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ABSTRACT Calcium sparks are local regenerative releases of Ca21 from a cluster of ryanodine receptors on the
sarcoplasmic reticulum. During excitation-contraction coupling in cardiac cells, Ca21 sparks are triggered by Ca21 entering the
cell via the T-tubules (Ca21-induced Ca21 release). However under conditions of calcium overload, Ca21 sparks can be
triggered spontaneously. The exact process by which Ca21 sparks terminate is still an open question, although both
deterministic and stochastic processes are likely to be important. In this article, asymptotic methods are used to analyze a single
Ca21 spark model, which includes both deterministic and stochastic biophysical mechanisms. The analysis calculates both spark
frequencies and spark duration distributions, and shows under what circumstances stochastic transitions are important.
Additionally, a model of the coupling of the release channels via the FK-binding protein is analyzed.

INTRODUCTION

Cardiac myocytes contract when the intracellular Ca21

concentration is raised from its resting level of from ;100

nM to 1000 nM. The majority of this Ca21 is released from

the sarcoplasmic reticulum (SR) through the ryanodine

receptors (RyRs) (Franzini-Armstrong et al., 1998, 1999).

The RyRs are situated in clusters of 10–100 on the surface of

the SR close to the T-tubules. L-type Ca21 channels (LCCs)

are located on the T-tubules facing each cluster of RyRs. The

region between the SR and T-tubule is called the diadic space

(or subspace or fuzzy space); note that there are many diadic

spaces per cell (Lederer et al., 1990; Soeller and Cannell,

1997). The part of the SR in the vicinity of the RyRs is called

the junctional SR (JSR); note that the local [Ca21] in the JSR

can be different to that in the bulk SR. The diadic space, JSR,

RyRs, and LCCs make up a Ca21 release unit (CaRU).

During excitation-contraction coupling, Ca21 release from

the SR is triggered by a small influx of Ca21 through the

LCCs into some of the diadic spaces (Cheng et al., 1994;

Shacklock et al., 1995). This Ca21 then binds with RyRs

causing them to open and triggering a much larger Ca21

current from the SR. This process is locally regenerative in

that it displays positive feedback. As more RyRs open, the

current from SR increases and the local [Ca21] in the diadic

space increases. This in turn increases the number of RyRs

that Ca21 binds with, thus further increasing the current from

the SR. This feedback is local in that it acts within a single

CaRU and forms the basis of local control models of the

Ca21 release (Niggli and Lederer, 1990). Local control

models have the advantage over common pool models in that

they display both high gain and graded release (Stern, 1992;

Greenstein and Winslow, 2002). Calcium sparks are

spontaneous localized releases of Ca21 from the SR (Cheng

et al., 1993; Lopez-Lopez et al., 1994).

The process by which Ca21 release from the SR is ter-

minated is still open, but four distinct hypotheses have been

proposed:

1. Stochastic attrition. This is when all the RyRs in CaRU

shut spontaneously by chance (Stern, 1992). Although it

has been demonstrated that this cannot be the sole

mechanism for spark termination (Stern et al., 1999), we

believe it is an important modulating factor.

2. Total local depletion of JSR. This is when the [Ca21] in

the JSR in the vicinity of the RyRs drops to zero (Varro

et al., 1993; Bassani et al., 1995; Negretti et al., 1995).

Again this has been contradicted by experiments showing

the existence of long sparks (Cheng et al., 1993) and

nonzero SR Ca21 content directly after Ca21 release.

However, these experiments do not contradict the hy-

pothesis that the local JSR [Ca21] is partially reduced.

3. RyR channel inactivation. This is when the RyRs are

closed due to a Ca21-dependent or time-dependent

inactivation (Gyorke and Fill, 1993; Zahradnikova and

Zahradnik, 1996). Experiments on isolated RyRs suggest

that this process occurs too slowly or not sufficiently to

account for spark termination (Gyorke and Fill, 1993;

Nabauer and Morad, 1990). However, it should be noted

that the rate of inactivation is modulated by Mg21 and

adenine nucleotides (Valdivia et al., 1995; Xu et al.,

1996). There is some experimental evidence suggesting

that RyR inactivation plays a role in spark termination

(Sham et al., 1998), however, these experiments failed

to exclude that partial SR depletion is the predominant

mechanism of spark termination. RyR channel inactiva-

tion is not used in our model.

4. RyR sensitivity to JSR Ca21. Experiments have shown

that RyRs in cardiac cells become less sensitive to Ca21

in the diadic space when JSR Ca21 is depleted (Cheng

et al., 1996; Lukyanenko et al., 1998; Thedford et al.,
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1994; Gyorke and Gyorke, 1998; Ching et al., 2000;

Terentyev et al., 2002). For this mechanism to be

important, JSR [Ca21] must be partially depleted during

a spark.

In addition to these four principle mechanisms of termina-

tion, experiments have shown that the cooperation between

RyRs in the CaRU can effect the process of spark ter-

mination. Each RyR is linked to its four nearest neighbors by

an FK-binding protein (FKBP), which couples the gating of

the channel (Wagenknecht et al., 1997; Marx et al., 2001).

Removal of this protein using FK506 dramatically increases

the length of sparks (Xiao et al., 1997; Lukyanenko et al.,

1998). A recent model incorporating the effect of FKBP has

shown in principle that spark length can be increased by

inhibiting this protein (Sobie et al., 2002). A mathematical

analysis will be used to determine the origin of this change in

behavior.

In this article, a model of a CaRU is presented and the

Ca21 sparks that it generates are analyzed. The model

includes:

1. Separate compartments for the bulk cytoplasm, diadic

space, JSR, and network SR (NSR).

2. A stochastic model of the RyRs that includes coupled

gating and sensitivity to JSR Ca21. Each CaRU contains

a cluster of RyRs.

3. Ca21 buffers in the diadic space and the JSR (i.e.,

calmodulin and calsequestrin).

These different biophysical processes occur over a vast range

of timescales that can be exploited using an asymptotic

analysis to simplify the model. Asymptotic analysis is

a branch of mathematics that allows approximate solutions to

be found in the limit that a parameter in the model is small (in

this case, the ratio of two different biophysical timescales).

This greatly simplifies the system of equations to be solved;

however, they still remain stochastic. The stochastic

behavior is analyzed by taking advantage of the large

number of receptors in the cluster (10–100). Two macro-

scopic states can then be used to describe the ensemble of

RyRs, one when most of the receptors are closed and one

when most of the receptors are open. A new asymptotic

technique is then used to calculate the rate of transitions

between these two macroscopic states. The technique of

stochastic phase-plane analysis is then used to analyze the

distribution of spark lengths (Hinch, 2002). Spark frequen-

cies and the effect of FK506 are also analyzed. The results

of the analysis are compared with Monte Carlo numerical

simulations of the model and experimental observations.

