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ABSTRACT Advances in biotechnology and computer science are providing the possibility to construct mathematical models
for complex biological networks and systematically understand their properties. Traditional network identification approaches,
however, cannot accurately recover the model parameters from the noisy laboratory measurements. This article introduces the
concept of optimal identification (OI), which utilizes a global inversion algorithm to extract the full distribution of parameters
consistent with the laboratory data. In addition, OI integrates suitable computational algorithms with experimental capabilities in
a closed loop fashion to maximally reduce the breadth of the extracted parameter distribution. The closed loop OI procedure
seeks out the optimal set of control chemical fluxes and data observations that actively filter out experimental noise and
enhance the sensitivity to the desired parameters. In this fashion, the highest quality network parameters can be attained from
inverting the tailored laboratory data. The operation of OI is illustrated by identifying a simulated tRNA proofreading mechanism,
in which OI provides superior solutions for all the rate constants compared with suboptimal and nonoptimal methods.

INTRODUCTION

Mathematical modeling and computer simulation have long

been recognized as important approaches in studying many

aspects of biology (Bower, 2001; Murray, 2002). Over the

last decade, advances in biotechnology and computer science

have made these tools increasingly useful in investigating

complex biomolecular systems, including gene regulatory

networks (McAdams and Arkin, 1998; Smolen et al., 2000;

Hasty et al., 2001; Jong, 2002), metabolic systems (Mendes

and Kell, 1998; Bailey, 1998; Giersch, 2000; Covert et al.,

2001), signal transduction pathways (Endy and Brent, 2001;

Hoffmann et al., 2002), and neural networks (Dayan and

Abbott, 2001). The resultant models of these processes can

be qualitative or quantitative. The qualitative models usually

describe the connectivities and regulatory relationships

among the biosystem components in simple graphical forms,

whereas the quantitative models contain more information

such as detailed reaction mechanisms and associated

parameters. In this article, we address relevant issues in

identifying quantitative models at the molecular level,

although similar logic would also apply to models at other

levels.

In constructing a quantitative biosystem model, the form

of the mathematical equations are first established on

physical and biological grounds, as well as through previous

knowledge about the system. To determine the system

parameters from laboratory data, it is often necessary to

introduce specific disturbances (e.g., chemical fluxes) to

induce transient responses. The resultant typically temporal

responses of some suitable biomolecular components are

then recorded and the desired model parameters (e.g.,

reaction rate constants, diffusion coefficients, binding

affinities, etc.) are extracted by inverting the laboratory data.

Various issues need to be considered in extracting these

parameters, including data noise, the limited amount of

laboratory data, as well as the nonlinearity of most models.

These issues dictate that generally a distribution of param-

eters will exist where each set of parameters in the distri-

bution reproduces the laboratory data to within its error

range. However, most current inversion methods provide

only one or a small set of parameters and subsequently

unreliable model predictions.

In this article, we propose a general optimal identification

(OI) procedure for finding the best attainable model

parameters. Unlike traditional identification methods, OI

aims at recovering the full family of parameter values

consistent with the laboratory data. Most importantly, OI

integrates various computational algorithms with the exper-

imental capabilities, which operate together in a closed-loop

fashion to efficiently reduce the breadth of distribution for

the extracted parameter family. OI is achieved by the closed-

loop operations aiming to determine the optimal laboratory

controls (e.g., external chemical fluxes) and observations for

obtaining the best quality system parameters. In this fashion,

the parameter values can be extracted with minimum

uncertainty. The ‘‘Optimal identification algorithm’’ section

describes the general OI operations. The capability of OI is

compared with nonoptimal and suboptimal methods in the

‘‘Illustration’’ section in a simulated identification of a tRNA

proofreading mechanism. The conclusions are presented in

the ‘‘Conclusion’’ section.

THE OPTIMAL IDENTIFICATION ALGORITHM

OI is rooted in the general concepts of closed-loop control

(Brogan, 1985; Judson and Rabitz, 1992). In the sciences,

the concepts and techniques of closed-loop control have been

employed to achieve desired states or properties of the

various systems, such as to alter chemical reaction processes

(Assion et al., 1998), to selectively rearrange covalent bonds
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(Levis et al., 2001), to manipulate quantum system behavior

(Rabitz et al., 2000; Bartels et al., 2000; Weinacht et al.,

1999), to optimize semiconductor properties (Kunde et al.,

2000), and recently to design/optimize molecular or system

behavior in a number of areas in biology (Yokobayashi et al.,

2002; Mayer and Arnold, 2002; Csete and Doyle, 2002; Yi

et al., 2000; Ku et al., 2004). Identifying system parameters

in a closed-loop fashion has also been studied, but mostly

concerning linear systems in nonbiological areas and using

gradient based methods (Ljung, 1999; Walter et al., 1997).

OI instead identifies the model parameter distribution in

a global and nonlinear fashion, and it utilizes a nonlinear

learning algorithm to guide the choice of iterative controls so

that the most accurate system information (e.g., the best

model parameter values characterized as having the

narrowest error distribution) can be extracted from a mini-

mum number of experiments. OI has shown the capability of

being highly effective in inverting quantum-mechanical

observations (Geremia and Rabitz, 2002, 2003), and this

article explores its applicability in biomolecular system

identifications.

