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ABSTRACT F1Fo-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell’s transmembrane
proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, Fo and F1, which are coupled
by a central stalk. The membrane unit, Fo, converts the transmembrane electrochemical potential into mechanical rotation of
a rotor in Fo and the physically connected central stalk. Based on available data of individual components, we have built an all-
atom model of Fo and investigated through molecular dynamics simulations and mathematical modeling the mechanism of
torque generation in Fo. The mechanism that emerged generates the torque at the interface of the a- and c-subunits of Fo

through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The
mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time,
to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-
61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing
direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated
mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and
associated friction constants, have been tested and furnished by steered molecular dynamics simulations.

INTRODUCTION

Efficient transformation of energy into synthesis of ade-

nosine triphosphate (ATP) is vital for living cells. The

ubiquitous enzyme that uses the transmembrane electro-

chemical potential to synthesize ATP in bacteria, chlor-

oplasts, and mitochondria is F1Fo-ATP synthase, a complex

of two molecular motors, Fo and F1 (see Fig. 1), mech-

anically coupled by a common central stalk. The membrane-

embedded Fo unit efficiently converts the proton-motive

force into mechanical rotation of the central stalk inside the

solvent-exposed F1 unit. The rotation causes cyclic confor-

mational changes in F1, thereby driving ATP synthesis

(Boyer, 2000). The enzyme can also function in the reverse

direction, hydrolyzing ATP and utilizing the released energy

to pump protons across the membrane.

F1Fo-ATP synthase structure and function are essentially

conserved among most species, suggesting common mech-

anisms of proton translocation and ATP synthesis or hydro-

lysis (Senior, 1988; Dmitriev et al., 1999; Rastogi and Girvin,

1999; Groth, 2000; Kaim, 2001; Jiang et al., 2001; Stock

et al., 1999; Seelert et al., 2000; Vonck et al., 2002;

Abrahams et al., 1994). Fig. 1 provides a schematic view of

ATP synthase from Escherichia coli, which has a relatively

simple structure. The Fo motor is made of three different

polypeptides: subunit a, which is assumed to mediate proton

translocation across the membrane; a dimer of subunits b,
which mechanically connects the Fo and F1 motors; and

a cylindrical cn oligomer of c-subunits (Dmitriev et al., 1999;

Rastogi and Girvin, 1999; Groth, 2000; Kaim, 2001). In E.
coli, the number, n, of c-subunits was found to be 10 (Jiang

et al., 2001); in other species, it may vary from 10 to 14

(Stock et al., 1999; Seelert et al., 2000; Vonck et al., 2002).

Here, we report molecular dynamics simulations and

mathematical modeling of the Fo motor, which couples

proton translocation across the membrane with mechanical

rotation of the c10 oligomer relative to the ab2 complex

(Sambongi et al., 1999; Pänke et al., 2000; Tanabe et al.,

2001; Junge et al., 2001). Site-directed mutagenesis experi-

ments have identified two residues to be critical for Fo
operation (Valiyaveetil and Fillingame, 1997; Fillingame

et al., 2002): aArg-210 in one of the transmembrane

a-helices (TMH), TMH4, of the a-subunit and cAsp-61 in

the outer TMH of each c-subunit, the primary proton binding

sites (see Fig. 2) located in the middle of the membrane

hydrophobic layer (Fillingame et al., 2002). Each cAsp-61
can assume either a protonated (neutral) or deprotonated

(negatively charged) state. Since the membrane-spanning

domains of the c-subunits are formed almost entirely by

hydrophobic residues, which cannot mediate proton trans-

location, the binding sites can only change their protonation

states when in contact with the a-subunit. The latter includes
polar groups, which are thought to form two proton half-

channels terminated by residues aSer-206 and aAsn-214 of

the a-subunit (Fillingame et al., 2002; Angevine and

Fillingame, 2003), as shown in Fig. 2. The inlet half-channel

ending at aAsn-214 connects the proton-rich periplasm to

a domain located in the middle of the hydrophobic

membrane layer; the outlet half-channel beginning at aSer-
206 connects this domain to the cytoplasm. To allow rotation

of the c10 complex, a cAsp-61 binding site needs to be
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protonated before leaving the interface to avoid energetically

unfavorable exposure of an electrically charged residue to

the hydrophobic membrane environment. This is achieved

by a proton traveling from the periplasm via the inlet half-

channel and protonating the cAsp-61 binding sites. The

rotation of the c10 oligomer, induced by the proton electro-

chemical gradient, after an almost complete revolution,

brings the binding sites close to the a-subunit again, causing
it to release a proton, which then travels to the cytoplasm via

the outlet half-channel.