CA21 SPARK MODEL

In this section, the elements and equations of the model are

described. Fig. 1 is a schematic diagram of the CaRU and the

position of the different compartments and receptors. The

diadic space is the thin region of the cytoplasm between the

JSR and the T-tubules. The geometry of the diadic space can

be approximated by a cylinder of height 10 nm and radius

200 nm (Frank, 1990), giving it a volume (Vds) of 1.26 3

10�3 mm3. This is a very small volume, especially when we

consider the typical [Ca21] in the space (;1 mM). A simple

calculation then reveals that the expected number of ions in

the space is ;1. This raises questions about the validity of

using a concentration to describe the Ca21 in the space and

using the diffusion equation to model the transport of Ca21

within the diadic space. These issues have not previously

been addressed in spark models and are not addressed in this

article. The faces of the cylinder represent the surface of the

SR and T-tubule, and Ca21 can diffuse through the sides into

the bulk cytoplasm. The diadic space contains Ca21 buffers

such as calmodulin. The Ca21 concentration in the diadic

space ([Ca21]ds) is given by

Vds

d½Ca
21 �ds

dt
¼ JRyR � JD1

Vds

tB

½BCa
21 �ds �

½Ca
21 �ds½B�ds

KB

� �
;

(1)

the concentration of the buffer is given by

d½B�ds

dt
¼ 1

tB

½BCa
21 �ds �

½Ca
21 �ds½B�ds

KB

� �
; (2)

and the total buffer concentration in the diadic space is

conserved

½BCa
21 �ds1 ½B�ds ¼ ½B�tot; (3)

where JRyR is the total current into the diadic space through

the RyRs, JD is the diffusive current from the diadic space

into the bulk cytoplasm, [B]ds is the concentration of the

buffer in the diadic space, [BCa21]ds is the concentration

of the Ca21 –buffer complex in the diadic space, [B]tot is

the total buffer concentration in the diadic space, tB is

the buffering time constant, and KB is the buffer-Ca21

FIGURE 1 Components of the CaRU used in the model. The model

includes four separate compartments: the network SR, the junctional SR, the

diadic space, and the bulk myoplasm.
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dissociation constant. A glossary of parameters and estimates

of their values using experimental measurements can be

found in Appendix 2. The diffusive Ca21 current from the

diadic space is modeled by

JD ¼ gDð½Ca
21 �ds �½Ca

21 �myoÞ; (4)

where [Ca21]myo is the myoplasmic Ca21 concentration,

which is held constant, and gD is the rate of diffusion form

the diadic space. The constant gD can be approximated by

considering the area of interface between the diadic space

and the bulk myoplasm, the diffusion coefficient for Ca21,

and an effective diffusion length. The timescale over which

[Ca21]ds reaches its equilibrium value is then given by tds ¼
Vds/gD � 1.66 3 10�3 ms (see Appendix 2). Note that this

timescale is much quicker than the timescale of the buffering

of Ca21 to calmodulin and the open time of the RyRs. This

approximation agrees with previous estimates of tds (Sobie

et al., 2002). The Ca21 concentration in the JSR ([Ca21]JSR)

is given by

d½Ca
21 �JSR

dt
¼bJSR �JRyR

VJSR

1
½Ca

21 �NSR �½Ca
21 �JSR

ttr

� �
; (5)

where ttr is the transfer rate from the network SR to the JSR,

and bJSR is the buffering factor due to calsequestrin

calculated using the rapid buffering approximation (Wagner

and Keizer, 1994)

bJSR ¼ 11
½CSQ�

total
KCSQ

ðKCSQ1 ½Ca
21 �JSRÞ

2

 !�1

: (6)

Note that in this model, [Ca21]JSR is partially depleted

during a spark, but does not fall to zero. The role of the buffer

in the JSR is to slow the change in [Ca21]. For simplicity, we

consider the linear buffer regime bJSR to be a constant, which

is approximately true when KCSQ � ½Ca21�JSR.

Ryanodine receptors

The CaRU contains N functional RyRs. The RyRs are

assumed to gate independently of each other except for the

coupling factor due to the FK-binding protein (Sobie et al.,

2002). Since it is believed that RyR inactivation happens too

slowly to terminate sparks, we will not include activation in

this model. The model of the RyRs is a simplified three-state

model represented by the following reaction sequence

C11aCa
21

�C2�O: (7)

At low [Ca21], the receptor is in the closed state C1; when

aCa21 ions bind to the receptor, it is promoted to the C2

closed state. The receptor then switches between the C2 state

and the O state representing the H-mode of RyRs

(Zahradnikova and Zahradnik, 1996). The transition between

the C1 and C2 states is assumed to be very rapid; therefore.

the model can be approximated by a two-state model

C�O; (8)

with transition coefficient

k1 ¼CF1

½Ca
21 �a

ds

rtopenð½Ca
21 �ads 1K

a

RyRÞ
; (9)

and

k� ¼
CF�

topen

; (10)

where KRyR is the dissociation constant of the RyR, topen is

the mean open time of the channel in the H-mode, r is the

proportion of time the channel is closed when the receptor is

in the H-mode, and CF6 are the coupling factors (Sobie et al.,

2002). The sensitivity of the RyRs on [Ca21]JSR is modeled

by KRyR ¼ K0(1 � D[Ca21]JSR) (Sobie et al., 2002). The

model will be investigated with Hill constant a ¼ 4 (Sobie

et al., 2002) and comparisons made with the case when

a ¼ 3. First a model without coupling will be considered

(CF6 ¼1). Then a simple model including coupled-gating

will be examined (Sobie et al., 2002) with

CF1 ¼ 11f; (11)

and

CF� ¼ kcoupð11fÞ; (12)

where f is the proportion of the receptors in the open state.

One problem with this simple model of coupling is that the

coupling factor kcoup multiplies the open probability of the

RyRs, which shifts their overall sensitivity. However, this

model has successfully reproduced experimental results of

interrupting the RyR coupling (Sobie et al., 2002). Finally

the total current through all the RyRs is given by

JRyR ¼ Jmaxf
½Ca

21 �JSR �½Ca
21 �ds

½Ca
21 �NSR

; (13)

where Jmax is the maximum current when all RyRs are open

and [Ca21]JSR has not been depleted. Jmax can be estimated

by dividing the total flux of Ca21 released by each CaRU

during E-C coupling by the mean release time. In the

modeling in this article we will assume that Jmax is in-

dependent of the number of receptors in the CaRU.

MATHEMATICAL ANALYSIS

The model described in the previous section contains

a stochastic model of a group of RyRs coupled to three

differential equations to describe the [Ca21] in the different

compartments. Although it is simple to solve this model

numerically using Monte Carlo simulations, it can be simp-

lified using asymptotic analysis. The model contains a wide

range of biophysical timescales. By taking advantage of the
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large ratios of these timescales, the three differential

equations can be simplified to one. The second large number

in the model is the number of RyRs (N) in the CaRU (10–

100). A novel asymptotic mathematical technique taking

advantage of the fact that N � 1 is then used to simplify the

model of the cluster of RyRs. This analysis allows us to

consider the entire cluster as a two-state stochastic model,

where either all the RyRs are shut or most of them are open.

These approximations can then be used to calculate ana-

lytical expressions for the distributions of spark termination

times and spark frequencies.

Multiple timescales

The first step in the problem is to nondimensionalize the

equations. This process allows us to clearly identify the

different biophysical timescales. Define the nondimensional

parameters

t9[
t

topen

; C[
½Ca

21 �ds

K0

and J[
Jmax

gDK0

½Ca
21 �JSR

½Ca
21 �NSR

; (14)

and the nondimensional parameters

eds[
tds

topen

; eB[
tds

tB

; em[
½Ca

21 �myo

K0

;

eJSR[
Jmax

gD½Ca
21 �NSR

; J0[
Jmax

gDK0

; d[
DgDK0½Ca

21 �NSR

Jmax

;

tJSR[
½Ca

21 �
NSR

VJSR

topenbJSRJmax

; and r[
tJSRtopenbJSR

ttr

: (15)

Values for these nondimensional parameters are given in

Appendix 2. The parameters ei � 1 and tJSR � 1; these

relative sizes in parameters will be exploited in the

asymptotic analysis. The separation of physiological time-

scales that leads to these small parameters are:

1. eds, the mean open time of a RyR is much longer than the

rate at which [Ca21]ds equilibrates after a change in the

current into the diadic space.

2. eB, the rate at which Ca21 buffers to calmodulin rate is

much slower than the rate at which [Ca21]ds equilibrates

after a change in the current into the diadic space.