Fig. 1 shows the general components forming the OI

procedure for identifying bionetwork model parameters.

There are three basic components: the analysis module,

the control module, and the inversion module. To initiate

operations, a proposed model is examined in the analysis

module to estimate: a), the best biomolecular species for

monitoring the network behavior, and b), the best bio-

molecular fluxes for controlling (disrupting) the system.

Based on these initial analysis results, a number of trial

controls are applied in the laboratory and the biosystem’s

temporal responses are recorded. The inversion module then

extracts the full family of model parameters that quantita-

tively reproduce the system’s behavior in each trial control

experiment within the reported or estimated laboratory

errors, and the ‘‘quality’’ of the parameter family is specified

by the distribution of consistent parameters. The parameter

distribution is very likely not Gaussian or symmetric due to

FIGURE 1 General OI operational procedure for iden-

tifying bionetwork model parameters. The proposed

mechanism and previous knowledge of the biosystem is

provided for the analysis module, which estimates the

biomolecular species for controlling the system (xc) and
recording the responses (xr). In the control module, time-

dependent trial controls uc(t) are applied and the system’s

behavior Xr(t) is measured. The inversion module extracts

the full distribution of parameters k consistent with the

laboratory data and calculates its inversion quality Qinv,

which is then returned to the learning algorithm in the

control module to calculate the control cost Jctrl for

selecting new experiments, with the purpose of achieving

better inversion quality. This iterative operation continues

until the best attainable quality is achieved for all the model

parameters under any laboratory constraints R(u, X).
Occasionally, the laboratory data and the extracted

parameter distributions may be fed back to the analysis

module to update the choices of controls xc and

observations xr.
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the typically highly nonlinear relationship between the

laboratory data and the system parameters. Some measure

of the distribution breadth (e.g., its combined left and right

half widths) needs to be chosen as the ‘‘cost’’ associated with

each trial control. In real applications, the laboratory

constraints on the accessible controls and observations can

also be included in the cost function. The control loop is

closed by feeding the cost back to the control module to

determine the next generation of trial controls, aiming to

further reduce the breadth of the distribution. This iterative

process continues until the best inversion quality (i.e.,

the narrowest parameter distribution) is obtained for all the

parameters. The remainder of this section presents the

detailed operations in each module of the OI ‘‘machine’’ in

Fig. 1.

The analysis module

An important property of many biomolecular systems is their

robustness to both internal variations (e.g., most random

gene mutations) and external disturbances (e.g., environ-

mental changes). This property implies that arbitrary control

perturbations to a biosystem may result in a minimal

response in many of its molecular components. Thus, if the

OI experiments are not appropriately designed, it is very

likely that little information of value can be recovered from

the experimental measurements for identifying the model

parameters. Most current biosystem identification methods

use experience, intuition, or simple analyses to select the

biomolecular species for controls and those for recording the

system’s response. This rather heuristic approach is un-

satisfactory for biosystems with complex architectures,

whose behavior is very hard to anticipate in this fashion.

In OI, the analysis module is introduced to provide the best

estimate of how to disturb and observe the biosystem with

the identification goal in mind. The module employs various

system dependent sensitivity analysis algorithms utilizing

available semiquantitative or qualitative information about

the system. The analysis module may be revisited a number

of times during OI operations to sharpen up the estimates as

the distribution of parameters improves. The module would

also consider all relevant ancillary information including

restrictions on utilizing particular controls, species detection

capabilities, anticipated data errors, and any prior limitations

on biosystem response behavior (e.g., toxic response limits).

Using a biochemical reaction network as an example,

consider a system containing N species x ¼ (x1, x2, . . . , xN)
and M unknown reaction rate constants k ¼ (k1, k2, . . . , kM)
with its dynamic behavior described by N ordinary

differential equations (ODEs).

dXn

dt
¼ fnðX; k; unðtÞÞ n ¼ 1; 2; . . . ;N: (1)

In Eq. 1, Xn is the concentration of xn, un(t) is the time-

dependent external control associated with xn, such as

a chemical flux of xn or an influx of other molecules that

selectively regulate the activity of xn. This work utilizes

a model of this form, but other types of models (e.g.,

stochastic, spatiotemporal, etc.) may be employed depend-

ing on the nature of the biosystem. Given this mechanistic

model, the analysis module serves to estimate: a), the

sensitivities of all the concentrations X with respect to

variations in the unknown rate constants k, and b), the

sensitivities of the concentrations X with respect to the

possible controls u(t). Different approaches may be used to

calculate these sensitivities depending on the particular

circumstances. In this work, the RS-HDMR (Random

Sampling—High Dimensional Model Representation) al-

gorithm (G. Li et al., 2001, 2002) is used for the analysis in

a, and a simple method is employed for the analysis in b.

The RS-HDMR algorithm is a global sensitivity analysis

technique that can decompose the total sensitivities into first,

second, and higher-order terms. The notion of order refers to

number of rate constants interacting, likely in a nonlinear

fashion, contributing to the members of X. Calculations by
RS-HDMR require at least an initial estimate of the

following: the mechanistic model, the steady-state concen-

trations X* (to be used as initial values for ODE

integrations), and the dynamic range [k<m, k
>
m] for each rate

constant km. All these estimates often are either readily

available or can be established from a few experiments in

many real applications.