Although the rotary catalysis mechanism (Boyer, 1997)

has been recently demonstrated in a series of spectacular

single molecule experiments for both the F1 (Yasuda et al.,

2001; Kato-Yamada et al., 1998; Noji et al., 1997, 1999;

Masaike et al., 2000; Hirono-Hara et al., 2001) and the Fo
units (Sambongi et al., 1999; Pänke et al., 2000; Tanabe et al.,

2001; Junge et al., 2001), the understanding of the involved

atomic scale events in Fo is still limited. For the F1 unit,

several high resolution structures have been obtained

(Abrahams et al., 1994; Menz et al., 2001; Gibbons et al.,

2000), setting the stage for the first all-atom steered

molecular dynamics (MD) investigations of functionally

relevant domain motions involved in ATP synthesis and

hydrolysis (Böckmann and Grubmüller, 2002; Ma et al.,

2002). For the Fo unit, no complete atomistic structure is

available yet. However, a number of structural models based

on NMR experiments, disulfide cross-linking data, scanning

mutagenesis, and analysis of suppressor mutations have

emerged (Dmitriev et al., 1999; Rastogi and Girvin, 1999;

Groth, 2000; Girvin et al., 1998; Jones et al., 1998; Jiang and

Fillingame, 1998; Fillingame et al., 2000b), that may be

integrated into a full atomic scale structure.

NMR and cross-linking experiments indicated, in partic-

ular, that the position of cAsp-61 depends on its protonation:
in the protonated state, cAsp-61 is hidden inside the

hydrophobic core of the c-unit (Dmitriev et al., 1999;

Rastogi and Girvin, 1999; Girvin et al., 1998), whereas in

the deprotonated state it extends to the outside (Rastogi

and Girvin, 1999). A large rotation of the outer TMH of

a c-subunit around its axis is necessary to bring cAsp-61 to

the interface with the a-subunit, where it can bind as well as

release a proton.

Although rotation of individual TMHs successfully ex-

plains the observed conformational changes in the c-subunit
upon protonation or deprotonation of cAsp-61, a number of

questions still remain to be answered. How are rotations of

individual TMHs coupled to each other and to rotation of the

c10 oligomer? How does rotation depend on the protonation

states of cAsp-61 residues? In particular, since deprotonated

cAsp-61 is likely to form a salt bridge with aArg-210, how is

relative motion between the a-subunit and the c-subunit
possible? Answers to these questions may reveal the motor

mechanism.

To explore Fo on the atomic scale, we combine mathe-

matical modeling with all-atomMD simulations of the E. coli
protein in its native environment (membrane and water). The

FIGURE 2 Microscopic model of Fo ATPase composed of a four-helix

bundle (a2–a5) of subunit a and an oligomer of 10 c-subunits. Only

backbones of subunit a and of one out of 10 cTMH-2 (c2R) are shown as

tubes; the rest of the c10 oligomer’s helices are shown as cylinders. The

binding sites (cAsp-61) of the c10 oligomer, the termini of the proton half-

channels (aSer-204 and aAsn-214), and the critical aArg-210 residues of

subunit a are drawn in van der Waals representation. The interface between

a- and c-subunits was modeled.FIGURE 1 Schematic view of the E. coli ATP synthase. The solvent-

exposed F1 unit (top) consists of subunits a3b3gde; the membrane Fo unit

(bottom) consists of subunits ab2c10.
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gap between the timescales of processes that need to be

described makes a twofold approach imperative: under

physiological conditions, the elementary protonation/depro-

tonation events as well as the subsequent structural relaxation

occurs on the picosecond timescale whereas the central stalk

rotation requires milliseconds. We bridge the timescales by

combining a mathematical model of the overall millisecond

function of Fo with nanosecond MD simulations. The model

assumes that the Fo motor operates as a molecular ratchet, in

which the proton-motive force biases the rotational diffusion

of the c-oligomer (Junge et al., 1997) and is described as

suggested in Mogilner et al. (2002). The MD simulations test

the feasibility of the model and determine some of the

model’s parameters. Unlike the one-dimensional ratchet

model proposed in Elston et al. (1998), which describes

a generic molecular motor, our model is directly related to the

atomistic structure and dynamics of the Fo unit.

METHODS

The Fo motor was investigated byMD simulations carried out after modeling

the E. coli Fo structure shown in Fig. 2. The MD simulations provided the

bases for the stochastic model sketched in Fig. 4.

Structure building

Presently, there is no structure available for the Fo sector of the ATP

synthase that encompasses the c10 oligomer and the a-subunit (see Fig. 1).

The only available crystallographic structure is one for the mitochondrial

F1-c10 complex, at 3.9 Å resolution (Stock et al., 1999), that does not include

subunit a critical for ATPase function. Several structural models for

components of Fo (including a model for subunit a) have been developed on

the basis of disulfide cross-linking data and NMR experiments performed

in polar solvents and detergents (Dmitriev et al., 1999; Jones et al., 1998;

Rastogi and Girvin, 1999; Groth, 2000; Girvin et al., 1998). It is not clear,

however, in how far the protein structure in detergent is similar to that in

membranes (Groth, 2000), and to which extent the proposed models are

accurate. To model the function of Fo at atomic resolution, a structural model

of Fo in its native environment needed to be constructed first. For this

purpose we merged previously suggested models of Fo components. We

note here that the model used and, hence, also our own model, still involve

great uncertainties.

The structure shown in Fig. 2 was obtained starting from the a1c12
complex (PDB code 1c17, Rastogi and Girvin, 1999), which includes four of

the five TMHs of subunit a. The c12 oligomer was then replaced by the c10
oligomer (PDB code 1c0v; Dmitriev et al., 1999; Stock et al., 1999;

Fillingame et al., 2000b). Since neither a specific role in proton translocation

has been ascribed to the b-subunits, nor their exact position yet determined

(Dunn et al., 2000), subunits b were disregarded.

