nm in both the x and y directions as indicated

by the red spheres and dots. The transparent green

plane indicates h(r) ¼ 0. (a) Membrane configu-

ration drawn from Eq. 15 for a system periodic with

L¼ 3L. (b) The y¼ 0 edge of the configuration. (c)

Magnified view of one corner of the configuration

from the large system. Note that the center of mass

of this single corral is above zero. (d) A free

membrane which has the restriction that half of the

membrane be above zero and the other half below

zero.
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and amenable to interpretation. The autocorrelation is a sum

over exponentials

hhðr; tÞhðr; 0Þi ¼ kBT

L
2 +

k

1

Kck
4 e

�vkt; (23)

where the relaxation frequency is defined in Eq. 17. In this

simple case it is possible to approximate the sum over modes

by an integral (Granek, 1997). However, this approximation

is not appropriate for the cases we consider because L is

not sufficiently large. In the above expression for the auto-

correlation function, we see that the terms with frequencies

vk * t�1 are exponentially suppressed. Essentially, the short

wavelength modes relax quickly enough that they

are uncorrelated on the timescale of t. In addition, large k
modes are also energetically unfavorable due the large

amount of bending required to produce such modes. The

short wavelength modes are further suppressed by the k�4

dependence. Therefore, for both hh2ðrÞi and the autocorre-

lation function, we can cut off our sums at some sufficiently

large value of k. In contrast, the long wavelength modes

dominate both the autocorrelation function and the mean-

square displacement. The above observations were visually

apparent from the membrane configurations generated by our

simulation algorithm in the previous section.

Application to protein mobility

Our motivation for studying a pinned membrane surface is

understanding protein mobility on the surface of red blood

cells. Although the fluid mosaic model would predict purely

diffusive behavior for membrane components and this

behavior is in fact often observed for lipids (Lee et al.,

1993), the skeleton fence model best describes the motion of

band 3 protein on the surface of red blood cells where there

exist both microscopic and macroscopic diffusion constants

(Tsuji and Ohnishi, 1986; Tsuji et al., 1988; Edidin et al.,

1991; Corbett et al., 1994; Kusumi and Sako, 1996;

Tomishige, 1997; Tomishige et al., 1998). Single particle

tracking experiments have shown that proteins do indeed

freely diffuse in a confined region with occasional hops

to similar neighboring regions (Tomishige et al., 1998).

Electron microscopy of the red blood cell membrane shows

a network of roughly triangular corrals formed by spectrin

filaments (Byers and Branton, 1985; Liu et al., 1987)

connected to the membrane by anchoring proteins band 4.1,

ankyrin, and band 3 (Luna and Hitt, 1992; Steck, 1989;

Janmey, 1995; Sackmann, 1995). These corrals hinder the

motion of proteins over length scales larger than tens of

nanometers, whereas the motion is freely diffusive within the

corral. Our goal is to study the possible role of membrane

fluctuations in the global diffusivity of band 3 on the ery-

throcyte surface.

The model for membrane dynamics presented in the

previous sections is suitable for the study of protein

mobility. We will use the measured microscopic diffusion

constant along with a gating mechanism regulated by

thermal membrane fluctuations to derive a macroscopic

FIGURE 6 The same comparison as in Fig. 5

except with triangular pinning relevant for the red

blood cell membrane. The pinning sites are

located at (1/2,0), (3/2,0), (1,0), (1,1), (1,2),

(2,1/2), and (2,3/2) in units of L.

FIGURE 7 One realization of the membrane with L ¼ L ¼ 112 nm

including the k ¼ 0 mode. The presence of this mode allows the center of

mass to be nonzero, but still requires periodicity over L.
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diffusion constant that can be compared with the experi-

mental value Dmacro ¼ 6.6 3 10�3 mm2 s�1 (Tomishige

et al., 1998). Our treatment closely follows Brown (2003).

To begin, we note that the microscopic diffusion constant

D ¼ 0.53 mm2 s�1 (Tomishige et al., 1998) is two orders of

magnitude greater than the macroscopic diffusion constant.

It is assumed that this discrepancy is explained by frequent

steric clashes between band 3 dimers and spectrin filaments,

which reduce macroscopic diffusivity (see Fig. 1). Crystal-

lography indicates that band 3 protrudes a distance of h0 ;
6 nm into the red blood cell (Zhang et al., 2000). We

assume in our model that band 3 cannot escape the confines

of a corral unless the height of the membrane at the edge of

the corral is greater than h0. We neglect the dynamics of the

cytoskeleton in creating such a gap, so the criteria for band

3 to meet an ‘‘open door’’ when it approaches the corral

boundary is simply h(r, t)[ h0. The possibility of spectrin

dynamics contributing to global diffusivity of band 3 has

been studied elsewhere (Saxton, 1989, 1990a,b; Boal, 1994;

Boal and Boey, 1995; Leitner et al., 2000; Brown et al.,

2000).