To estimate the general sensitivity of Xn to k, normally

several thousand sets of randomly chosen rate constants ks

(s ¼ 1, 2 , . . . , S) are generated over the range [k<, k>]. The
temporal concentration profile of the system is then obtained

for each ks by integrating the ODEs, and the total sensitivity

st(Xn) of Xn at time t is calculated as a relative standard

deviation

stðXnÞ ¼
1

S
+
S

s¼1

ðXs

n;tÞ
2 � 1

S
+
S

s¼1

ðXs

n;tÞ
� �2

" #1=2,
wn;t; (2)

where Xs
n;t is the concentration of xn at time t for sample s,

and wn,t is a weight factor that normalizes the absolute

standard deviation of Xn,t. The total sensitivity st(Xn) is

decomposed into a set of contributions,

s
2

t ðXnÞ ¼ +
M

m¼1

s
2

t ðXn; kmÞ1 +
1#m\m9#M

s
2

t ðXn; ðkm; km9ÞÞ1 . . . ;

(3)

where the first-order term st(Xn, km) represents the effect that
the single independent variable km has on Xn, and the second-

order term st(Xn, (km, km9)) reflects the cooperative influence

of km and km9 on Xn, etc. The details of the decomposition are

discussed elsewhere (G. Li et al., 2001, 2002).

The sensitivity of Xn with respect to un9 is estimated by

applying simulated constant influxes of un9 to the system.
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G random samples (usually a few hundred) of the un-

identified parameters kg(g ¼ 1, 2, . . . , G) are generated for

averaging purposes, and the normalized sensitivity is

calculated by

sðxn; un9Þ ¼
1

T
+
tT

t¼t1

1

G
+
G

g¼1

jXg

n;t � X
steady

n j
Un9=wn9

ðn 6¼ n9Þ; (4)

where Xsteady
n is the steady-state concentration of xn,Un9 is the

magnitude of flux un9, and wn9 is a normalization factor.

Time-dependent fluxes (instead of constant fluxes) will be

used later in the control experiments, and this analysis serves

as a quick estimate of the sensitivity to the possible controls.

Guided by the sensitivity values in Eqs. 3 and 4,

respectively, a selection can be made for a subset xr 2 x
for recording the system’s response, as well as another subset

of xc 2 x to serve as external controls. In general, xr should
include biochemicals that are the most sensitive to variations

in the unidentified rate constants k, and xc should include

species whose influxes or controlled regulations can lead to

the highest variations in the concentrations or activities of xr.
Choosing the most sensitive species corresponds to most

effectively disturbing the system and recording its most

informative biomolecular behavior, in order for the experi-

ments to be best utilized for extracting the model parameters.

In practice, other factors such as experimental feasibility,

cost, and precision also need to be taken into account.

The control module

Although the analysis module provides the current best

estimate of the molecular species to serve as biosystem

controls and other species chosen for concentration measure-

ments, it is still impossible to predetermine the detailed

temporal forms of the controls that can provide maximum

system information and most effectively filter out the in-

fluence of the laboratory data noise. A learning algorithm is

therefore introduced into the OI control module to integrate

together the control experiments and the inversion module in

a closed-loop fashion (see Fig. 1) to efficiently home in on

the optimal control(s) to reveal the highest-quality solutions

for the unknown model parameters. The learning algorithm

operates in a pattern recognition role, and in this work,

a genetic algorithm (GA) (Goldberg, 1989; Wall, 1995) is

selected for optimizing the controls. A GA is used because:

a), it can deal with complex, nonlinear problems; b), it can

work well even when little information is available about the

detailed operations of the system; and c), unlike most other

algorithms, a GA can provide the global searching capability

to avoid being trapped in local minima.

In the first excursion around the OI loop (Fig. 1), a set of I
trial controls (u1cðtÞ, u2cðtÞ; . . . ; uIcðtÞ) is applied in the

laboratory to the selected biochemicals xc, and the responses
of the system are recorded by measuring the concentrations

of the species xr at multiple time points. In practice, the

controls may be expressed in terms of vector control

parameters a. Therefore, optimizing the control function

corresponds to optimizing its control parameters. For the ith

trial control uicðtÞ, the information about the control flux

or its parameters and the concentration profiles Xi
rðtÞ is

forwarded to the inversion module, which returns the

inversion quality Qi
inv $ 0; representing the 1/breadth of

the distribution for the extracted rate constant family (see

‘‘The inversion module’’ section, Eqs. 7 and 8). The in-

version quality can be used as the cost function Jictrl for the
control GA, which compares Qi

inv for all the controls and

selects a certain percentage with the best cost to generate the

next set of I trial controls by crossover and mutation

operations (Goldberg, 1989; Wall, 1995). This iterative

optimization process continues until one or a few controls are

found to achieve an optimal reduction of the distribution

breadth for all the parameters.

In real applications, the learning algorithm also needs to

take into account the laboratory constraints, such as the

difficulty of carrying out certain forms of experiments. A term

representing laboratory constraints and other application-

specific requirements can be used together with the inversion

quality to yield the total control cost,

J
i

ctrl ¼ Q
i

inv � vR½ui

cðtÞ;X
i

rðtÞ�: (5)

Here R½uicðtÞ; Xi
rðtÞ� is a positive functional representing

the costs associated with any additional constraints for the

controls uicðtÞ and the concentration measurements Xi
rðtÞ,

and v is a positive weight balancing the roles of Qi
inv and R.