To obtain a correct interface between the a- and c-subunits, we carried out

10,000 steps of conjugate gradient minimization followed by 130 ps of

equilibration in vacuum at 4 K with the backbone atoms of all c-subunits
restrained. The low temperature assured that no significant change in

dihedral angles (and, therefore, in the protein conformation) could occur,

whereas the equilibration substantially improved the alignment of the

a-subunit TMHs to the c-subunits at the interface. The distance between

the centers of mass (computed using coordinates of the backbone a-carbons)

of the c10 complex and the a-subunit shrank from 39.4 Å to 38.0 Å. The

alignment occurred within the first 70 ps of equilibration, and no structural

changes were observed afterward. The alignment process is illustrated by

supplied movies at http://www.ks.uiuc.edu/Research/f0atpase/movies/.

The resulting protein structure was embedded into a square patch of

a phosphatidylethanolamine membrane. The membrane structure was

obtained by generating a lipid bilayer, either layer of which was built by

placing lipid molecules onto the nodes of a hexagonal lattice. The lattice

vectors were chosen to reproduce the surface area per lipid of 57 Å2, the

value observed in experiments. Each lipid molecule was randomly rotated in

the membrane plane, and its position in the direction normal to the plane was

randomly shifted. The lipid headgroups were solvated using the Solvate

program (Grubmüller et al., 1996). The protein was embedded into the

membrane using the available disulfide cross-linking data, and all lipid

molecules that overlapped with the protein were removed. Two lipid

molecules at either side were left in the central cavity of the protein.

The protein-lipid complex was then solvated in a rectangular volume of

preequilibrated TIP3 water molecules. Sodium and chlorine ions were ad-

ded, corresponding to an ionic strength of 0.05 mM. The final system (Fig. 2)

measured 112 3 123 3 98 Å3 in size and included 111,714 atoms.

We performed 700 steps of minimization followed by gradual heating

from 0 to 310 K in 2 ps, equilibration for 2.75 ns with the backbone protein

atoms constrained, and equilibration for another 1.9 ns without constraints.

The protein structure was closely monitored during the equilibration. Within

the first 1.3 ns of the unrestrained equilibration the center of mass of the

a-subunit drifted by 1.5 Å in the direction normal to the membrane. The

distance between the c10 complex and the a-subunit did not change. In the

last 0.6 ns of the equilibration the a-subunit position remained unchanged.

After the equilibration, the root-mean square deviation (RMSD) of the

a-carbon atoms from the initial structure reached 2.7 Å. To find out which

protein domains are most different from the initial structure, the RMSD was

computed separately for different protein parts; the results of the calculations

are shown in Fig. 3. The RMSD of all protein atoms located within the lipid

bilayer reached a stationary value of 1.6 Å in 1.3 ns and did not increase

significantly thereafter. In contrast, the RMSD of the solvent-exposed

residues of the c10 oligomer (residues 1–6, 38–49, and 74–79) steadily

increased throughout the equilibration, reaching 4 Å at the end. The origin of

this increase was spontaneous unwinding of the solvent-exposed parts of the

c-subunit a-helices. Thus, the transmembrane part of the protein structure

proved to be stable and suitable for MD simulations. In all other simulations

of the Fo unit the backbone atoms of the solvent-exposed parts of the

c-subunits were restrained.

Molecular dynamics simulations

The MD simulations were performed using the NAMD2 program (Kalé

et al., 1999), CHARMM27 force field (MacKerell et al., 1998), periodic

FIGURE 3 RMSD values of the a1c10 complex a-carbon atoms during the

equilibration.

1334 Aksimentiev et al.

Biophysical Journal 86(3) 1332–1344



boundary conditions, and particle mesh Ewald full electrostatics (Batcho

et al., 2001). The temperature was kept at 310 K by either applying Langevin

forces (Brünger, 1992) to all heavy atoms or velocity-rescaling every 25–50

ps. The integration time step chosen was 1 fs. The equilibration was

performed in the NpT ensemble using the Nosé-Hoover Langevin piston

pressure control (Martyna et al., 1994). Van der Waals energies were

calculated using a smooth (10–12 Å) cutoff.

Since the timescale of large MD simulations is currently limited to ;10

ns, steering forces were applied to speed up the relevant protein domain

motions. Steered MD simulations (Isralewitz et al., 2001a,b; Park et al.,

2003) were performed in the NVT ensemble, using the NAMD2 Tcl

interface. To avoid distortion of the protein structure, steering forces

were applied to all backbone atoms of rotating protein domains, with

a force magnitude proportional to the distance atom-rotation axis. Since the

density of atoms across the lipid bilayer varies, the steering forces

were scaled proportional to the atom density to achieve more uniform

rotation. To control system temperature, dissipate heat generated by forces

applied, and stabilize the protein structure, Langevin forces acted on all

heavy atoms.

Stochastic model

Our model, based on the atomistic structure of Fo in the lipid-solvent

environment, reduces the overall dynamics to a few essential degrees of

freedom. We assume that all torque-generating events occur at the interface

between the a-subunit and the c10 oligomer, and, therefore, use as effective

coordinates 1), the rotation angle of the c10 oligomer relative to the a-subunit
(angle ua); 2), rotation of aTMH4 that hosts the critical aArg-210 residue

(angle uR); and 3), rotation angle of the four c2 helices near the a-subunit

that host the critical cAsp-61 residues (angles u1, u2, u3, and u4). The model

geometry is defined in Fig. 4.