The requirement that the membrane height be greater than

h0 is not quite sufficient to allow passage because band 3

cannot instantaneously move over the cytoskeletal barrier.

The protein must diffuse over spectrin a distance approxi-

mately one-half the total sum of the diameter of the band 3

dimer and the thickness of a spectrin dimer. This distance is

;‘¼ 7 nm (Leitner et al., 2000) from which we estimate that

the time to diffuse a distance equal to ‘ is tD ¼ ‘2/4D ¼ 23

ms. Hopping from one corral to the next should not be

permitted unless the height of the membrane is greater than

h0 for an interval of tD (or some significant fraction of that

time interval; see Discussion in Brown, 2003).

The above conditions specify a dynamic gating mecha-

nism which we now quantify. We use the statistics of

membrane fluctuations to formulate an approximate trans-

mission probability (Saxton, 1995) at the edge of corral

regions. With these probabilities, it is straightforward to

estimate escape rates from an individual corral and hence

a macroscopic diffusion constant reflecting infrequent hops

between corrals.

As a first step toward the determination of a macroscopic

diffusion constant, we require the equilibrium probability

that the membrane height is greater than h0 (see Appendix C)

PðrÞ ¼ 1

2
erfc½�hhðrÞ�; (24)

where the dimensionless variable �hhðrÞ is defined as

�hhðrÞ[ h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hh2ðrÞi

q : (25)

We also need the correlated probability that the height is

greater than h0 at time t, given that the height was greater

than h0 at time 0 (see Appendix C),

Cðr; tÞ ¼ 1

PðrÞ � P2ðrÞ

3
1

2
ffiffiffiffi
p

p
ð‘
�hhðrÞ

dw erfc½Hðw; r; tÞ�e�w
2

2
64

3
75� PðrÞ

8><
>:

9>=
>;;

(26)

where

Hðw; r; tÞ[
�hhðrÞ � Aðr; tÞwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� A
2ðr; tÞ

q ; (27)

and A(r, t) is the normalized autocorrelation function

Aðr; tÞ[ hhðr; tÞhðr; 0Þi
hh2ðrÞi

: (28)

C(r, t) approximately reflects the probability that a gap of

size h0 will persist for time t (Brown, 2003). Note that both of
these quantities depend only on the autocorrelation function

for which we have the analytical solutions (to within a single

matrix diagonalization).

Results for both P(r) and C(r, t) for the free membrane

case were computed in a previous article (Brown, 2003)

using the simulation method described earlier. Here we

present results based on our analytical expressions (Eqs. 23,

24, and 26). Although our general equations are exact, the

autocorrelation function is given in terms of a complicated

sum over modes, even for the free membrane case where

Fourier modes are already diagonal. It is most meaningful to

study these solutions graphically. The parameters for the red

blood cell in Table 1 are used in all of the following. In Fig.

8, we show both the analytical results and the results from the

simulation technique described earlier. In the limit of large

statistical sampling the simulations reproduce analytical

theory as expected. The discrepancy between data shown

here and in previous work (Brown, 2003) is attributable to

two sources. In prior simulations, a programming error in the

determination of C(r, t) led to slight inaccuracies (compare

Fig. 8 with Fig. 5 of Brown, 2003). In addition, an integral

approximation for the sum over modes was previously used

(Brown, 2003) to estimate P(h0). The system size in this case

is not large enough for this approximation to be reasonably

accurate (compare Fig. 8 with Fig. 4 of Brown, 2003).

We now consider cases where the membrane surface is

explicitly pinned to the underlying spectrin skeleton to more

accurately reflect geometries expected in the red blood cell.

Plots of P(r) as a function of h0 and C(r, t) as a function of t
for pinned membranes are shown in Fig. 9 for both square

and triangular corral geometries (see Figs. 5 and 6 for the

precise locations of the pinning sites). Note that there is

a significant difference when the system size L increases to

include more corrals even though we only consider statistics

over a single corral. This behavior is expected because larger
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simulation boxes allow for inclusion of ;2L wavelength

modes as discussed previously, and net translation of the

membrane center of mass over a single corral.

In contrast, we find little difference between the large

systems (L[L) with different geometries. The net effect of

this insensitivity to geometry translates into small effects on

the macroscopic diffusion coefficient with changes in corral

shape, in agreement with previous models for the same

system (Saxton, 1995).

The presence of pinning sites slightly complicates matters

relative to the free membrane case. For a free membrane,

every point on the sheet is equivalent and hence P(r) andC(r,
t) actually display no dependence on r. The multiple lines

in the frames of Fig. 9 reflect different distances along

the boundary between pinning sites. As expected, P(r) and
C(r, t) tend to zero as the pinning sites are approached. Pin-

ned geometries favor escape of proteins from points furthest

removed from pinning sites. We note that at ;4L for both

geometries, the results no longer change with increases in the

system size so that, effectively, L is infinite for these cases.