For example, if control fluxes with a high degree of temporal

structure are experimentally difficult to realize, then R can be

chosen as

R½ui

cðtÞ� ¼ +
tT

t¼t1

jdui

cðtÞ=dtj; (6)

where the first-order derivative of a control uicðtÞ with high-

frequency features will have a large value and lead to an

unfavorable cost Jictrl. Here the time is sampled at T discrete

points (t ¼ t1, t2, . . . , tT). In this fashion, undesirable control

forms and/or system responses can be automatically

excluded from the GA evolutions.

The inversion module

The process of inversion seeks the model parameters (k in

this illustration) that minimize ||Xlab � Xcal|| (i.e., the least

squares norm of the difference between laboratory and

calculated concentrations). The nonlinear nature of most

bionetworks, the limited number of experiments, and the

existence of laboratory data noise imply that large numbers

of solutions are expected to exist for k that reproduce Xlab to

within its error ranges. Most inversion methods indirectly

deal with this issue by including additional restrictions

or assumptions (e.g., locally linearizing the relationship
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between X and k), and only one or a few solutions are

obtained. These methods can be unreliable because the extra

conditions often do not truthfully represent the inherent

nature of the biosystem, thereby possibly leading to false

parameter values or a local sampling of the actual dis-

tribution of consistent parameters. When these parameters

are utilized in further simulations under different conditions,

quantitatively or even qualitatively incorrect predictions can

result, and it is difficult to determine if the error arises from

an incomplete model or from incorrect parameter values.

OI directly addresses the problem of multiple solutions

with the inversionmodule aiming to identify the full family of

solutions consistent with the laboratory data. The overall

quality Qi
inv of the extracted family of solutions is then

returned to the control module for determining the control

cost Jictrl in Eq. 5, which then guides the selection of new

controls aiming at finding one or a few experiments from

which the narrowest possible parameter distributions can

be obtained (see ‘‘The control module’’ section). Given

a thorough GA search, the true value for each parameter

should be included in the full solution family, and the

resultant reliability of OI should be better than traditional

methods. This work assumes that the true system is included

in the proposed model (i.e., unmodeled dynamics are insig-

nificant). However, the overall OI algorithm could seek out

inconsistencies between the concentration data and calcu-

lations, which would indicate that the model is incomplete.

Such a circumstance would call for a return to the analysis

module for consideration of modifying the model.

The best means of characterizing the inversion quality

depends on the level of detail in the extracted parameter

distribution. In most biosystem model identifications, the

extracted model parameters are not expected to form normal

distributions due to nonlinear error propagation from the

laboratory data to the parameters, hence many conventional

treatments (e.g., those associated with assuming a Gaussian

distribution) may not be appropriate in evaluating the

inversion quality. When this is the case, the upper and

lower limits identified for the solution family ki from the

experiment with the ith control uicðtÞ can be used to con-

servatively represent the inversion quality. A convenient

measure for the inversion quality Qi
inv corresponding to the

ith control experiment is

Q
i

inv ¼ 1
1

M
+
M

m¼1

ðkim;max � k
i

m;minÞ
ðkim;max 1 k

i

m;minÞ

" #
;

,
(7)

where kim;max and kim;min are the upper and lower bounds of

the consistent solutions for km, respectively. Another suitable
function for evaluating Qi

inv is

Qi

inv ¼ �1

ð
dkPiðkÞln PiðkÞ

� �
;

�
(8)

which is an entropy-like measure, and Pi(k) is the probability
distribution function of k determined from the inversion. In

both Eqs. 7 and 8, a greater Qi
inv value corresponds to

a narrower parameter distribution, thus maximization of Qi
inv

is sought by the control module over the evolving OI

iterations.

Identifying the full solution family requires the inversion

algorithm to have a global searching capability, thus another

GA is used in the inversion module. Similar to the control

GA, the evolution of the trial solutions for k is guided by an

objective function, which compares the calculated system

response to the experimental measurements. A suitable

objective function is given by

J
i;p

inv ¼
1

Nc

+
Nc

n¼1

1

T
+
tT

t¼t1

1 : jXi;lab

n;t � X
i;p;cal

n;t j# ein
jXi;lab

n;t � X
i;p;cal

n;t j
ein

: jXi;lab

n;t � X
i;p;cal

n;t j[ein

8><
>:

(9)

where Ji;pinv represents the ‘‘fitness’’ of the pth trial set of

parameters ( p ¼ 1, 2, . . . ,P) for the ith control, Nc is the

number of biomolecules selected for concentration measure-

ments (i.e., the number of species in xc), and ein is the

measured or estimated experimental error. When the

difference between the laboratory concentrations Xi;lab
n;t and

the concentrations Xi;p;cal
n;t calculated using the pth trial

parameter set ki,p is smaller than ein for all the Nc species at

all T time points, the trial set is considered as ‘‘good,’’ which

gives Ji;pinv ¼ 1: The GA operation is iterated with the ith

control uicðtÞ until a sufficient number of solutions ki,p

satisfying Ji;pinv ¼ 1 have been found out of the total set of P,
so that a reasonable error distribution may be identified. If

the laboratory data provided the distribution of errors for

Xi;lab
n;t , then Eq. 8 would be replaced by an inversion cost

function comparing the calculated and the laboratory

distribution.