Out of the 10 subunits in the c-oligomer, only two (c2L and c2R in Fig. 4)

form, with their c2 helices, a contact with the a-subunit. Our model includes

these two helices as well as the two adjacent c2 helices (c2L9 and c2R9)

needed to account for the periodicity of the c10 oligomer. Each c2 helix is

described by one rotation angle defined through the orientation of the helix’s

critical residue, the latter represented by a zero or negative charge located

at a fixed distance from the helix axis. The model also accounts for the

protonation states of the c2L and c2R cAsp-61 residues; the residues are

negatively charged in the deprotonated state and electrically neutral in the

protonated state; the aArg-210 residue is always positively charged.

Protonation or deprotonation of either cAsp-61 residue can only occur

when it approaches the terminal residue of either the periplasmic (aAsn2-14)

or the cytoplasmic (aSer-206) proton half-channel (see Fig. 2). The atomistic

structure of the half-channels is incorporated in the model by specifying

explicitly the proton path to each binding site.

Our model was formulated relative to the c10 complex coordinate frame

(see Fig. 4). The position of the a-subunit relative to the c10 complex is

described by the angle ua, which becomes zero when a4 is equidistant to the

two c2 helices nearest to it. The periodic property

f ðua 6 2p=10Þ ¼ f ðuaÞ (1)

was assumed, where f denotes any function dependent on ua. When a4

passes by c2R(ua [ p/10), the following cyclic replacement of the

variables takes place: c2L9 ! c2R9; c2L ! c2L9; c2R ! c2L; and c2R9 !
c2R. On the other hand, when a4 passes by c2L (ua \ –p/10), the cyclic

replacement of the variables takes place in the reverse direction: {c2L9,

c2L, c2R, c2R9} ! {c2L, c2R, c2R9, c2L9}. Helices c2L9 and c2R9 were

introduced in the model solely to provide this specific type of boundary

condition. They do not participate in any interactions with subunit a, nor
can they change their protonation states. The helices do, however, perform

stochastic rotary motions, and they are influenced by the potential of mean

force (PMF) just as the other c2 helices are.

Mechanical motion in the protein complex is described by a system of

Langevin equations,

ji
dui

dt
¼ � @Cðua; uR; u1; u2; u2; u4Þ

@ui

1hiðtÞ;

i ¼ a;R; 1; . . . ; 4: (2)

The timescale for the rotary motion of the helices and the c10 oligomer is

determined by the friction coefficients, ji, which are related to the average

magnitude of the corresponding random forces, hi, through the fluctuation-

dissipation theorem,

hhiðtÞhjðt9Þi ¼ 2jikBTdi;jdðt � t9Þ: (3)

The potential function C in Eq. 2 is a sum of all potential energy terms,

C ¼ UNB 1UH 1UPMF � tua: (4)

HereUNB describes the nonbonded interactions between the binding sites

and aArg-210,

UNB ¼ UELð~RR61L �~RR210Þ1UELð~RR61R �~RR210Þ
1UELð~RR61L �~RR61RÞ1UREPð~RR61L �~RR210Þ
1UREPð~RR61R �~RR210Þ1UREPð~RR61L �~RR61RÞ: (5)

FIGURE 4 Stochastic model for Fo (view from cytoplasm). Four out of 10

c-subunits and the a-subunit are shown. The c10 complex is fixed, and the

a-subunit canmove in either direction (angleua). This is equivalent to themore

natural choice of a fixed subunit a and a moving c10 complex. The second

transmembrane helix (c2) of each c-subunit can rotate independently

(described by angles u1, u2, u3, and u4), thereby moving the key cAsp-61
residues, which are the proton-binding sites. The c1 helices do not rotate.

Similarly, only the fourth helix of the a-subunit (a4) can rotate (angle uR),

moving the aArg-210 residue; helices a2, a3, and a5 do not rotate. Proton

transfer occurs between the terminal residue of the periplasmic channel

(aAsn-214) and the cAsp-61 binding site on helix c2R, and between the

terminal residue of the cytoplasmic channel (aSer-206) and the cAsp-61

binding site on c2L. Motions are confined to the plane of the figure. The

system is fully described by helix orientations u1, u2, u3, and u4 (c-subunits),

uR (a4), rotor angle ua, and protonation state of the two aspartates (cAsp-61)

on helices c2L and c2R.
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UH describes the hydrophobic interaction of the binding sites with the

lipid bilayer,

UH ¼ Hðj~RR61L �~RRa4jÞ1Hðj~RR61R �~RRa4jÞ; (6)

and UPMF accounts for the PMF acting on the individual helices,

UPMF ¼ +
4

i¼1

Wc2ðuiÞ1Wa4ðuRÞ; (7)

where~RR61L,~RR61R, and~RR210 denote positions of the key residues on c2L, c2R,

and a4 helices, respectively, and~RRa4 denotes the a4 helix position. The load

torque t imposed by the F1 unit acts on ua only. The motor operates against

this load, driving thereby synthesis of ATP.