The product C(r, tD)P(r) gives the approximate probabil-

ity that the membrane displacement is greater than h0
between times 0 and tD at position r. Fig. 10 shows plots of

this quantity for various system sizes and geometries. Using

the dynamic gating interpretation, the probability that

a protein will encounter an opening in the cytoskeletal

barrier averaged over the length of one edge of the corral is

given by

QðtDÞ[
1

L

ðL
0

dx PðxÞCðx; tDÞ: (29)

Inside the corral, we assume that that the protein executes

a random walk. In the square geometry, the corral is broken

into squares with sides length ‘ ¼ 7 nm (the approximate

distance that band 3 needs to diffuse to get over the

cytoskeleton). The protein has a probability Q(tD) of

escaping if it is both adjacent to the boundary and moving

FIGURE 8 Analytical and simulation results for statistical quantities

related to thermal membrane undulations discussed in the text. The upper

plot shows the probability that the height is greater than h0 as a function of h0
for a free membrane with L ¼ L ¼ 140 nm. The lower plot shows the

number correlation function as a function of time for the same system, but

with h0 ¼ 6 nm (the size of band 3). Analytical results are based on Eqs. 23,

24, and 26 with physical parameters taken from Table 1. Simulation data

based on Eqs. 15 and 16 is plotted for different sample sizes. At 105 samples,

the data is indistinguishable from the analytical results on the scale of this

figure. The value of L ¼ 140 nm is chosen for comparison with our previous

results (Brown, 2003).

FIGURE 9 Statistical quantities that charac-

terize protein mobility for L ¼ 112 nm. Each

column represents a particular geometry and

system size (L) shown in parenthesis. The

upper plots show the probability that the height

is greater than h0 as a function of h0. The lower

plots show the number correlation function as

a function of time using h0 ¼ 6 nm. We plot at

several values of x using constant y ¼ 0 for the

square geometry and y ¼ L for the triangular

geometry so that the x coordinate always

moves along the edge of the corral (refer to

Figs. 5 and 6 for the location of the pinning

sites). For all plots, the case of the free

membrane with L ¼ L is shown for reference.

In the case of a pinned system with L ¼ L, the
plot at the midpoint of the corral edge (x ¼
0.5L) is essentially indistinguishable from the

plot for the free membrane. The same is not

true for the larger systems, where P(r) andC(r,
t) at x ¼ 0.25L are already larger than the free

membrane values. The square and triangular

systems saturate at 4L so that the plots are the

same as for L ¼ ‘.
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toward the fence. The probability of being on a boundary

square is fsq ¼ (4N � 4)/N2, where N ¼ L/‘, and the

probability of moving in the right direction is 1/4. The total

rate of escape from the corral is then ksq ¼ fsqQsq(tD)/(4tD).
For the triangular geometry, we use equilateral triangles for

the corrals even though the geometry in Fig. 6 is slightly

different. The lack of sensitivity to geometry allows us to

make these changes without affecting the results signifi-

cantly. The equilateral triangular corral is broken up into a set

of smaller equilateral triangles with sides 2‘=
ffiffiffi
3

p
. Assuming

that the protein sits in the center of these triangles, we have

diffusion on a hexagonal lattice with steps length ‘. The
fraction of the triangles on the boundary is ftr ¼ (3N� 3)/N2,

where N ¼
ffiffiffi
3

p
L=2‘, and the probability of moving in the

right direction is 1/3. The total escape rate for this geometry

is ktr ¼ ftrQtr(tD)/(3tD).
We nowmodel the global diffusion of proteins as a random

walk between corrals with escape rate k. For the square

geometry, the diffusion occurs on a square lattice with

spacing L and the macroscopic diffusion constant is (see

Appendix C)

Dmacro ¼
ksqL

2

4
: (30)

For the triangular geometry, the diffusion occurs on

a hexagonal lattice with sides length
ffiffiffi
3

p
L=2 and (see

Appendix C)

Dmacro ¼
3ktrL

2

16
: (31)

The values of the macroscopic diffusion constants for

various geometries, system sizes, and corral lengths are listed

in Table 2. Again, we note that increasing the corral size

significantly affects the results, whereas the geometry does

not. For this reason, we will restrict our focus to the results

for the square geometry. To make contact with experiment,

TABLE 2 Table of calculated macroscopic diffusion constants

L (nm) Geometry System size Pinning Escape probability Dmacro (mm
2 s�1)