3. em, the resting myoplasmic [Ca21] is much less than the

dissociation constant of the RyR.

4. eJSR, the [Ca21] in the diadic space is much lower than

the [Ca21] in the JSR.

5. tJSR, the time over which Ca21 is depleted in the JSR

during a spark is much longer than the individual mean

open time of a RyR.

These differences in timescales will be used in the

asymptotic analysis by calculating approximate solutions

in the limit ei ; 0 and tJSR 9 ‘. The nondimensional

equation for the rate of change of [Ca21]ds is

eds

dC

dt9
¼ Jf 1� eJSR

C

J

� �
�ðC� emÞ

1eB

½BCa
21 �ds

K0

�C½B�ds

KB

� �
; (16)

and for the rate of change of [Ca21]JSR is

tJSR

dJ

dt9
¼�Jf1rðJ0 � JÞ: (17)

Simple asymptotic analysis tell us that the solution of Eq. 16

in the limit eB, eJSR, eds; 0 is

C ; Jf1em: (18)

The physiological meaning of this result is that the [Ca21]ds

is proportional to the current entering the space from the JSR

plus the [Ca21]myo. When we model spark termination, the

em term is dropped since it is small during a spark (i.e.,

Jf � em). However, when we model the spontaneous

generation of sparks, it is necessary to retain it, since before

a spark there is no current from the JSR into the diadic space

(i.e., Jf \ em since f ¼ 0). Nondimensionalizing the

transition rates for the individual RyRs and using Eq. 18

gives

k1 ¼ CF1ðJf1emÞa

rðð1�dJÞa1ðJf1emÞaÞ
and k� ¼CF�: (19)

Stochastic fixed-point transitions

The dynamics of the model are determined by solving the

stochastic Eq.19 for the opening and closing of the RyRs and

the differential Eq.17 for the change in Ca21 in the JSR. First

we shall consider the simplified problem when the [Ca21]JSR

(J) is constant. The opening and closing of the individual

RyRs is independent, with the exception that the transition

rates are a function of the proportion of the RyRs in the open

state (f). This then allows the cluster of the RyRs to be

represented by an N 1 1 state continuous time Markov chain

with jump functions

fn ¼Nð1�fÞk1 and gn ¼Nfk�; (20)

where n is the number of RyRs in the open state, fn is the

jump function from the n to n 1 1 position on the chain, and

gn is the jump function from the n to n � 1 position on the

chain. Note that f ¼ n/N, and fn and gn are functions of both

f and J. Now we consider the behavior of this chain in the

limit N 9 ‘, i.e., a large number of RyR in the cluster

(Hinch, 2002). The discrete jump functions fn and gn can be

represented by continuous functions f(f) and g(f). The

chain has stationary points (similar to fixed points in

differential equations) where f(f*) ¼ g(f*). The stationary

points will be stable if g9(f*) [ f9(f*), where 9 [ d/df. In

the limit N 9 ‘, the system will remain in the region of the

chain close to a stable stationary point. If the chain has one
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stable stationary point, the steady-state distribution will form

an approximate Gaussian of width order 1=
ffiffiffiffi
N

p
(written as

Oð1=
ffiffiffiffi
N

p
Þ) centered on the stable stationary point (Hinch,

2002). If the system has two stable stationary points (there

will be an intermediate unstable stationary point on the chain

with g9(f*)\ f9(f*)), then it will remain in the region of one

the stationary points for long periods of times (dwell times).

It will then make a stochastic transition between the two

stable stationary points (an example of such transitions is

shown in Fig. 2, see below). The mean first passage time is

the mean time between the switching between the stable

stationary points. Consider a chain with two stable stationary

points, f� and f1, and one unstable stationary point, f0,

such that f�\ f0 \ f1. An asymptotic calculation of the

mean first passage time of stochastic fixed-point transition

from f1 to f� in the limit N 9 ‘ is given by (see Appendix

1, Eq. 52, and Hinch, 2002)

tterm ¼ expðNDV1Þ
2pN

f ðf1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðf0Þgðf1 Þ

p 1Oð1Þ
 !

;

(21)

where DV1 ¼ V(f0) � V(f1),

VðfÞ ¼
ðf

ln
gðf9Þ
f ðf9Þ

� �
df9; (22)

and

gðfÞ ¼ g9

g
� f 9

f
: (23)

Here V(f) is the ‘‘derived potential’’ of the chain. This

expression for the mean first passage times is of a similar

form to Kramers’ formula for the transition times of a particle

in a double potential well due to thermal fluctuations

(Kramers, 1940). The mean first passage times can now be

used to calculate the rate of spark terminations due to

stochastic attrition. When the JSR loading is sufficiently

large, the chain has two stable stationary points. f1 is the

stable stationary point where most of the receptors are open

(i.e., during Ca21 release), and f� is the stable stationary

point where most of the receptors are closed. Fig. 2 shows

two typical time series of the position on the chain calculated

using a Monte Carlo simulation. Note that the system remains

in the region of f1 for a long time before suddenly jumping

to f�, and that in the two simulations this time is different.

The first passage times form an exponential distribution since

the rate of a stochastic fixed-point transition is constant. A

comparison of the mean first passage time calculated using

the Monte Carlo simulation and using the asymptotic analysis

(Eq. 21) is shown in Fig. 2 C. The figure shows the mean first

passage time as a function of the number of receptors in the

cluster (N) for four different values of JSR loading. The mean

first passage time was calculated by averaging the results of

1000 ‘‘sparks’’ (remember these are not solutions of the full

spark model since the local JSR Ca21 is constant). As N
is increased, the error in asymptotic calculation is reduced

and the mean spark duration increases rapidly. The result

confirms that stochastic transition cannot be the only

mechanism responsible for spark termination.

Equation 21 for the stochastic termination of a spark

(tstoch) is invalid when we consider stochastic spark

generation. This is because for the majority of the time

when a spark is not occurring, all the RyRs are closed.

Therefore the stationary point on the chain is very close to

f¼ 0 and the discreteness individual states of the chain must

be considered. The asymptotic analysis can be modified to

yield (see Appendix 1, Eq. 53)

tgen ¼ expðNDV�Þ

3
gð1=NÞ

ffiffiffiffiffiffiffiffiffiffi
2pN

p

Gf ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðf�Þf ð1=NÞgð1=NÞ

p 1O 1=
ffiffiffiffi
N

p� � !
;

(24)

FIGURE 2 (A and B) Monte Carlo simulations of proportion of RyRs in the open state and the transitions of one of the RyRs in the cluster. Note that the

proportion of the receptors in the open state remains in the region of the stable stationary point f1 before making a rapid transition to the stable stationary point

f� ¼ 0. (C) The mean spark time as a function of the number of receptors in the cluster for the constant JSR Ca21 model. The line is the asymptotic calculation

and the points are from a Monte Carlo simulation. Note that the spark time is a log scale. As the number of receptors in the cluster increases, the spark time

increases and the error in asymptotic calculation decreases. The mean spark length also increases rapidly with JSR loading J. The model parameters used where

a ¼ 4, em ¼ 0, and r ¼ 0.2.
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where DV� ¼ V(f0) � V(1/N). This equation is used later to

calculate spark frequencies.

Stochastic phase-plane analysis

The analysis is now extended to consider the dynamics of J,

which is governed by the differential Eq. 17 and is a function

of both f and J. The technique combines the theory of

stochastic transition in the previous section with determin-

istic phase-plane analysis used to analyze systems such as the

FitzHugh-Nagumo model (FNM) (Keener and Sneyd, 1998).

In the FNM, there is a fast variable and a slow variable. The

timescale over which J varies is much slower than the

timescale over stochastic variable f varies since tJSR � 1.