Charged residues interact according to a screened electrostatic potential

(Dimroth et al., 1999),

UELð~rrÞ ¼
e
2

4pe0e
q1q2

j~rrj expð�lj~rrjÞ; (8)

here q1 and q2 are the charges of the residues, e is the dielectric constant of
the protein environment, 1/l is the Debye screening length, and we assumed

e2/(4pe0) � 56 kBT nm (other parameters are listed in Table 1). To prevent

the residues from getting too close to each other, the repulsive part of the

Lennard-Jones potential,

UREPð~rrÞ ¼ evdW
Rmin

j~rrj

� �12

; (9)

was included in the nonbonded potential energy term. The Rmin parameter in

Eq. 9 specifies the size of the particle representing the residue. Values for

evdW and Rmin parameters were based on the CHARMM force field

(MacKerell et al., 1998).

It was estimated that exposing a deprotonated aspartate to the

hydrophobic environment of a lipid bilayer would cause a free energy

penalty of ;45 kBT (Elston et al., 1998). Accordingly, the hydrophobic

interactions would prevent a deprotonated cAsp-61 from leaving the vicinity

of the a-subunit. In the model, an empirical function was introduced to

account for this effect. A smoothed step function,

Hðj~rrjÞ ¼ �q
1

2
DGH½tanhðSðj~rrj � dÞÞ1 1�; (10)

was chosen, which allows us to precisely define a range d and a magnitude S

of the interaction. The distance j~rrj between cAsp-61 and a4 controlledH. The
free energy penalty in Eq. 10 is specified byDGH; q is the charge of cAsp-61.

The influence of the helix environment was taken into account by

specifying a PMF for each helix type considered,Wc2 for c2 andWa4 for a4.

It was assumed that the PMF of each helix is a function of that helix’s

orientation only, independent of the other helices’ conformations. All

numerical calculations reported in this article employed empirical potentials

of mean force acting on helices c2 and a4 reproduced in Fig. 5. It is possible,

in principle, to compute these PMFs directly from microscopic simulations

using a method described in Jensen et al. (2002).

The change of the cAsp-61 protonation state is described as a Markov

process, the rate constants of which depend on the distances between

the relevant side groups and, thus, on the angles ua, uR, u2, and u3. Our

description of the proton transfer events was adapted from an earlier model

(Elston et al., 1998). The chemical reaction on the H1 binding sites is

represented by

TABLE 1 The parameters of the stochastic model of

Fo function

Parameter Notation Value Origin

cTMH2–c10 distance RcTMH2 2.26 nm MD

cTMH2–cAsp-61
charge distance

A 0.4 nm MD

aTMH4–aArg-210

charge distance

B 0.6 nm MD

aTMH4–c10 distance RaTMH4 2.98 nm MD

Helix rotary diffusion

coefficient

Dhelix 2 3 105 s�1 MD, Elston

et al. (1998)

c10 complex rotary

diffusion coefficient

Dc10 2 3 104 s�1 MD, Elston

et al. (1998)

Steepness coefficient

of hydrophobic potential

H, Eq. 10

S 2 Ad hoc

Extent of hydrophobic

potential H, Eq. 10

D 1.25 nm Ad hoc

Steepness coefficient of

hydrophobic potential

H̃; Eq. 20

S̃ 20 Ad hoc

Fo dielectric constant,

Eq. 8

e 10 Elston

et al. (1998)

Shielding length, Eq. 8 1/l 1.1 nm Elston

et al. (1998)

vdW interaction energy

parameter, Eq. 9

evdW 0.04 kBT CHARMM

Virtual ion diameter,

Eq. 9

Rmin 0.3 nm CHARMM

pKa of cAsp-61 pKa 5.0 Maximum ATP

synthesis rate

Bulk pH for the

periplasm

PH(peri) 7 Elston et al.

(1998)

Bulk pH for the

cytoplasm

PH(cyto) 8.4 Elston et al.

(1998)

Surface potential at the

periplasmic side of the

membrane

Df(peri) 2.3 kBT Elston et al.

(1998)

Surface potential at the

cytoplasmic side of the

membrane

Df(cyto) 2.3 kBT Elston et al.

(1998)

Membrane potential Dc 5.6 kBT Elston et al.

(1998)

Channel absorption

rate of H1, Eq. 15

s 1.86 3

1010 nm3/s

Elston et al.

(1998)

FIGURE 5 Potentials of mean force used in the stochastic simulations:

a double-well potential governing rotation of the c2 helices (open squares)

and a parabolic potential governing rotation of the a4 helix (open circles).
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Asp-61
�
1H

1 $ Asp-61 � H: (11)

At equilibrium,

kin½Asp-61�� ¼ kout½Asp-61 � H�; (12)

where kin and kout are the proton hopping rates to and off the binding site, and

the square brackets indicate concentration. Given the definition,

pKa ¼ pH1 log10

½Asp-61 � H�
½Asp-61�� ; (13)

the hopping rates obey the relation

kin ¼ kout 3 10
pKa�pH

: (14)

In our model, only two cAsp-61 residues can participate in the proton

transfer reaction at a time. Those are the residues that are in contact with

either the periplasmic or the cytoplasmic channel. The proton pathways to

and from the binding sites are not known yet. It was suggested that the

residues involved in the proton transfer are located along the a4 helix

(Fillingame et al., 2002; Angevine and Fillingame, 2003). Through MD

simulations, which are described in Results and Discussion, we found that

by turning the c2 helix, the binding sites can be exposed to either aAsn-214

or aSer-206 residues (which belong to the a4 helix; see Figs. 2 and 7).