In practice, the recovery of the full solution family can

never be assured, but two approaches are used to practically

address this difficulty. First, a large population size P
(usually several hundred) and a high mutation rate ([30%)

(Goldberg, 1989; Wall, 1995) are used in the inversion GA

so that the searching avoids focusing on some local areas in

the parameter space. Second, a simple convergence analy-

sis algorithm is activated when the inversion quality Qi
inv is

good. In this analysis, the inversion is repeated with in-

creasing GA population sizes. If Qi
inv remains constant, it is

taken that the extracted solution family is a satisfactory

discrete representation of the full solution distribution; ifQi
inv

decreases, the inversion is carried out with larger populations

until convergence of Qi
inv is achieved.

Another important issue in biosystem identification is the

multiplicity of the candidate models. When this is the case,

untailored experiments usually cannot provide enough

information to distinguish among the multiple models.

However, the learning algorithm in OI is specifically present

to direct the controls to maximally assure that the correct
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model is found that produces dynamic behavior consistent

with the laboratory data. This capability has been illustrated

in related studies (B. Li et al., 2002; Geremia and Rabitz,

2001, 2002, 2003), and will be introduced for bionetwork

model discrimination.

ILLUSTRATION

The operation of OI described this section is simulated in the

identification of a tRNA proofreading mechanism (Okamoto

and Savageau, 1984a). In this illustration, six reaction rate

constants are extracted by OI, along with suboptimal and

nonoptimal methods for comparison. The differential equa-

tions in the model (Okamoto and Savageau, 1984a) are

numerically integrated (Hindmarsh, 1983; Petzold, 1983) to

simulate the real experiments and the identification processes.

tRNA proofreading mechanism

Proofreading mechanisms are widely utilized by organisms

to maintain functional accuracy and integrity. They have

been systematically studied, and the mechanism of iso-

leucyl–tRNAsynthetase proofreading valyl–tRNAIle in Es-
cherichia coli is probably the best characterized (Okamoto

and Savageau, 1984a,b). In this illustration, the mechanistic

model proposed by Okamoto and Savageau (1984a) is used

for the simulations (see this reference for further model

details). The model contains 10 biochemical species, 10

kinetic equations, and 16 reaction rate constants. Table 1 lists

the 10 species with their corresponding symbols and their

steady-state concentrations. The 10 kinetic equations are

shown below.

dX1

dt
¼ k�3X5 1 k�4X6 1 ðk7 1 k1ÞX7 1 ðk8 1 k2ÞX8

� k3X1X3 � k4X1X4 � k�7X1X9 � k�8X1X10

dX2

dt
¼ ðk�5 1 k1ÞX7 1 ðk�6 1 k2ÞX8 1 k9X9

1 k10X10 � k5X2X5 � k6X2X6

dX3

dt
¼ f1 1 k�3X5 1 k1X7 � k3X1X3

dX4

dt
¼ f2 1 k�4X6 1 k2X8 � k4X1X4

dX5

dt
¼ k3X1X3 1 k�5X7 � k�3X5 � k5X2X5

dX6

dt
¼ k4X1X4 1 k�6X8 � k�4X6 � k6X2X6

dX7

dt
¼ k5X2X5 1 k�7X1X9 � ðk�5 1 k7 1 k1ÞX7

dX8

dt
¼ k6X2X6 1 k�8X1X10 � ðk�6 1 k8 1 k2ÞX8

dX9

dt
¼ k7X7 � k�7X1X9 � k9X9

dX10

dt
¼ k8X8 � k�8X1X10 � k10X10:

In the original paper, the kinetic rate constants were derived

using a steady-state analysis (Okamoto and Savageau,

1984a), and the effect of data error was ignored. In this

illustration, a measurement error taken as 610% around the

steady-state concentration is included in the simulated

concentration measurements for all the species to evaluate

the effect of data noise in extracting the rate constants. The

available computing resources limited the inversion to

extracting six rate constants (k1, k2, k5, k–5, k6, k�6), and the

other 10 are set to the values from Okamoto’s article

(Okamoto and Savageau, 1984a). The search range for each

of the six unknowns is arbitrarily chosen to be two orders of

magnitude around the values estimated from the steady-state

analysis in the original paper (Table 2). Larger ranges can be

used if less is known about the approximatemagnitudes of the

unidentified rate constants, but the inversion procedure will

be the same although the computational costs can increase.

Sensitivity analysis

The sensitivities of the 10 species to variations in the six

unknown rate constants are estimated in the analysis module

using the RS-HDMR algorithm introduced in ‘‘The analy-

sis module’’ section. First, S ¼ 8,000 random samples of the

six rate constants are generated from within their corre-

sponding search ranges. The rate constants are transformed

to a logarithmic scale to ensure an even distribution over the

TABLE 1 Chemical species in the tRNA proofreading model

(Okamoto and Savageau, 1984a), their symbols, and

steady-state concentrations

Species Symbol

Steady-state

concentration

(mol/l)