Therefore J will act like the slow variable in the FNM and f

like the fast variable. In the FNM this separation in

timescales means that the system remains in the region of

the nullclines of f, so that f in the differential equation for J
(Eq. 17) can be replaced by the value on the nullcline

(calculated by solving for df/dt ¼ 0). However, in the spark

model, f is a stochastic variable described by a Markov

process. Instead of using the value on the nullcline, we use

the value at the stationary point on the chain f6(J). A simple

justification of this procedure can be seen by considering

a local time averaged value of f during a spark (when the

system is in the vicinity of the stationary point f1(J)). The

time average of f over a time tLA where 1 � tLA � tJSR is

fðtÞ � 1

tLA

ð t1tLA=2

t�tLA=2

fdt9 � f1ðJÞ; (25)

which is simply the stable stationary point during a spark (a

full justification of this procedure is included in Hinch,

2002). Inserting this time-averaged value of the fast variable

f into Eq. 17 yields

tJSR

dJ

dt
¼�JfðJÞ1rðJ0 � JÞ: (26)

Fig. 3 B shows J(t) calculated for a spark using Eq. 26 and

from a Monte Carlo simulation of the model. The two are in

excellent agreement, confirming the validity of this approx-

imation. The nullclines of the spark model are shown in Fig.

3 A along with a sample spark calculated using a Monte

Carlo simulation. In deterministic phase-plane analysis,

a spark is generated when the system is excited from its

global fixed point (1) to the nullcline f1(J) (2). J would then

decrease after the nullcline f1(J) until it ‘‘falls off’’ at J ¼ Jc

(3) where the nullcline disappears. The system would then

jump back to the nullcline f�(J). However, we see that the

sample spark in Fig. 3 A terminates before J ¼ Jc due to

a stochastic fixed-point transition. The rate of termination of

sparks due to stochastic transitions is (Eq. 21)

ktermðtÞ ¼
1

ttermðtÞ
� f ðf1ðJÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðf0ðJÞÞgðf1ðJÞÞ

p
2pN

3expð�NDV1Þ; (27)

where DV1 ¼ Vðf0ðJÞÞ � Vðf1ðJÞÞ, and J is given by the

solution of Eq. 26. The final step is to calculate the

distribution of spark durations. Let T be a random variable

drawn from the distribution of spark durations, P(T [ t)

be the probability that a spark is longer than t, and p(t) be

the probability density function of spark durations. The

probability that a spark terminates in an infinitesimal time

interval dt is simply kterm(t)dt, so

PðT[t1dtÞ ¼ PðT[tÞð1� ktermðtÞdtÞ1Oðdt2Þ: (28)

Taking the limit dt ; 0 and integrating the resultant first

order differential equation gives P(T[ t). Finally, differen-

tiating yields

pðtÞ ¼ ktermðtÞexp �
ðt

0

ktermðtÞdt

� �
: (29)

In words, this equation says that the probability density of

a spark of length t is equal to the instantaneous rate of spark

termination multiplied by a discount factor related to the

probability that the spark has already terminated. This

equation will be used later to calculate the distribution of

spark durations.

RESULTS OF MODEL

The mathematical analysis outlined in the previous section

will now be applied to three examples of the local release of

FIGURE 3 (A) Phase plane and null-

clines of the spark model and a sample

trajectory of a spark calculated using

a Monte Carlo simulation. At rest, the

CaRU is at 1; when a spark is generated, it

move to the nullcline f1(J) (2), and then

moves down the nullcline until it ‘‘falls

off’’ before J ¼ Jc (3). Note in deterministic

phase-plane analysis, it will only ‘‘fall off’’

the nullcline at J ¼ Jc. (B) The value of J as

a function time calculated using the

asymptotic analysis (Eq. 26) and from the

same Monte Carlo simulation shown in A.
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Ca21. The results of the asymptotic analysis will be com-

pared with Monte Carlo simulations of the model, and are

shown to be in excellent agreement.

Spark frequency

Calcium sparks are observed in healthy cells with a low

frequency. However, when the intracellular Ca21 is in-

creased, the frequency of spontaneous Ca21 sparks is greatly

increased. This suggests that Ca21 sparks are related to either

(or more likely both) elevated myoplasmic and SR Ca21

levels. Fig. 4 A shows the relationship between mean spark

separation (i.e., inverse of the spark frequency) and

[Ca21]myo predicted by the model. The lines represent the

results of the analysis and the points are the results of Monte

Carlo simulations (averaged over 1000 sparks). The graph

contains three lines, each with different SR Ca21 loading

(0.8 mM, 1.0 mM, and 1.2 mM). Note that the mean spark

separation decreases from 105 s at low [Ca21]myo (25 nM) to

1 s at high [Ca21]myo (300 nM), and the relationship is highly

nonlinear. This number can then be converted to a figure for

the whole cell by dividing by the total number of release sites

in the cell. When [Ca21]myo ¼ 100 nM and [Ca21]JSR ¼ 1.0

mM, the model predicts 10 sparks per cell per second.

Fig. 4 B shows the relationship between mean spark

separation and [Ca21]JSR for a single release site. The graph

contains four lines, each with different [Ca21]myo (50 nM,

100 nM, 150 nM, and 200 nM). Again note that the

dependence of spark separation on [Ca21]JSR is highly non-

linear. The spark frequency increases rapidly as [Ca21]myo is

increased. The results show that when [Ca21]JSR is increased

to 1.2 mM and [Ca21]myo is increased to 150 nM, the mean

sparks separation is reduced to ;10 s. This figure equates to

[1000 sparks per cell per second and explains why Ca21

sparks can be observed in line scan images of cells where the

[Ca21] is elevated. Additionally, the model shows that the

spark frequency is very sensitive to changes in [Ca21]JSR.

This agrees with experimental results from cells exhibiting

spontaneous Ca21 waves. The frequency of Ca21 sparks

rapidly increases between waves as the SR Ca21 store is

slowly replenished (Aptel and Freestone, 1998).

The model can be used to calculate the relationship

between the spark frequency and the number of RyRs in the

cluster. The maximum Ca21 current from the JSR (i.e., when

all the RyRs open) is kept constant when the number of

RyRs is varied. Fig. 4 C shows the relationship between the

mean spark separation and the number of RyRs in the cluster

for a single release site. Note that as the number of RyRs

increases, the spark frequency is reduced rapidly. The graph

shows the results for two different exponents of the RyR

model (a ¼ 3 and a ¼ 4). This exponent is the number of

Ca21 ions that need to bind to the receptor to ‘‘open’’ it.

When the exponent is reduced from a ¼ 4 (default value,

Sobie et al., 2002) to a¼ 3, the spark frequency increases by

a factor of [1000. The results of this model are only

consistent with experimental observations of sparks if we use

the exponent a ¼ 4.

Termination of sparks

In this section, the mechanism for the termination of Ca21

release is investigated, and the relative importance of

stochastic attrition and partial depletion of the JSR is

examined. The distribution of spark durations can be

calculated using Monte Carlo simulations and by using

‘‘stochastic phase-plane analysis’’ (see that section earlier).

Fig. 5 shows the distribution of spark durations predicted by

the model for different numbers of RyRs in the CaRU. When

there are 10 RyRs in the CaRU, the distribution of sparks is

a bell-shaped curve centered on a release duration of 14 ms

with width 10 ms. When the number of RyRs is increased to

40 in the CaRU, the distribution is a bell-shaped curve

centered on a release duration of 20 ms with width 5 ms. The

difference is due to the relative importance of stochastic

FIGURE 4 (A) Mean spark separation as a function of myoplasmic Ca21 concentration (
R

m) for three different levels of JSR Ca21 loading. (B) Mean spark

separation as a function of JSR Ca21 concentration (J) for four different levels of myoplasmic Ca21 concentration. (C) Mean spark separation as a function of

the number of RyRs in the cluster (N). The graph shows the results for different exponents in the RyR model (a ¼ 3 and a ¼ 4). The dots are the results

of Monte Carlo simulations and the lines are the prediction of the analysis. Note that the timescale is a log scale. The default values are 40 RyRs, 100 nM

of myoplasmic Ca21, and 1 mM of JSR Ca21.