A positively charged aArg-210, which is located between aAsn-214 and

aSer-206, prohibits a direct proton transfer between these residues, thereby

directing the proton current to and from the binding sites. To incorporate this

information into our model, it was postulated that, at any time, the binding

site at c2L is accessible only from the cytoplasm and the binding cite at c2R is
accessible only from the periplasm. Also, the proton transfer was assumed

not to be possible when the binding sites are distant from the a4 helix.

The rate kin is limited by the rate of proton influx into the channel. It can

be computed by the Smoluchowski formula (Berg, 1983),

kin ¼ s3 ½H1 �surf ; (15)

where [H1]surf is a surface proton concentration and s is an absorption rate

of the channel. Surface charges on the membrane can modify the surface

proton concentration, thereby changing the electric potential drop across

the membrane. The latter has no influence on kin, but kout depends on the

potential drop. The proton hopping rates are also affected by the electrostatic

potential generated by the charged residues. The rates were calculated using

the following formulae:

k
ðperiÞ
in ¼ s3 10

�pH
ðperiÞ

3 exp
Df

ðperiÞ

kBT

 !

3 exp � H̃ðj~RR61R �~RRa4jÞ
kBT

� �
; (16)

k
ðcytoÞ
in ¼ s3 10

�pH
ðcytoÞ

3 exp
Df

ðcytoÞ

kBT

 !

3 exp � H̃ðj~RR61L �~RRa4jÞ
kBT

� �
; (18)

where Df(peri) and Df(cyto) are potential drops induced by the surface

charges at the periplasmic and cytoplasmic sides, respectively, Dc is

a membrane potential, and DUEL measures the difference of the electrostatic

potential of cAsp-61 after its deprotonation. A hydrophobic potential,

H̃ð~rrÞ ¼ �q
1

2
DGH½tanhðS̃ðj~rrj � dÞÞ1 1�; (20)

was introduced in Eqs. 16–19 to prevent cAsp-61 from deprotonation (or

protonation) when it is located far from a4. A strong distance dependence

of the proton transfer probability was introduced by the steepness, S̃; of the
potential.

Unlike the one-dimensional ratchet model in Elston et al. (1998), which

describes a generic protein motor, our approach directly relates the atomistic

structure and dynamics of the Fo unit to the stochastic model. All

geometrical parameters were determined by analyzing a 1-ns all-atom MD

simulation of Fo; in particular, the particle models for cAsp-61 and aArg-210

were developed by computing the average distances from the residue charge

center to the center of the parent helix. The atomistic structure of the half-

channels was incorporated in the model by explicitly specifying the proton

path to each binding site. Steered MD simulations (Isralewitz et al., 2001b)

were performed to show that the cAsp-61 binding sites are accessible to

proton transfer from the terminal residues of the half-channels (Fig. 7). The

friction coefficients, ji, were estimated by simulating a forced rotation of the

individual transmembrane helices and of the c10 complex, as described in

Results and Discussion (see also supplied movies at http://www.ks.uiuc.edu/

Research/f0atpase/movies/).

All of the parameters used for the numerical analysis are listed in Table 1.

To make comparison with the earlier model easier, some parameters were

adapted from Elston et al. (1998).

To describe the dynamics of the Fo unit at the millisecond timescale, the

system of stochastic differential equations (Eq. 2) was solved by numerical

integration over time under the cyclic boundary conditions. Simultaneously,

k
ðperiÞ
out ¼ s3 10

�pKa 3 exp
Df

ðperiÞ � Df
ðcytoÞ � Dc

2kBT

 !

3 exp �DUELð~RR61R �~RR210Þ1DUELð~RR61L �~RR61RÞ1 H̃ðj~RR61R �~RRa4jÞ
kBT

� �
; (17)

k
ðcytoÞ
out ¼ s3 10

�pKa 3 exp
Dc� Df

ðperiÞ
1Df

ðcytoÞ

2kBT

 !

3 exp �DUELð~RR61L �~RR210Þ1DUELð~RR61L �~RR61RÞ1 H̃ðj~RR61L �~RRa4jÞ
kBT

� �
; (19)
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chemical reaction (Eq. 11) at two binding sites was simulated as a Markov

process with the rate constants given by Eqs. 16– 19. The time step used in

all simulation was 10�10 s. The random forces were generated in accordance

with Eq. 3. The Fokker-Planck formulation, that was used to analyze

numerically the earlier one-dimensional model (Elston et al., 1998),

becomes computationally very expensive in the case of the present multi-

dimensional system. Hence, our numerical solution relied on integrating the

Langevin equations. To obtain statistically averaged data, a large number of

independent runs were performed.

Our model includes several critical approximations. Most importantly,

we considered an essentially two-dimensional system, assuming all key

residues to be located in a plane and neglecting the residues’ flexibility. This

assumption results in a rather high sensitivity of the model to the parameters

used. The total PMF was assumed to be a sum of independent contributions

for each helix (Fig. 5). Empirical functions were used to model the PMF and

to account for hydrophobic effects. Although our model utilizes most of the

available atomistic structural information on the Fo motor, a more rigorous

description will require additional structural data, particularly on the a-/c10-

subunit interface.