70 Square L Free 1.2 3 10�11 5.7 3 10�11

Square L Pinned 5.3 3 10�12 2.5 3 10�11

Square ‘ Pinned 1.0 3 10�4 5.0 3 10�4

73 Triangle ‘ Pinned 1.2 3 10�4 5.6 3 10�4

84 Square L Free 6.7 3 10�8 3.9 3 10�7

Square L Pinned 3.2 3 10�8 1.9 3 10�7

Square ‘ Pinned 9.5 3 10�4 5.6 3 10�3

89 Triangle ‘ Pinned 1.3 3 10�3 8.0 3 10�3

112 Square L Free 1.2 3 10�4 9.2 3 10�4

Square L Pinned 6.1 3 10�5 4.8 3 10�4

Square ‘ Pinned 8.7 3 10�3 7.0 3 10�2

113 Triangle ‘ Pinned 8.3 3 10�3 6.6 3 10�2

140 Square L Free 2.4 3 10�3 2.5 3 10�2

Square L Pinned 1.4 3 10�3 1.4 3 10�2

Square ‘ Pinned 2.6 3 10�2 2.6 3 10�1

137 Triangle ‘ Pinned 2.2 3 10�2 2.2 3 10�1

The pinning geometries are as shown in Figs. 5 and 6. The notation L ¼ ‘ indicates that we have used a system size such that the results no longer change

with increases in L, which in practice occurs at ;4L. For the square geometry, L is a multiple of ‘ ¼ 7 nm. For the triangular geometry, L is a multiple of

2‘=
ffiffiffi
3

p
as required for diffusion on a hexagonal lattice of sides ‘. The diffusion constant for L ¼ 12‘ ¼ 84 nm large square pinned system (Dmacro ¼ 5.6 3

10�3 mm2 s�1) and L ¼ 11ð2‘=
ffiffiffi
3

p
Þ ;89 nm large triangular pinned system (Dmacro ¼ 8.0 3 10�3 mm2 s�1) give the best agreement with the experimental

value Dmacro ¼ 6.6 3 10�3 mm2 s�1 (Tomishige et al., 1998).

FIGURE 10 Plot of the opening proba-

bility P(x)C(x, tD) as a function of x/L with

L ¼ 112 nm and h0 ¼ 6 nm for different

geometries and system sizes (L) shown in

parentheses. The systems used here are the

same as those used in Fig. 9. We use

constant y ¼ 0 for the square geometry and

y ¼ L for the triangular geometry (refer to

Figs. 5 and 6 for the location of the pinning

sites). For reference, the value of the

escape probability for the free membrane

is 0.12 3 10�3. The larger systems have

average probabilities that are more than an

order of magnitude larger than the smaller

systems. The geometry, however, makes little difference. Notice the slight drop near x ¼ 0.5L for the case L ¼ L. The longest wavelength mode in this case

goes through zero at the midpoint, causing a dip that is an artifact of periodicity over the length scale of the corral. In the larger systems, the dominant modes

have longer wavelengths and this behavior is not observed.
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we note that measurements done by single particle tracking

have found distributions of corral sizes from 50 to 200 nm

and distributions of macroscopic diffusion constants ranging

from 10�1 to 10�3 mm2s�1 with median values L ;110 nm

and Dmacro ;6.6 3 10�3 mm2 s�1 (Tomishige et al., 1998).

In comparison to the large system sizes where boundary

condition artifacts are absent, we see that for L¼ 112 nm, the

predicted diffusion constant is approximately an order of

magnitude larger than the median experimental value. A

corral size of 84 nm, however, approximately reproduces the

median macroscopic diffusion constant.

The simplifications and approximations in our model

prevent us from making detailed quantitative predictions.

Indeed, the significant spread in experimental data makes

comparison to theory difficult even for a more refined model.

However, the fact that membrane undulations within our

model lead to global diffusion faster than observed in

experiment clearly indicates that bilayer fluctuations cannot

be ignored in this system. Membrane undulations likely play

an important role in the mobility of band 3 on the surface of

the red blood cell.

In the above calculations, we have fixed the value h0 ¼ 6

nm to agree with the experimentally determined structure of

band 3 (Zhang et al., 2000). For completeness, we show that

variation of the height required for the passage of the protein

can have large effects on the macroscopic diffusion constant.

Fig. 11 shows the case for a system L ¼ 4L with square

pinning. Increasing h0 from 6 nm to 10 nm decreases the

macroscopic diffusion constant by an order of magnitude.

Experimentally, cleaving of the cytoplasmic domain of band

3 by trypsin increases the macroscopic diffusion constant by

an order of magnitude while leaving the microscopic

diffusion constant the same (Tomishige et al., 1998). This

observation is in qualitative agreement with the trend that we

predict, although different models involving thermal motions

of spectrin would be expected to make similar predictions

(Boal and Boey, 1995). To our knowledge, there has been no

systematic study that measures the diffusion constants for

different sizes of cleaved band 3 or other proteins.