Mathematical Analysis of Calcium Sparks 1299

Biophysical Journal 86(3) 1293–1307



attrition in terminating sparks as N is increased. In the section

‘‘Stochastic phase-plane analysis’’, we showed that the spark

would terminate due to depletion of JSR Ca21 when J\ Jc.

When N ¼ 10, stochastic attrition causes the sparks to

terminate before the JSR is depleted to the critical level Jc.

However, when N ¼ 40, the relative importance of stochastic

attrition is decreased, and the dominant mechanism for spark

termination is a partial depletion of the JSR Ca21. Fig. 5 C
shows an experimental measurement of the distribution of

rise times of sparks from a single hyperactive release site

(Wang et al., 2002). This experimental result agrees with the

model prediction. It has also been shown that the variation in

rise time is not related to local SR Ca21 filling (Wang et al.,

2002), which agrees with the mechanism for spark variability

presented in this article. It should be noted that although

Wang et al. (2002) reported a variation in release durations,

earlier studies had suggested that spark durations are highly

stereotypical (Bridge et al., 1999).

Role of FKBP

In this section, the role of the FKBP is investigated using

a previous model of coupled-gating (Sobie et al., 2002).

Again, the aim of this calculation is to use mathematical

analysis to explain why the behavior of the model changes.

The RyRs in the cluster are coupled by a FKBP that

modulates the ‘‘opening’’ and ‘‘closing’’ rates of each

RyR. This model of coupled-gating is introduced by

Eqs.11 and 12 (Sobie et al., 2002), and the strength of

coupling is parameterized by the coupling constant kcoup.

Fig. 6 shows the distribution of spark duration calculated

for different coupling constants using a Monte Carlo

simulation and stochastic phase-plane analysis. When the

coupling factor (kcoup) is reduced to 0.6, the mean spark

duration increases modestly from 18 ms to 23 ms (Fig. 6,

A and B). However, when the coupling factor is reduced

further to 0.2, the mean spark duration is greatly increased

to 585 ms (Fig. 6 C) and the shape of the distribution is

changed from a bell-shaped curve to a distribution with an

exponentially decaying tail. This agrees with the previous

model (Sobie et al., 2002) and experimental results. FK506

and rapamycin have been shown to reduce coupled-gating

in planar lipid bilayer experiments (Marx et al., 2001). In

experiments on isolated heart cells, it has been shown that

these drugs increase the duration of Ca21 sparks (Xiao

et al., 1997; Lukyanenko et al., 1998; Sobie et al., 2002).

FIGURE 5 Distribution of spark durations for clusters containing (A) 10 RyRs and (B) 40 RyRs. The bars are a histogram of the results of a Monte Carlo

simulation of the model and the line is the analytical result calculated using stochastic phase-plane analysis (J0 ¼ 3.5, r ¼ 0.2, r ¼ 0.3, and d ¼ 0.114). The

model results are compared with experimental measurements (C) of spark rise times (Wang et al., 2002).

FIGURE 6 Distribution of spark durations as function of the RyR coupling constant (kcoup). (A) Normal coupling kcoup ¼ 1, (B) partial reduction kcoup ¼ 0.6,

and (C) reduced coupling kcoup ¼ 0.2. The bars are from a Monte Carlo simulation of the model and the line is the analytical result. Note that when kcoup is

reduced below a threshold, the mean spark duration is greatly increased and the distribution changes from a bell shape to a distribution with a long (exponential)

tail.
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However, contradictory experimental results have been

reported where FK506 ‘‘only weakly modulated’’ Ca21

sparks (Soeller and Cannell, 2002). This model of coupled-

gating gating gives a possible explanation of these

contradictory results because the spark duration is only

significantly increased when the coupling constant is

reduced below a threshold value. The mathematical reason

for this change in behavior can be understood by

considering the phase-plane portrait when the coupling is

interrupted (Fig. 7). During a spark with normal coupling

between the RyRs (Fig. 7 A), the system moves down the

nullcline from point 2 to 3, where it will ‘‘fall off’’ the

nullcline and the spark will terminate (if it has not already

terminated due to a stochastic transition). Fig. 7 B shows

that the system gains an extra fixed point (at point 3 in the

figure) when the coupling constant kcoup is reduced below

a critical value. During a spark with interrupted coupling

between the RyRs (Fig. 7 B), the system moves down the

nullcline from point 2 to the new fixed point at point 3. It

will remain at this point until a stochastic transition

terminates the spark. The tail of the distribution is

exponential because at the fixed point J is constant,

therefore the rate of stochastic transitions is constant. The

bifurcation between these two behaviors can be calculated

by finding the critical point (fc, Jc) where the stable and

unstable branches of the nullcline of f join, thus.

fc ¼
a�1

að11rkcoupÞ
and Jc ¼

J̃

11dJ̃
; (30)

where

J̃¼ ð11rkcoupÞa
a�1

rkcoupða�1Þ
11rkcoup

� �1=a

; (31)

and a is the exponent in the RyR transition coefficients.

There will be a fixed point on f1(J) if the nullcline of J lies

above this critical point (see Fig. 7 B). The fixed point of J at

fc can be calculated using Eq. 17 and is

JcJ
ðfcÞ ¼

J0r

r1fc

¼ J0að11rkcoupÞr
arkcoupr1a�1

; (32)

where J0 is the network SR Ca21 and r is the rate of refill of

the JSR from the network SR. If JcJ
[Jc (i.e.. if [Ca21]NSR is

too high), there will be a fixed–point on f1(J) which extends

the duration of the spark. This implicit inequality for kcoup

cannot be analytically inverted, but can be approximated

given that r; d � 1. The bifurcation in behavior then occurs

when kcoup \ kc where

kc �
1

rða�1Þ
J0rða�1Þ
a�11ar

� �a

: (33)

This formula tells us if the coupling constant kcoup is too

small, then the sparks will be extended due to the existence

of a fixed point on the stable nullcline of f, thus explaining

the model results (Fig. 6). Note that when a ¼ 4 and r is

small, then kc } J4
0 . The power of 4 tells us that the

bifurcation point is very sensitive to value of J0, which is

proportional to [Ca21]NSR.

DISCUSSION

In this article, a novel mathematical analysis has been

applied to a model of Ca21 release in cardiac myocytes. The

dependency of spark frequency on [Ca21]myo and [Ca21]JSR

was calculated, and showed that the spark frequency is very

sensitive to the SR Ca21 loading (Fig. 4). The spark

frequencies were calculated for models containing RyRs

with different Hill constants for Ca21 activation. It was

demonstrated that if the Hill constant was reduced from 4 to

3, the spark frequency increased by a factor of 103. The low

frequency of Ca21 sparks in healthy cardiac cells suggests

that the effective Hill coefficient for RyR in cardiac

myocytes is 4.