RESULTS AND DISCUSSION

The key events involved in Fo function include rotation of

the c10 oligomer relative to the a-subunit, rotation of

individual TMHs in the a- and c-subunits, and protonation

and deprotonation of the proton binding sites (Rastogi and

Girvin, 1999; Fillingame et al., 2002; Elston et al., 1998).

Below we discuss how these events are coupled to one

another and how they control the system dynamics on the

physiological timescale. Fig. 6 depicts the series of events

involved in a 2p/10 rotation of the c10 oligomer. This figure

serves to better illustrate our model of Fo function; as

discussed at the end of the article, the figure presents actually

a main result of our study, rather than an a priori model. The

MD simulations described in this section are illustrated by

animations available as supporting information at http://

www.ks.uiuc.edu/Research/f0atpase/movies/.

Rotation of the c10 oligomer relative to subunit a

The forced rotation of the c10 oligomer was simulated for

applied torques between 500 and 10,500 kcal/mol. cAsp-61
in all c-subunits were kept protonated. To prevent subunit

a from being dragged along with the c-subunits and the

surrounding lipid molecules, all backbone atoms of trans-

membrane a-helices 2, 3, and 5 of subunit a were restrained.
Only TMH4 of subunit a, which forms the interface with the

c-subunits, was not restrained. The rotation axis was normal

to the membrane plane and located at the center of mass of

the c10 oligomer. Simulation times varied from 0.1 to 10 ns

depending on the applied torque. In all simulations, the

protein structure remained stable and the final rotation angle

exceeded 2p/10. For torques of \;1000 kcal/mol, the

angular velocity was approximately proportional to the

applied torque, suggesting a constant friction regime. For

higher torques, the angular velocity increased faster than the

applied torque.

Rotation of individual TMHs

As suggested by Rastogi and Girvin (1999) as well as

Fillingame and co-workers (Fillingame et al., 2002, 2000a;

Jiang and Fillingame, 1998) rotation of the outer TMH of the

c-subunits is a key step in the mechanism of Fo operation.

This rotation was simulated by harmonically constraining

each heavy atom of the outer TMH of the c-subunits to

a reference point, which was rotating with a constant angular

velocity. The rotation axis was the principal axis of the

largest moment of inertia of the helix. Rotations were en-

forced at several angular velocities. The total torque exerted

on the helix was monitored. The average torque required to

rotate the helix increased with the angular velocity but, at

small velocities (0.5–2 revolutions per nanosecond), was

almost constant (;175 kcal/M). The constant average torque

regime is due to a kink induced by cPro-64 in the outer

TMH, which causes steric collisions between the TMH and

the surrounding protein and lipids when the TMH is rotated

as a whole. However, the TMH conformation remains

unchanged, since the steered atom trajectories follow a

rotating template of the same shape as the initial helix.

To investigate the feasibility of TMH rotation at smaller

applied torques, we simulated a system with one c-subunit
embedded in a lipid bilayer and surrounded by water and

ions. The forces were applied to all backbone atoms of the

outer TMH, whereas the backbone atoms of the inner TMH

were restrained. The proton binding site (cAsp-61) was

kept protonated. To minimize steric hindrance, each resi-

due was rotated around an individual axis directed along

the local center line of the helix. The TMH thus rotated

entirely within its reptation tube formed by the surrounding

atoms. Not exactly being a rotation, this motion resulted in

minor changes of the helix conformation and reduced the

friction with the surrounding lipids. The angular velocity

fluctuated in time, with occasional halts. Rotations were

induced for both clockwise and counterclockwise direc-

tions, and no preference was observed. Interestingly, the

average angular velocity was different for the TMH parts

on either side of the cPro-64 kink: residues 47–63 tended

to move faster than residues 64–79. Rotation at ;158/ns

required a torque of ;60 kcal/mol. Friction coefficients

determined from these simulations were utilized in the

stochastic model.

Proton access to the binding sites

As shown in Fig. 2, the suggested terminal residues of the

half-channels (Fillingame et al., 2002; Angevine and

Fillingame, 2003) are located close to aArg-210. Since the

outer TMH of the c-subunits forms an angle of ;178 with

the inner TMH, rotation of the former moves cAsp-61 in the

direction across the membrane, thereby bringing the side

group closer to either proton half-channel terminus: in the

model depicted here (Fig. 2), cAsp-61 is close to aAsn-214
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at the periplasmic half-channel terminus; rotating the outer

TMH by 1808 brings cAsp-61 closer to the cytoplasmic side

by ;3 Å (Fig. 7). Therefore, rotation of the outer TMH can

switch accessibility of the proton binding site from the

periplasm to the cytoplasm and back (see also Fig. 6). The

position of aAsn-214 is supported by the aN214C/cM65C

cross-link (Jiang and Fillingame, 1998).