Thermal conformational gating has previously been

implicated as a mechanism for enzyme specificity (Zhou

et al., 1998). Fig. 11 suggests that thermal membrane

undulations lead to a similar specificity in the global dif-

fusion of membrane-bound proteins. Proteins with large

cytoplasmic domains will diffuse more slowly than proteins

with smaller internal domains.

DISCUSSION

We have introduced a dynamic model for pinned membranes

that allows for simulations over biologically relevant length

and timescales. In addition, the harmonic nature of the model

leads to analytically tractable (requiring a single matrix

diagonalization) expressions for various statistical quantities,

such as the height autocorrelation function, which we have

used to characterize protein mobility. We have presented for

the first time analytical results for the free membrane model

from a previous article (Brown, 2003), and have extended

these results by adding a general harmonic interaction.

Specifically, this harmonic potential is used to mimic pinning

of the membrane to the cytoskeleton. With this pinning

interaction, we can increase the size of the membrane

although maintaining the size of the corral, creating a more

realistic model of the bilayer which includes longer wave-

length modes not present in the free sheet model. Inclusion

of these modes increases the macroscopic diffusion constant

by an order of magnitude or more depending on the corral

size.

Our previous success (Brown, 2003) in using free

membrane statistics to study the mobility of membrane-

bound proteins turns out to be largely fortuitous. Pinning

interactions decrease Dmacro when L ¼ L relative to the free

membrane by quenching undulations. However, increasing

the system size in pinned systems so that L [ L increases

undulation amplitudes by removing artifacts of periodic

boundary conditions over the corral dimension. For the

length scales studied here, the effect of increasing system

size more than compensates for quenching caused by

pinning interactions. The free membrane statistics actually

do a poor job relative to our pinned simulations at the smaller

end of the experimentally determined L distribution. At the

higher end the free sheet model performs better, but still

underestimates Dmacro by an order of magnitude relative to

pinned geometries in large systems.

In developing a model that is applicable to long times and

large distances, we have ignored many of the detailed

interactions between the bilayer, proteins, and cytoskeleton

that are present in real cellular systems. In our application to

protein mobility, the membrane is approximated as a contin-

uous sheet and all interactions are ignored with the exception

of pinning to the underlying spectrin matrix and the

interaction between band 3 and the cytoskeleton (modeled

approximately by our dynamic gating mechanism). In

particular, our harmonic model is not able to account for

FIGURE 11 Plot of the macroscopic diffusion constant Dmacro as

a function of h0 for a square pinned membrane with L ¼ 112 nm and L ¼
4L. Global diffusivity shows a strong dependence on the extent of

intracellular protrusion of the mobile protein.

774 Lin and Brown

Biophysical Journal 86(2) 764–780



the short-ranged repulsive interactions between the cyto-

skeleton and bilayer. Inclusion of such effects may alter the

calculated numerical values for Dmacro, but should not alter

our qualitative conclusions. Even with pinning, thermal

membrane undulations have significant amplitudes over the

length scale of red blood cell corrals. These undulations must

play a role in global mobility of transmembrane proteins.

The physical constants we have used in our study are

taken from experimental measurements as discussed pre-

viously (Brown, 2003). Although we have neglected certain

physical phenomena in our modeling, the use of experimen-

tal numbers for D and Kc do take some details of the cellular

environment implicitly into account. For instance, although

Kc is expected to vary in the vicinity of a pinning site or band

3 protein, we have not explicitly included this effect in our

model. The experimental value we have used for Kc takes

such inhomogeneity into account in an averaged sense. We

do not, however, capture correlations between diffusion and

membrane undulations in our model—an effect which can

be important in other biophysical phenomena (Kumar and

Rao, 1998; Kumar et al., 2001). Similarly, although the

experimental value for D does take into account interactions

with other diffusive and anchored proteins in the bilayer in

an averaged way, we neglect correlations between micro-

scopic mobility and position in the bilayer. Hydrodynamic

drag in the two-dimensional sheet may cause slower motion

near pinning sites. Because proteins cannot effectively

escape near these sites, we do not expect this omission to

be a serious shortcoming of our modeling.

In conclusion, we have presented a simulation methodol-

ogy for lipid bilayers based on Helfrich elastic energetics

(Helfrich, 1973) and nonlocal, overdamped Langevin

dynamics (Milner and Safran, 1987; Schneider et al., 1984;

Brochard and Lennon, 1975; Granek, 1997). In contrast with

a related previous study (Brown, 2003), this methodology is

applicable to membrane surfaces with external interactions.