The distribution of spark durations was calculated using

the technique of stochastic phase-plane analysis, which

allowed the relative importance of the stochastic and

FIGURE 7 Phase-plane and null-

clines of the model when (A) normal

coupling (kcoup ¼ 1) and (B) interrupted

coupling (kcoup ¼ 0.2). The nullcline for

f is the stationary point on the chain

when J is fixed. Point 1 (in both phase

portraits) is the stable fixed point the

system is in before a spark has been

generated. When a spark is generated

the system jumps to point 2 and then

moves down the nullcline toward point

3. The system can make a stochastic

transition from the nullcline f1 to f ¼
0. With normal coupling (A), the system ‘‘falls off’’ the nullcline at 3, terminating the spark if it has not already been terminated by a stochastic transition. With

interrupted coupling (B), the system reaches a fixed point at 3 so it does not ‘‘fall off’’ the nullcline at this point. However, eventually the spark will terminate

due to a stochastic transition. Since J is constant at the fixed point, the rate of transitions from the fixed point is constant and the tail of the distribution of spark

durations is exponential.
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deterministic mechanisms to be examined. It was shown

that when the number of RyRs in the CaRU was increased

from 10 to 40 (keeping the maximum combined current

through all RyRs constant), the mean spark duration

increased and the width of the distribution of spark lengths

was reduced. This demonstrates how the role of stochastic

attrition in terminating spark is reduced as the number of

RyRs in the cluster is increased. Stochastic attrition is

necessary to explain the experimentally observed distribu-

tion of Ca21 release times (Wang et al., 2002). The

deterministic mechanism by which sparks were terminated

was partial depletion of the [Ca21]JSR. When the [Ca21]JSR

fell below a critical value, the spark terminated because the

local positive feedback loop was not sufficiently strong to

maintain release. This critical value of [Ca21]JSR (typically

;1/3 of the resting concentration) is substantially larger

than total depletion, and is increased due to the sensitivity

of the RyR on [Ca21]JSR (Terentyev et al., 2002). The

model predictions are qualitatively robust to parameter

changes, providing the approximations used in the

mathematical analysis are kept. These are that

eds; eB; em; eJSR � 1 (which are easily satisfied by the

biophysical parameters), 1 [ Jc/J0 � 0.3, and

1 � tJSR � 15 (see Eq. 15). If Jc/J0 [ 1, the model would

be unable to sustain sparks, and if Jc=J0 � 1 then sparks

would only terminate if the [Ca21]JSR was totally depleted.

If tJSR � 1, then stochastic transitions would be less

important and the distribution of spark durations would be

approximately uniform.

The role of the FK-binding protein that couples the

RyRs was examined using an established model for this

process (Sobie et al., 2002). When the RyR coupling factor

(kcoup) was reduced below a threshold level (kc), the

distribution of the spark durations changed from a bell-

shaped curve of mean 18 ms to an approximate

exponential distribution of mean [100 ms (Fig. 6). This

model prediction agrees with experiments where the FK-

binding protein is interrupted with FK506. The analysis

showed that this dramatic change in distribution was due

to the creation of a new fixed point when kcoup \ kc. An

approximate calculation of kc showed that it is proportional

to the SR Ca21 loading to the power of 4. This large

power tells us that kc is very sensitive to SR Ca21 loading,

and suggests that the effect of FK506 on increasing spark

lengths can be reversed by a small reduction in SR

loading. This could easily be tested experimentally by first

treating cells with FK506, then applying a low dose of

cyclopiazonic acid (a SERCA inhibitor) to see if the effect

of the FK506 on sparks is reversed.

The model of sparks analyzed in this article is similar to

most previous models of local Ca21 release, which include

a large number of stochastic RyRs in a single release unit

(Stern, 1992; Stern et al., 1999; Sobie et al., 2002;

Greenstein and Winslow, 2002). One feature that all these

models share is that they display strong local feedback, so

that the majority of channels (which have not be

inactivated) are either all open or all closed. This feature

of the models is not contradicted by experimental results,

which put a lower bound of 18 RyRs involved in the

generation of each spark (Bridge et al., 1999). A recent

experimental result has shown that a single opening of LCC

can lead to 4–6 RyRs generating a spark (Wang et al.,

2001). This suggests that there is a strong coupling between

each LCC and a small group of RyRs in the cluster (this

feature is incorporated in the model of Greenstein and

Winslow, 2002). This result does not necessarily contradict

this model of spontaneous Ca21 sparks. For example, in

a cluster containing 60 RyRs ([Ca21]myo ¼ 100 nM and

[Ca21]JSR ¼ 0.8 mM) and 4 RyRs are opened, then the

probability of all the other receptors opening within the

next 100 ms is just 15%.

In the fire-diffuse-fire model for Ca21 waves, regener-

ative waves occur when Ca21 from a spark at one CaRU

diffuses to a neighboring CaRU, where it triggers further

release (which then diffuses to a neighboring CaRU and so

on). The model suggests that sparks occur before waves.

Experiments on Ca21 overloaded cells have shown that

cells can exhibit sparks and waves, only spark, or only

waves. The stochastic model of Ca21 sparks in this article

suggests a possible explanation for these different cases.

Assume that between spontaneous Ca21 waves the

myoplasmic Ca21 is approximately constant and the SR

Ca21 (J) increases slowly. The spark frequency will

increase as the SR Ca21 increases (see Fig. 4). Fig. 8 is

a schematic diagram of the spark separation of a single

CaRU as a function of SR Ca21 for different local

[Ca21]myo. For sparks to be observable, the spark

separation must be below a critical value Ts at resting

[Ca21]myo, which occurs when [Ca21]SR rises above Js.

When Ca21 is released from one CaRU, it diffuses to

neighboring CaRUs, which increases the local [Ca21] at

neighboring CaRUs for the duration of the spark, and thus

increases the rate of spark generation (the lower lines in

Fig. 8). If the mean spark separation (Tw) is less than mean

length of a spark, then there is a high probability of further

Ca21 release and a regenerative wave propagating. This

will occur if [Ca21]SR is above a critical value Jw. The

occurrence of sparks and waves can be explained by the

relative values of Jw, Js, and the equilibrium SR Ca21 J0:

1. J0 \ Js and J0 \ Jw, then no sparks and no waves.

2. Js\ J0 and J0\ Jw, then sparks but no waves (Fig. 8 A).

3. Js \ Jw and Jw \ J0, then sparks and waves (Fig. 8 A).

4. Jw\ J0 and Jw\ Js, then waves but no sparks (Fig. 8 B).

The last case is not a contradiction; it just means that any

spark will trigger a wave, so individual sparks will not be

observed. The difference between case 3 and case 4 is that

in case 4, after a spark is generated, the myoplasmic Ca21

in the neighborhood of surrounding CaRUs rises by more

than in case 3. This can be examined experimentally by
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introducing a transmembrane Ca21 buffer, which would

reduce the gain in Ca21 at neighboring CaRUs after a spark

is generated.

APPENDIX 1: STOCHASTIC TRANSITIONS

The expressions for the fixed-point first passage times will now be

calculated. A full derivation and discussion can be found in Hinch (2002).

Consider an N 1 1 state continuous time Markov chain where the system

can only jump to neighboring positions on the chain. Define f as the relative

position on the Markov chain (f¼ n/N). The rate of transitions from the n to

n 1 1 position is the jump function f(f), and the rate of transitions from the n
to n � 1 position is the jump function g(f). A stationary point on the chain is

one where f(f) ¼ g(f). We shall consider jump functions such that the chain

has two stable fixed points (f6) and one unstable fixed point (f0), such that

f�\f0 \f1.