Ile-tRNA synthetase (IRS) x1 2.81 3 10�8

tRNAIle x2 9.98 3 10�7

Ile x3 5.50 3 10�4

Val x4 3.10 3 10�3

Ile-IRS x5 1.56 3 10�6

Val-IRS x6 1.72 3 10�8

Ile�IRS–tRNAIle x7 3.39 3 10�6

Val–IRS–tRNAIle x8 9.71 3 10�9

Ile–tRNAIle x9 6.06 3 10�7

Val–tRNAIle x10 2.51 3 10�10

TABLE 2 Search ranges for the six rate constants

to be identified

Rate constant Lower limit Upper limit

k1(s
�1) �1.0 1.0

k2(s
�1) 0.0 2.0

k5(M
�1s�1) 6.0 8.0

k�5(s
�1) 1.0 3.0

k6(M
�1s�1) 9.0 11.0

k�6(s
�1) 3.0 5.0

The numbers are over a logarithmic scale.
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large search space. The concentrations of the 10 species are

obtained at T ¼ 10 time points (t ¼ 30 s, 60 s, . . . , 300 s) by

integrating the ODEs, using the laboratory-measured steady-

state concentrations as initial values. The total sensitivities

are first calculated and normalized by their corresponding

steady-state concentrations (i.e., wn;t ¼ Xsteady
n in Eq. 2). The

first-order sensitivities of each species in x with respect to

every rate constant in k are calculated at the 10 times. The

sensitivities are time dependent, and no single time window

is identified in which all six rate constants have favorable

sensitivities; thus, the concentration measurements in the

following (simulated) control experiments are carried out at

all 10 times. The time-averaged first-order sensitivities are

shown in Table 3. The percentage contributions of the first-

order terms to the total sensitivities are also calculated for all

the species (Table 4). The latter contributions are all[78%,

suggesting that the second- and higher-order terms need not

be used for estimating the species to use for concentration

measurements. The species x4 is left out of the analysis in

Table 4 because it is highly insensitive to variations in all six

rate constants (see Table 3), which makes it difficult to obtain

precise values for its sensitivities as well as its first-order

percentage contribution. Quantitatively, x8 and x10 are the

most sensitive species, with their sensitivities to k2, k6, and
k�6 being considerably higher than all other species, and

they are moderately sensitive to k5 and k�5. Based on this

result, x8 and x10 are chosen for recording the dynamic

concentration profiles of the system (i.e., xr ¼ (x8, x10) and
Nc ¼ 2 in Eq. 9), although additional species can be

considered for measurement. In general, including additional

species will further refine the identified distribution of rate

constants.

It can be seen from Table 3 that all 10 species are highly

insensitive to k1. This property suggests that k1 may not be

identified with high quality compared with the other rate

constants, especially considering the presence of the

laboratory data errors. For the same reason, it is expected

that k2 may be identified with good quality owing to its high

sensitivities upon x8 and x10.

The sensitivities of X8 and X10 with respect to constant

influxes of x1, x3, and x4 are then calculated by the simple

method introduced in the ‘‘Analysis module’’ section. x1, x3,
and x4 are selected because they are relatively stable

biomolecules, making them easier for manipulation in

laboratory. G ¼ 200 random samples of the six rate

constants are generated, and the concentrations of the 10

species are obtained at the 10 time points for each sample.

The sensitivities are calculated using Eq. 4 with normaliza-

tion factor wn9 ¼ Xsteady
n9 =s. Among the three species, the flux

of x4 causes variations of the highest magnitude in x8 and x10,
thus it is selected as the single control for disturbing the

system (i.e., xc ¼ (x4)).

Identifying the rate constants

The identification is first carried out using the OI algorithm.

Based upon the analysis results, I ¼ 20 trial controls (see the

‘‘Control module’’ section) are first generated and applied to

the system. Each control is a time-dependent flux of x4,
expressed as a sum of four Gaussians

uðx4; tÞ ¼ +
4

l¼1

a1;l exp½�ðt � a2;lÞ2=a3;l�: (10)

Because the lth Gaussian is encoded by three control

parameters (am,l for m ¼ 1, 2, and 3), a total of 12 control

parameters are optimized by the control GA. In these

simulations, the flux is maintained as positive by requiring

that the GA confines its search to a1,l[0, although negative

fluxes can also be considered (e.g., by introducing inhibitors

of the control species).

After applying the ith (i ¼ 1, 2, . . . , I) chemical control

flux, the concentrations of x8 and x10 are recorded at the 10

time points (t ¼ 30 s, 60 s, . . . , 300 s) and the data is

forwarded to the inversion module together with the

information about the control fluxes. The inversion GA then

randomly generates P ¼ 500 trial solutions (see the

‘‘Inversion module’’ section) for each unidentified set of

six rate constants for the ith control flux. Any ‘‘good’’

solution satisfying Ji;pinv ¼ 1 (see Eq. 9) is saved, and the

inversion GA evolves until in the last iteration, 500 good sets

of rate constants are found, which forms a distribution

corresponding to the ith control. The inversion quality Qi
inv is

calculated from Eq. 7, and the cost Jictrl is calculated from Eq.