The present study uses a normal mode decomposition in

Fourier space to evolve systems forward in time and is

dependent upon the harmonic nature of the interactions we

have assumed. For strong pinning, a harmonic potential is

adequately effective and we have been able to simulate

dynamic pinned membrane surfaces with this algorithm. We

note that Fourier space Monte Carlo methods have been used

to study equilibrium properties of membrane surfaces

(Gouliaev and Nagle, 1998a,b). This report is the first that

we are aware of to model dynamic membranes that are

explicitly pinned, although there are theories for the partition

function of membranes with anchored segments (Weikl and

Lipowsky, 2000). A recent letter (Gov et al., 2003) has

studied longer wavelength membrane modes (longer than L)
in the red blood cell by incorporating a completely

delocalized attraction between cytoskeleton and lipid bi-

layer. Though very interesting in its own context, this study

does not seem directly applicable to the question of

membrane protein diffusion. Our results are useful for

analyzing large membranes with multiple pinning sites and

different geometries, and, specifically, have been used to

study the mobility of band 3 on the surface of the red blood

cell. For this application, we were able to derive our results

analytically and verify them by simulation. From the

calculated macroscopic diffusion constants we conclude that

thermal membrane undulations are likely to play a role in the

global diffusion of proteins over the surface of the

membrane. Although we have examined the red blood cell

because it is widely studied experimentally, steric interaction

with the cytoskeletal filaments has been implicated in

hindering protein diffusion for other cellular systems

(Fleming, 1987; Saxton and Jacobson, 1997; Winckler

et al., 1999; Saxton, 1990b). The qualitative findings of our

study, that membrane undulations can affect protein mo-

bility, may hold for these more complicated systems as well.

APPENDIX A

Diagonalization of the Hamiltonian and
Langevin equations

To find the eigenmodes of the system defined by Eqs. 2 and 10, we make the

change of variables,

hk ¼
ffiffiffiffiffiffi
Lk

p
h̃k: (A1)

To put our equations in a matrix form,

H ¼ 1

2L2 +
kk9

h̃
�
kM̃kk9h̃k9

@h̃kðtÞ
@t

¼ �+
k9

M̃kk9h̃k9ðtÞ1
ffiffiffiffiffiffi
Lk

p
zkðtÞ; (A2)

where

M̃kk9 [
ffiffiffiffiffiffiffiffiffiffiffiffi
LkLk9

p
Kck

4
dkk9 1

1

L2 Vk�k9

� �
(A3)

is a Hermitian matrix. Because h(r, t) is real, we must have h̃
�
k ¼ h̃�k so that

we do not have the freedom to specify both h̃k and h̃�k: Let the real and

imaginary parts of the amplitude be h̃k [ ãk1ib̃k so the condition that h(r, t)
be real implies ãk ¼ ã�k and b̃k ¼ �b̃�k: We also define the real and

imaginary parts M̃kk9 [ X̃kk91iỸkk9, and Vk [ Tk 1 iUk, giving

X̃kk9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
LkLk9

p
Kck

4
dkk9 1

1

L2 Tk�k9

� �

Ỹkk9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
LkLk9

p 1

L2 Uk�k9

� �
: (A4)

Because M̃ is Hermitian, we must have X̃ ¼ X̃
T
and Ỹ ¼ �Ỹ

T
: Definingffiffiffiffiffiffi

Lk
p

zkðtÞ[ f̃kðtÞ1ig̃kðtÞ and rewriting Eq. 11, the random forces satisfy

hf̃kðtÞi ¼ hg̃kðtÞi ¼ 0

hf̃kðtÞg̃k9ðt9Þi ¼ 0

hf̃kðtÞf̃k9ðt9Þi ¼ hg̃kðtÞg̃k9ðt9Þi ¼ kBTL2
dk;k9 dðt � t9Þ: (A5)
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To simplify the notation, we use bold upper-case letters to signify matrices

and bold lower-case letters to signify vectors. With the definitions above, the

Hamiltonian and Langevin equations are

H ¼ 1

2L2 ½ãX̃ã1 b̃X̃b̃1 b̃Ỹã� ãỸb̃�

@ã
@t

¼ �ðX̃ã� Ỹb̃Þ1 f̃

@b̃
@t

¼ �ðỸã1 X̃b̃Þ1 g̃; (A6)

where matrix multiplication is implied.

For this and the following appendices, let q represent the wave vectors for

only those modes that are independent so that only one of k and�k are in the

set q. Using Vk ¼ V�
�k; which implies that Tk ¼ T�k and Uk ¼ � U�k, we

define

Pqq9 [ X̃q;q9 ¼ X̃�q;�q9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
LqLq9

p
Kck

4
dqq9 1

1

L2 Tq�q9

� �

Qqq9 [ X̃q;�q9 ¼ X̃�q;q9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
LqLq9

p 1

L2 Tq1q9

� �

Rqq9 [ Ỹq;q9 ¼ �Ỹ�q;�q9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
LqLq9

p 1

L2 Uq�q9

� �

Sqq9 [ Ỹq;�q9 ¼ �Ỹ�q;q9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
LqLq9

p 1

L2 Uq1q9

� �
; (A7)

so that schematically,

X̃ ¼ P Q
Q P

� �
and Ỹ ¼ R S

�S �R

� �
: (A8)