Stationary distribution

The first part of the analysis is to calculate the stationary distribution of the

Markov chain in the limit of a large number of states (N 9 ‘). Define pn as

the probability the system is in the nth position on the chain in the stationary

distribution. The stationary distribution is calculated using the principle of

detailed balance (Grimmett and Stirzaker, 2001)

pn ¼ pk

Yn

i¼k11

f ððn�1Þ=NÞ
gðn=NÞ ;

¼ pk exp +
n

i¼k11

ln
f ððn�1Þ=NÞ

gðn=NÞ

� �� �
; (34)

where 0 # k\n. The functions f(f) and g(f) are smooth. Additionally, with

the exception of the limit where f! 0 and f! 1 (see below for alterations

in analysis in this case), the second derivatives of lnðf ðfÞÞ and lnðgðfÞÞ are

bounded. Therefore the sums can be approximated using the trapezium rule

(Priestley, 1997)

+
n

i¼k

lnðf ðn=NÞÞ ¼ lnðf ðk=NÞÞ1 lnðf ðn=NÞÞ
2

1N

ðn=N

k=N

lnðf ðfÞÞdf1Oð1=NÞ: (35)

Inserting this into Eq. 34 gives

pNf ¼
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðfÞgðfÞ
p expð�NVðfÞÞ; (36)

where V(f) is the ‘‘derived potential’’

VðfÞ ¼
ðf

ln
gðf9Þ
f ðf9Þ

� �
df9 (37)

and A is a constant. The value of A is then chosen to satisfy the normalization

condition

+
N

i¼0

Npi ¼ 1: (38)

The asymptotic approximation of pNf (Eq. 36) shows excellent agreement

with the stationary distribution of the Markov chain calculated using Monte

Carlo numerical simulations (Hinch, 2002). The analysis needs to be

modified when we consider a Markov chain where the maximum of pNf lies

on the boundary n ¼ f ¼ 0, and either f(f) or g(f) are proportional to f in

the limit f ! 0. This is the case when we are considering spark generation.

The problem arises because lnðgðfÞ=f ðfÞÞ diverges logarithmically in the

limit f! 0, so that the trapezium rule is invalid. After taking this correction

into account we find

pNf ¼
p0Gf ð0Þ
gð1=NÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1=NÞgð1=NÞ

f ðfÞgðfÞ

s
expð�NðVðfÞ�Vð1=NÞÞÞ

whenf$1=N; (39)

where G � 1 and depends on the exact form of f(f) and g(f). G(f) can be

calculated by considering the difference between using Stirling’s formula

and the trapezium rule to estimate the factorial function. In the spark model

when emN=J0ð� 0:1Þ � 1, then G � ð
ffiffiffiffiffiffi
2p

p
=eÞa�1

.

Unstable fixed-point dynamics

The next part of the analysis is to consider the approximate dynamics of the

system in the region of the unstable fixed point. The stationary distribution

pNf will be two bell-shaped distributions centered on f� and f1, separated

by a minimum at f0 (see Fig. 9 A). The state space f can be separated into

three regions: R6 centered on f6 and R0 centered on f0. In the limit N 9 ‘,

the width of the region R0 in f is Oð1=
ffiffiffiffi
N

p
Þ. The aim of the analysis is to

calculate the first passage times between the regions R6; note that during one

of these transitions, the system must go through the region R0 since only

nearest neighbor jumps are allowed. Fig. 9 B shows a sample time series of

the position on the chain calculated using a Monte Carlo simulation. The

FIGURE 8 Schematic graph of the

spark separation of a single CaRU as

a function of [Ca21]SR (see Fig. 4 for the

actual model calculation). Each graph

shows the spark separation for resting

Ca21, and the spark separation for the

local [Ca21]myo at a CaRU while a spark

is occurring at a neighboring CaRU. Js is

the level of SR Ca21 required for the

spark separation to be sufficiently small

for sparks to be observed. Jw is the level

of SR Ca21 needed for a wave to be

generated. A shows the case when both

sparks and waves occur because Js \ Jw.

B shows the case when only waves occur

because Js [ Jw.
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functions f(f) and g(f) are chosen such that the chain has stable stationary

points at f� ¼ 0.25 and f1¼ 0.75, and an unstable stationary point at f0 ¼
0.5. The figure shows the system undergoing a transition from the region of

R1 to R�. Note that the system remains in the region R0 for a short period of

time, revisiting the unstable stationary position f0 many times (shown as

blobs in Fig. 9 B). The task of this section is to calculate the mean number of

times the system visits the unstable stationary position each time it enters the

region R0. To achieve this, we must calculate the dynamics of the Markov

chain each time the system enters the region R0. Define the small parameter e
¼ 1/N. As mentioned earlier, the width of the region R0 in f is Oð

ffiffi
e

p
Þ (see

Fig. 9 B); therefore in this region we can Taylor expand the functions f(f)

and g(f) about f0. Define m as the number of positions on the chain the

system is from the unstable stationary position f0, so when m ¼ 0, the

system is in the unstable stationary position. When the system is in the mth

state, the probability that the next jump on the chain is to the m 1 1 position

(i.e., a jump to the right) is

Rm ¼ f ðf01m=NÞ
f ðf01m=NÞ1gðf01m=NÞ ¼

1

2
1

mm

2
1Oðm2Þ;

(40)

where

m¼�g0e
2

and g0 ¼
g9ðf0Þ� f 9ðf0Þ

f ðf0Þ
: (41)

Note that since f0 is an unstable stationary position then m [ 0 (the

condition for f0 to be unstable is g9(f0)\ f9(f0)). Therefore, when m[ 0,

the probability that the next jump is away from the unstable state if [1/2.

The probability that the next jump on the chain is to the m � 1 position is Lm,

which can be calculated using the fact that Lm 1 Rm ¼ 1. Next, define Qm as

the probability that the system returns to m ¼ 0 when it is in the mth position.

During the following calculation, we shall consider the case m $ 0;

however, when m\ 0, the leading order solution is the same. The partition

theorem can be used to write a difference equation for Qm:

Qm ¼ RmQm111LmQm�1; (42)

with boundary conditions Q0 ¼ 1 and Q‘ ¼ 0. Inserting the expansions for

Rm and Lm (Eq. 40) yields

Qm11 �2Qm 1Qm�11mmðQm11 �Qm�1Þ1Oðm2Þ ¼ 0:

(43)

This difference equation can be approximated by a differential equation in

the limit m; 0. Rescale the variable x ¼ ffiffiffiffi
m

p
m and introduce the continuous

function q(x) ¼ Qm. The rescaling of m allows the difference terms Qm61 to

be expanded about Qm to give

Qm61 ¼ qðx6 ffiffiffiffi
m

p Þ¼ qðxÞ6 ffiffiffiffi
m

p dq

dx
1

m

2

d
2
q

dx
2 1Oðm3=2Þ:

(44)

Inserting this expansions into the difference Eq. 43 yields

d
2
q

dx2 12x
dq

dx
1Oð ffiffiffiffi

m
p Þ¼ 0; (45)

with solution

qðxÞ ¼ 1� erfðxÞ1Oð ffiffiffiffi
m

p Þ whenx[0: (46)

Here erf(x) is the standard error functions. The same calculation can be

repeated for the case when x\ 0. After each visit to the m ¼ 0 position, the

next jump must be to either the m ¼ 11 or m ¼ �1 position with equal

probabilities. Therefore the probability that the system returns to the m ¼
0 position after leaving it is (Q1 1 Q�1)/2, and the probability that the

system leaves the region R0 is 1 � (Q1 1 Q�1)/2. Define nreturn as the mean

number of times the system returns to the m ¼ 0 position, then

nreturn ¼
1

1�ðQ11Q�1Þ=2
�

ffiffiffiffiffiffiffiffiffiffiffi
pN

�2g0

s
: (47)

Note that as N increases, the number of times the system visits the unstable

stationary point f0 increases like
ffiffiffiffi
N

p
. This asymptotic approximation can be

checked using Monte Carlo simulations and both calculations are in

excellent agreement (Hinch, 2002).