5. In this illustration, no constraint term R is used, but the

search ranges for the control parameters in Eq.10 are

carefully set so that only relatively modest structure can arise

TABLE 3 Time-averaged first-order sensitivities of the 10

species with respect to the six rate constants, normalized

by their corresponding steady-state concentrations

Species k1 k2 k5 k�5 k6 k�6

x1 0.0046 0.0064 0.12 0.10 0.011 0.0083

x2 0.0096 0.028 0.85 0.74 0.095 0.059

x3 0.032 0.014 1.5 1.3 0.14 0.067

x4 0.010 0.0045 0.0054 0.0021 0.024 0.014

x5 0.012 0.021 0.46 0.40 0.069 0.034

x6 0.0095 0.36 0.30 0.24 0.43 0.45

x7 0.0098 0.0024 0.21 0.18 0.0038 0.0040

x8 0.066 2.4 0.54 0.48 1.4 1.2

x9 0.016 0.00080 0.23 0.19 0.0085 0.0049

x10 0.040 3.7 0.29 0.20 2.1 1.8

TABLE 4 Percentage of the first-order terms contributing

to the total sensitivities

Species x1 x2 x3 x5 x6 x7 x8 x9 x10
Percentage 92 96 96 95 87 96 79 96 84

x4 is highly insensitive to all six rate constants, therefore its first-order

contribution is not listed.
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in the controls. Jictrl is used by the control GA to generate new

controls aiming at higher Qi
inv values. The control GA is run

for 25 generations, corresponding to a total of 253 20¼ 500

experiments, but the best inversion quality is normally

attained before the last control GA iteration.

A suboptimal inversion method is also applied to the

system. In this method, the control GA evolution is replaced

by 500 random chemical influxes of x4, and the full family of

500 good solutions is identified for each random control flux

using the same inversion algorithm above. In fact, this

method is not completely random because it still benefits

from the information provided by the analysis module. To

make another comparison, a nonoptimal inversion is carried

out. In this inversion, 175 random influxes of x1, x3, and x4
(each flux is run separately for a total of 525 runs) are used as

controls. Because the analysis module is not employed to

provide the sensitivity information, the concentrations for all

10 species are used to extract 500 consistent solutions for

each rate constant. Measuring all of the species will tend to

give a generous advantage to performance of the nonoptimal

inversion, as in reality, measuring every species simulta-

neously is usually not possible.

The upper (km,max/km) and lower limit (km,max/km) of the
recovered rate constant distributions relative to the corre-

sponding true values km are shown in Fig. 2 for all three

approaches. All three methods reveal rate constant dis-

tributions that include the true values. Among the three

temporal control influxes (x1, x3, and x4) used in the

nonoptimal method, fluxes of x4 on the average lead to

much better inversion quality, which is consistent with the

sensitivity analysis results. The nonoptimal method recovers

narrower distributions than the suboptimal method for all

the rate constants. This enhanced performance arises

because all 10 chemical species are measured in the

nonoptimal approach whereas only two are measured in

the suboptimal method. Integrating the learning algorithm

into OI significantly enhances the inversion quality even

with only two chemical species being measured. All of the

rate constants extracted by OI are located within narrow

ranges, and k6 and k�6 are improved significantly from the

suboptimal and nonoptimal method. OI identifies k2 with

the highest quality, and k1 with the largest uncertainty, also

consistent with sensitivity analysis results. The two other

approaches also extract k2 with the best inversion quality,

although the inversion quality of k1 is not the worst among

all six rate constants.

The mean values for each set of rate constants are also

calculated (Table 5). Without including any additional

constraints or assumptions, all of the mean values are

identified to within 15% of the true values by using either OI

or the suboptimal method. The nonoptimal method also

identifies k2, k5, and k�5 with good quality, but the mean

values of k1, k6, and k–6 deviate significantly from the true

values. The mean values of the rate constant distribution

revealed by the suboptimal method is more accurate than that

recovered from the nonoptimal method, despite the fact that

the breadth of the former distribution is larger than the latter.

The simulation results clearly indicate the advantage of

employing the OI algorithm that extracts the full distribution

for the model parameters. Traditional methods often only

reveal a single value for each parameter and typically only

linear estimates of the parameter error bars. If only a single

value is obtained for a rate constant in this illustration, it can

be located any place within the full distribution while still

being consistent with the noisy laboratory data. Such a set of

rate constants would likely fail to produce correct system

performance under conditions beyond those used in the

inversion. Note that extracting the full rate constant dis-

FIGURE 2 Solution distributions for the six rate con-

stants relative to their true values, revealed by OI, the

suboptimal method, and the nonoptimal method. The true

rate constants have relative value 1. The respective mean

value of each distribution is also marked.
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tribution does not necessarily require more experiments over

that involved in obtaining a single inverted outcome by

traditional methods. The optimally tuned multiple experi-

ments serve to narrow down the breadth of the distribution.

Using the same number of experiments, OI can locate the

rate constants in much narrower ranges, thus their mean

values have a higher possiblity of being near the true values.

When the identified parameter distributions are employed in

further simulations (e.g., for control purposes), the mean

parameter values could be used if the distributions are

sufficiently narrow. However, in general further simulations

should use ensembles of parameters statistically sampled

from their optimally identified distributions.

After 25 closed-loop iterations, many of the control fluxes

that provide high inversion quality Qi
inv become very similar.

Fig. 3 shows the three controls found by OI that lead to the

three best Qi
inv values. The apparent similarity provides

evidence that the control GA is converging to a single

optimal control (experiment). In contrast, the best controls

discovered in the suboptimal and nonoptimal approach differ

considerably from each other and from those found by OI.

This difference can also be seen from the X8 and X10

concentration profiles when these fluxes are applied in

simulated experiments (see Figs. 4 and 5).