Let a and b be vectors of only the independent amplitudes aq and bq and

similarly for f and g. In terms of these definitions,

H ¼ 1

L2 ½aðP1QÞa1 bðP�QÞb

1 bðR1 SÞa1 að�R1 SÞb�
@a
@t

¼ �ðP1QÞa� ð�R1 SÞb1 f

@b
@t

¼ �ðR1 SÞa� ðP�QÞb1 g; (A9)

which is simplified further if we write

H ¼ 1

L2 cMc

@c
@t

¼ �Mc1 p; (A10)

where we define c [ (a, b), p [ (f, g), and the matrix

M ¼ P1Q �R1 S
R1 S P�Q

� �
: (A11)

The random forces satisfy

hpiðtÞi ¼ 0

hpiðtÞpjðtÞi ¼ kBTL2
dij dðt � t9Þ: (A12)

The fact that P ¼ PT, Q ¼ QT, R ¼ �RT, and S ¼ ST implies that M is

a symmetric matrix and can be diagonalized with an orthogonal

transformation U. Let vi be the eigenvalues, d [ U�1c, and z [ U�1p,
so that

H ¼ 1

L2 +
i

vi d
2

i

@diðtÞ
@t

¼ �vi diðtÞ1 ziðtÞ; (A13)

where zi are random forces that satisfy

hziðtÞi ¼ 0

hziðtÞzjðtÞi ¼ kBTL2
dij dðt � t9Þ: (A14)

Finally, we express h(r, t) in terms of the eigenmodes di

hðr; tÞ ¼ 1

L2 +
k

hkðtÞ eik�r ¼
1

L2 +
k

ffiffiffiffiffiffi
Lk

p
h̃kðtÞ eik�r

¼ 2

L2 +
q

ffiffiffiffiffiffi
Lq

p
½aqðtÞ cosðq � rÞ � bqðtÞ sinðq � rÞ�

¼ wðrÞc ¼ wðrÞUd; (A15)

where the vector w is defined as

wðrÞ ¼ 2

L2 ðf
ffiffiffiffiffiffi
Lq

p
cosðq � rÞg; f�

ffiffiffiffiffiffi
Lq

p
sinðq � rÞgÞ:

(A16)

If we define the vector

vðrÞ[wðrÞU; (A17)

then in terms of the eigenmodes, the height is given by

hðr; tÞ ¼ +
i

viðrÞdiðtÞ: (A18)

For completeness, we generalize pinning at sites Ri in two dimensions to

pinning at sites (Ri, zi) in three dimensions by rewriting the harmonic term in

the Hamiltonian as

g

2

ð
A

dr+
i

dðRiÞ½hðrÞ � zi�2: (A19)

The resulting equations in Fourier space analogous to Eq. A10 are

H ¼ 1

L2 ðc� CÞMðc� CÞ

@

@t
ðc� CÞ ¼ �Mðc� CÞ1 v; (A20)

where

C ¼ gL2

2
+
i

zi M
�1wðRiÞ: (A21)

The essential difference is a shift in the variable c. The results previously

derived are valid if this modification is made throughout.

APPENDIX B

Addition of the k ¼ 0 mode

For the k¼ 0 mode, the k and�kmode are the same so that we must modify

the transformation in Eq. A1 to be
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hk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11 dk;0ÞLk

p
h̃k: (B1)

Because h̃0 ¼ ã0 is real, there is no b̃0 mode. Applying the transformation,

Eqs. A2 and A3 become

H ¼ 1

2L2 +
kk9

h̃
�
kM̃kk9h̃k9

@h̃kðtÞ
@t

¼ �+
k9

M̃kk9h̃k9ðtÞ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lk

ð11 dk;0Þ

s
zkðtÞ; (B2)

where

M̃kk9 [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11 dk;0Þð11 dk9;0ÞLkLk9

p
11 dk;0 dk9;0

Kck
4
dkk9 1

1

L2 Vk�k9

� �
;

(B3)

and the k ¼ 0 mode is included in all sums. We use

hz0ðtÞi ¼ 0

hz0ðtÞz0ðt9Þi ¼ 2kBTL2
L

�1

0 dðt � t9Þ; (B4)

and the definition f̃0ðtÞ[
ffiffiffiffiffiffiffiffiffiffiffi
L0=2

p
z0; to write the fluctuation-dissipation

relation

hf̃0ðtÞi ¼ 0

hf̃0ðtÞf̃0ðt9Þi ¼ kBTL2
dðt � t9Þ: (B5)