Stochastic fixed-point transitions

The final task is to combine the results of the previous sections to calculate

the mean first passage times between the regions R6. Define t1 as the first

passage time from the R1 region to the R� region, and t� as the first

passage time from R� to R1. The analysis presented in this section will

calculate the leading order asymptotic approximation or t6 in the limit

N 9 ‘. The arguments presented below are only valid for the leading order

term, and more care is needed if correction terms are to be calculated

(Hinch, 2002). During each transition between the regions R6, the system

must pass through the region R0. Define tR0
as the mean time between

visits to the region R0. The probability that the system is at the unstable

stationary position is pNf0
. The mean time spent in this position during

each visit is 1/2f(f0) (remember f(f0) ¼ g(f0)). Therefore the mean time

between visits to the unstable stationary position is 1=2f ðf0ÞpNf0
.

However, each time the system is in the region R0, it visits the unstable

position (f0) on average nreturn times. Therefore the mean time between

visiting the region R0 is

FIGURE 9 (A) Stationary distribution

of a Markov chain model with stable

stationary points at f6 and an unstable

stationary position f0. The state space is

split into three regions, R6 and R0,

centered about the stationary points. The

width of the region R0 is Oð
ffiffi
e

p
Þ, where

R
¼ 1/N. (B) Monte Carlo simulation of

a time series of a Markov model with two

stable and one unstable stationary points.

Note that the system visits the unstable

stationary position (at f0 ¼ 0.5) many

times (marked with blobs) before leaving

the region R0.

1304 Hinch

Biophysical Journal 86(3) 1293–1307



tR0
¼ nreturn

2pNf0
f ðf0Þ

: (48)

When the system enters the unstable position f0, it does not ‘‘remember’’

whether it previously came from the region R1 or R� because it is a Markov

process. Additionally (to leading order), after leaving f0, it is equally as

likely to go to either the R1 or R� region. Therefore the probability that

a transition occurs when the system enters the region R0 is 1/2, so the mean

time between transitions is 2tR0
. Finally we calculate the ratio of the mean

first passage times t6. This is achieved by considering the stationary

distribution. Define P6 as the probability that the system is in the regions

R6, which are calculated by summing the stationary distribution over the

regions

P� ¼ +
Nf0

k¼0

pk and P1 ¼ +
N

k¼Nf0

pk: (49)

Remember the time spent in the region R0 is exponentially small, so it can be

ignored in this asymptotic calculation. If f� 6¼ 0 and f1 6¼ 1, then these

sums can be approximated in the limit N 9 ‘ by integrals that can then be

approximated using Laplace’s method to give

P6 ¼ A

f ðf6Þ

ffiffiffiffiffiffiffiffiffiffi
2pN

g�

s
expð�NVðf6ÞÞ1OðN�1=2Þ; (50)

where V(f) is the ‘‘derived potential’’ (Eq. 37) and g6 is defined by Eq. 41.

Note that the normalization constant A can now be calculated using the fact

that P1 1 P� � 1. The ratio of the first passage times is then given by

t1

t�
¼ P1

P�
: (51)

A transition from the region R� to R1 must be followed by a transition from

R1 to R�; therefore the mean transition time is (t1 1 t�)/2. Finally,

combining Eqs. 36, 47, 48, 50, and 51 yields

t6 ¼ expðNDV6Þ
2pN

f ðf6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g0g6

p 1Oð1Þ
 !

; (52)

where DV6 ¼ V(f0) � V(f6). This equation is used in the section

‘‘Stochastic fixed-point transitions’’ to calculate the rate of spark

termination. The calculation of the rate of spark generation is slightly more

complicated since the maximum of the stationary distribution is in the n ¼
0 position. Equation 39 for the stationary distribution must be used instead of

Eq. 36, then

tgen ¼ expðNDV�Þ

3
gð1=NÞ

ffiffiffiffiffiffiffiffiffiffi
2pN

p

Gf ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðf�Þf ð1=NÞgð1=NÞ

p 1Oð1=
ffiffiffiffi
N

p
Þ

 !
;

(53)

where DV� ¼ V(f0) � V(1/N). This equation is used to calculate spark

frequencies in the section ‘‘Stochastic fixed-point transitions’’.

APPENDIX 2: GLOSSARY OF PARAMETERS AND
BIOPHYSICAL ESTIMATES

Table 1 is a glossary of the parameters used in the model and the values used.

The values are estimates taken from the biophysical literature and the

references are: Vds and Ads were calculated by assuming that the diadic space

is a cylinder of width 10 nm and radius 200 nm (Frank, 1990). Vcell

(Greenstein and Winslow, 2002), VJSR (Sobie et al., 2002), and DCa

(Allbritton et al., 1992; Zhou and Neher, 1993). leff will be a bit larger than

the width of the diadic space and gD � DCaAds/leff. [Ca21]NSR (Sobie et al.,

2002), [B]tot (Sobie et al., 2002), KB (Rice et al., 1999), [CSQ]tot (Greenstein

and Winslow, 2002), and KCSQ (Greenstein and Winslow, 2002). The

simplification is made that bJSR is approximately constant, and is calculated

using Eq. 6 with an ‘‘effective’’ JSR concentration during a spark of 360

mM. A cell contains typically 50,000 LCC (Rose et al., 1992; McDonald

et al., 1986) and each CaRU contains typically 4 LCC (Greenstein and

Winslow, 2002); therefore, NCaRU � 12,500. The myoplasmic volume per

CaRU is then 2 mm3. Jmax is calculated by considering the Ca21 release from

a single CaRU during E-C coupling: [Ca21] rises by 1.0 mM in 10 ms (Wang

et al., 2002) and typically 98% is buffered (Rice and Jafri, 2001). ttr

(Greenstein and Winslow, 2002). a (Sobie et al., 2002). K0 (average of Sobie

et al., 2002, and Gyorke and Gyorke, 1998) with original data from Thedford

et al. (1994), Cheng et al. (1996), Gyorke and Gyorke (1998), Lukyanenko

et al. (1998), and Ching et al. (2000). topen (Gyorke and Gyorke, 1998). r

estimated from single RyR recordings in Zahradnikova and Zahradnik

(1996).

The nondimensional parameters are calculated from the physiological

parameters using Eq. 15 and are listed in Table 2.

The author thanks Prof. D. Noble and Dr. A. Fowler for useful discussions

relating to this manuscript.

TABLE 1

Parameter Definition Value

Vds Volume of diadic space (ds) 1.26 3 10�3 mm3

Ads Interface area of ds and myoplasm 1.26 3 10�2 mm2

Vcell Cell volume 25 pl

VJSR Volume of JSR 1.0 3 10�2 mm3

DCa Diffusion constant of Ca21 0.3 mm2 ms�1

leff Effective diffusion length of Ca21 13.2 nm

gD Diffusive rate from ds 0.286 mm3 ms�1

[Ca21]myo Myoplasmic Ca21 concentration 0.1 mM

[Ca21]NSR Network SR Ca21 concentration 1000 mM

[B]tot Total buffer in ds 24 mM

KB Calmodulin dissociation constant 2.38 mM

[CSQ]tot Total calsequestrin in JSR 13.5 mM

KCSQ Calsequestrin dissociation constant 0.63 mM

bJSR Buffering factor in JSR 0.13

NCaRU Number of CaRU per cell 12500

Jmax Max. current from SR into CaRU 10 mM mm3 ms�1

ttr Transfer time from NSR to JSR 3 ms

N Number of RyRs in CaRU 10–100

a Number of Ca21 to activate RyR 4 (or 3)

K0 RyR dissociation constant 10 mM

topen Mean open time of RyR 0.5 ms

r Proportion of time closed in H-mode 0.2

n Sensitivity of KRyR on JSR Ca21 0.4 mM�1

TABLE 2

Parameter Value

eds 0.002

eB 0.002

em 0.01

eJSR 0.03

J0 3.5

tJSR 15

r 0.3

r 0.2

d 0.114
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