Scalability issues

Extracting the full parameter distribution can be computa-

tionally intensive. In this illustration, parallel cluster

computing techniques (Gropp et al., 1999) are used, in

which the control GA runs on a ‘‘master’’ computer, while

the inversion for each trial control is distributed to a different

‘‘slave’’ computer. In this way, the data obtained from all the

controls can be processed simultaneously, which is espe-

cially advantageous when the control experiments can also

be carried out in a parallel fashion. The OI simulations in this

work were carried out on 21 1.0-GHz Linux workstations.

Due to the stochastic nature of the algorithm, the simulations

took one to four days. The computational cost may seem

high for extracting six rate constants. However, it may be

reduced significantly by using suitable mapping techniques,

which helps to avoid integrating the model equations for

each trial solution ki,p (G. Li et al., 2001; Geremia and

Rabitz, 2001; Geremia et al., 2001).

In many real applications, the multiple runs of biological

experiments can be expensive and time-consuming. An

algorithm that virtually optimizes the control fluxes can be

integrated into the analysis module to give an estimate of the

time-dependent controls that may lead to the best inversion

quality, thereby likely reducing both the number of wet

experiments and the computational time for parameter

identification from each set of experimental data. For

example, maximizing the sensitivity of the system compo-

nent concentrations with respect to variations in the rate

constants can serve as the objective function for virtually

optimizing the controls, due to the close relationship between

the inversion quality and the sensitivity. Because the trial

experiments begin with those virtually optimized controls,

TABLE 5 The mean values of the rate constants and the relative deviations d% of the mean from the true values

Rate constant True value OI mean(d%) Suboptimal mean(d%) Nonoptimal mean(d%)

k1(s
�1) 0.378 0.432(114.3) 0.375(�0.7) 0.20(�47.1)

k2(s
�1) 60.3 60.3(0.0) 60.3(0.0) 60.3(0.0)

k5(M
�1s�1) 5.72 3 107 5.76 3 107(10.7) 5.75 3 107(10.5) 6.37 3 107(111.4)

k�5(s
�1) 20.0 20.0(10.0) 19.9(�0.5) 23.0(115.0)

k6(M
�1s�1) 4.19 3 109 3.80 3 109(�9.3) 3.99 3 109(�4.7) 5.67 3 109(135.3)

k�6(s
�1) 7.32 3 103 6.61 3 103(�9.7) 6.94 3 103(�5.2) 9.85 3 103(134.6)

FIGURE 3 The three control influxes that give the highest inversion

quality Qi
inv found by the OI operation, as well as the best controls found by

the suboptimal and the nonoptimal methods.

1278 Feng and Rabitz

Biophysical Journal 86(3) 1270–1281



less experimental iterations may be needed to converge on

a satisfactory inverse solution of high quality. In addition,

optimizing the sensitivities requires much less computational

time than extracting the rate constant distribution, thus the

computational cost may also be reduced significantly. These

topics will be addressed in future research.

Based on the results from quantum system identifications

(G. Li et al., 2001; Geremia and Rabitz, 2001; Geremia et al.,

2001), we believe that the OI algorithm (with the

modifications described above) should be scalable and

applicable to parameter identifications for increasingly large

bionetwork models. Each inversion application will have its

own particular features with regard to making the OI process

as efficient as possible. The main point is to keep all of the

closed-loop operations in Fig. 1 in sync with each other such

that no component is idle waiting for another.

CONCLUSION

This paper introduces the concept of optimal identification of

model parameters for complex biomolecular systems. The OI

procedure consists of: a), system-tailored analysis tools, b),

a learning algorithm for optimizing system controls, and c),

a global inversion algorithm. All of these components work

with the experimental capabilities for manipulating and

monitoring biomolecular species. The optimal integration

of these components is illustrated for extracting the rate

constants of a tRNA proofreading model from simulated

noisy experimental data, and the results are compared with

suboptimal and nonoptimal methods.

The simulation results suggest that extracting the full

family of rate constants consistent with the laboratory data

provides higher reliability than extracting only one or a few

values using traditional inversion approaches. By appropri-

ately linking suitable computational algorithms with exper-

imental capabilities, complex bionetwork models can be

optimally identified using a minimal number of experiments.

Biology is going through a revolution driven by a series

of technological breakthroughs in genomics (Lockhart and

Winzeler, 2000), proteomics (Pandey and Mann, 2000),

and metabolomics (Fiehn, 2002). These breakthroughs are

providing increasingly powerful capabilities for quantita-

FIGURE 4 The concentration profiles of X8 when the optimal, the

suboptimal, and the nonoptimal control fluxes are applied in simulated

experiments.

FIGURE 5 The concentration profiles of X10 when the optimal, the

suboptimal, and the nonoptimal control fluxes are applied in simulated

experiments.
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tively analyzing large numbers of biochemicals, as well as

selectively manipulating their activities. The challenges

ahead include: 1), introducing guidance to focus on de-

veloping the relevant data and 2), effectively utilizing the

data to obtain a deeper understanding of complex biological

systems. In this regard, OI not only provides a specific

technique for efficiently identifying complex bionetwork

models, but also illustrates the general concept of operating

optimally, which we believe is the best way to perform

expensive and time-consuming experiments and extract the

most information from them.
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