We keep Eq. A10, but with the definitions c [ (a, a0, b), p [ (f, f0, g),
and

M ¼
P1Q t �R1 S

t t0 u
R1 S u P�Q

0
@

1
A; (B6)

where

tq ¼
1

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2L0Lq

p
Tq

uq ¼
1

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2L0Lq

p
Uq

t0 ¼
L0T0

L2 : (B7)

The rest of Appendix A holds except with

wðrÞ ¼ 2

L2

ffiffiffiffiffiffi
Lq

p
cosðq � rÞ

n o
;

ffiffiffiffiffiffi
L0

2

r
; �

ffiffiffiffiffiffi
Lq

p
sinðq � rÞ

n o !
:

(B8)

The membrane must be pinned for the inclusion of the k ¼ 0 mode to be

meaningful. The free membrane with a k ¼ 0 mode has an equal probability

of being anywhere in space, forcing the mean-square displacement to

become infinite.

According to Eq. 9, the value of L0 diverges in our model where each

point on the membrane is hydrodynamically coupled to all other points. For

the k ¼ 0 mode only, we replace Eq. 10 with

@h0ðtÞ
@t

¼
ð
A

dr
ð
A

dr9Lðr� r9Þ½Fðr9; tÞ1zðr9; tÞ�; (B9)

so that we only integrate over the area of the corral. It is not clear how to

specify L0 when there is a pinning interaction and all modes are coupled in

the force F(r, t), but we can attempt to give a value for a single square of

free membrane diffusing by itself. If we assume that there is a constant

force per unit area f over the surface, then the center of mass velocity is

given by

vCM ¼ fL

8ph

ð1
0

drdr9
1

jr� r9j ’
3 fL

8ph
; (B10)

where the integral has been done numerically. We identify the coefficient in

front of the f to be L0 ¼ 3L/8ph which is the value we use in our

simulations.

APPENDIX C

Macroscopic diffusion constant

The equilibrium probability that the height is greater than h0 is

PðrÞ[hQðdhðrÞÞi

¼
ðdhðrÞ
�‘

dudðuÞ
* +

¼
ð‘
h0

du

ð‘
�‘

dp

2p
heiphðrÞie�ipu

; (C1)

where dh(r) [ h(r) � h0. We have used the integral representation of the

Heaviside step function Q and the spectral representation of the delta

function (Arfken andWeber, 2001). As a consequence of the fact that we can

expand h(r) in eigenmodes with Gaussian probability distributions, the

cumulant expansion for heiph(r)i is exact at second order (van Kampen,

1992). The equilibrium probability is thus equivalently written

PðrÞ ¼
ð‘
�‘

dp

2p

ð‘
h0

due
�ð1=2Þhh2ðr;tÞip2�ipu

: (C2)

Performing the Gaussian integrals recovers the results in Eqs. 24 and 25. The

probability is completely specified by the mean-square displacement from

Eq. 22.

The correlated probability that the height is greater than h0 at time t given
that it was greater than h0 at time 0 is given by the number correlation

function

Cðr; tÞ[ hsðr; tÞsðr;0Þi
hs2ðrÞi

¼ hQðdhðr; tÞÞQðdhðr;0ÞÞi�P
2ðrÞ

PðrÞ�P
2ðrÞ

; (C3)

where sðr; tÞ[Qðdhðr; tÞÞ � hQðdhðr; tÞÞi and dh(r, t) [ h(r, t) � h0. The

quantity

hQðdhðr; tÞÞQðdhðr;0ÞÞi

¼
ð‘
�‘

dp

2p

ð‘
�‘

dq

2p

ð�h0

�‘

du

ð�h0

�‘

dvheiphðr;tÞ1iqhðr;0Þieipu1iqv
(C4)

is calculated in the same way as P(r) noting that

heiphðr;tÞ1iqhðr;0Þi ¼ e�ð1=2Þh½phðr;tÞ1qhðr;0Þ�2i
: (C5)

Performing the Gaussian integrals, we recover the results in Eqs. 26–28.

This result is similar to previous results for number correlation functions for

a single Gaussian mode diffusing in a harmonic well (Zhou et al., 1998;

Brown, 2003).
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In the text, we compute an escape rate k from the corral using P(r) andC(r, t).
We define a random walk on the lattice created by the centers of the corrals

with time step Dt ¼ 1/k. For the square lattice with sides L, the mean-square

distance after N steps is

hR2ðNDtÞi ¼NL
2
[4DmacroNDt; (C6)

from which we derive Eq. 30. Similarly, we compute the same quantity for

a random walk on a hexagonal lattice with sides
ffiffiffi
3

p
L=2; which is applicable

to the triangular geometry. The correlations between steps at different times

all vanish and the result is

hR2ðNDtÞi ¼N

ffiffiffi
3

p
L

2

� �2

[4DmacroNDt; (C7)

from which we recover Eq. 31.
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