To further investigate proton access to the cAsp-61
binding sites, rotations of the c2L helix (see Fig. 8) by

;1808 were induced. Initially, cAsp-61 at both c2L and c2R
were protonated. After cAsp-61 at c2L was deprotonated, it

formed a stable hydrogen bond with aSer-206, the terminal

group of the cytoplasmic channel (see Fig. 2). Next, helices

c2L and c2R and the c10 oligomer were rotated by small

angles, modeling microsecond rotational diffusion. Eventu-

ally, another stable hydrogen bond was formed between still

protonated cAsp-61 at c2R and aAsn-214, whereas aArg-210
formed transient hydrogen bonds with cAsp-61 on both c2L
and c2R, as shown in Fig. 7. We note that the positive charge

on aArg-210 would prevent protons, at this point, from

moving from one binding site to the other. A similar network

of hydrogen bonds was observed when both binding sites

were deprotonated, and when cAsp-61 on c2L was pro-

tonated whereas cAsp-61 on c2R was deprotonated. Thus,

the two proton binding sites, cAsp-61 on c2L and cAsp-61 on
c2R, appear to be simultaneously accessible to the cytoplas-

mic and periplasmic channels, but either one only to one

channel.

FIGURE 6 Schematic representation

of the sequence of events suggested by

our study. These events, labeled a–f,
occur during rotation of the c10 oligo-

mer by 2p/10 in the synthesis direction,

viewed here from the cytoplasm. (a) In
the starting conformation, two residues

cAsp-61 are deprotonated and form

a bidentate salt bridge with aArg-210,

cAsp-61�–aArg-210–cAsp-61�. (b) A
proton is transferred from the terminal

residue of the periplasmic proton chan-

nel, aAsn-214, to cAsp-61 on helix c2R.

(c) Subunit a rotates clockwise with

respect to the c10 oligomer in concert

with a clockwise rotation of helix c2L.

When subunit a approaches helix c2L9,
cAsp-61 on that helix rotates by 1808.

The latter rotation may proceed in

either clockwise or counterclockwise

direction. (d) The concerted rotation of

subunit a and helix c2L are completed:

cAsp-61 on helix c2L9 has rotated by

1808 toward subunit a. (e) A proton is

transferred to the terminal residue of the

cytoplasmic proton channel, aSer-206.

(f) The system returns to the starting

conformation a, but with the c10
oligomer advanced by an angle 2p/10.

We note that the processes depicted are

of stochastic nature, and, hence, do not

necessarily obey the strict sequence

shown.
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Deprotonation of a single cAsp-61 residue
blocks c10 oligomer rotation

To examine when protonation or deprotonation of the

binding sites should occur, several steered rotations of the c10
oligomer were performed. Each rotation was simulated for

1 ns, the essential cAsp-61 residues being in different

protonation states. With only one cAsp-61 at the interface

deprotonated (cAsp-61 at c2R, Fig. 2), a rapid (within 10 ps)

formation of a salt bridge with aArg-210 was observed. The

salt bridge tied aTMH4 to the c10 oligomer, tearing aTMH4

off the other TMHs in the a-subunit as the forced rotation

continued. To further investigate if rotation of the c10
oligomer with a single cAsp-61 deprotonated is possible,

another 1-ns simulation was performed with all backbone

atoms of the a-subunit restrained. In this case, we found that

the outer TMH of the c-subunit quickly unwound, suggest-

ing that, for the c10 oligomer to rotate, the salt bridge, which

forms immediately after the binding site deprotonation, has

to be either broken or transferred from one c-subunit to

another.

Two deprotonated cAsp-61 residues make salt
bridge transfer energetically feasible

To investigate which protonation states of the binding sites

are needed for the rotation of the c10 oligomer to proceed,

concerted rotations of the c10 oligomer and the outer TMH in

one of the c-subunits (c2L in Fig. 2) were induced.

At the outset, cAsp61 of c2R was deprotonated, forming

a salt bridge with cArg-210. The c2L helix was rotated

counterclockwise by 1808 in a 1-ns simulation (a clockwise

rotation could be performed instead). When cAsp-61 of c2L
approached the terminal residue aSer-206 of the cytoplasmic

channel, it was deprotonated, mimicking proton release to

the cytoplasm. At this point, a complex of three charged

residues formed as shown in Fig. 8, dramatically reducing

the dissociation energy of the salt bridge between aArg-210
and cAsp-61 and, thereby, making it possible to transfer

the cAsp-61–aArg-210 salt bridge from one c-subunit to
the other. Such transfer to the cAsp-61 (c2L)–aArg-210 salt

bridge was indeed observed. At this point, cAsp-61 at c2R,
which formed a hydrogen bond with the terminal residue

aAsn-214 of the periplasmic channel, was protonated,

mimicking proton intake from the periplasm; the c10 oli-

gomer rotated counterclockwise (synthesis direction) by

;368, and helix c2L rotated clockwise by 1808. The salt

bridge between aArg-210 and cAsp-61 at c2L stayed intact,

and no significant distortions of the structure were observed,

i.e., the system returned to the starting conformation, with

the c10 oligomer advanced by 368. As shown in Fig. 6, the

salt bridge transfer plays a critical role in this scenario,

providing the mechanism that allows the c10 oligomer to

rotate further after one of the binding sites undergoes de-

protonation, as well as coupling rotation of the c10 oligomer

to rotations of individual TMHs via cAsp-61 protonation/

deprotonation.

The main difference of the mechanism described here

from the mechanisms proposed by Rastogi and Girvin

(1999) as well as Fillingame and co-workers (Fillingame

et al., 2002, 2000a; Jiang and Fillingame, 1998) is that the

rotation of c10 is induced by the cooperative interaction of

two adjacent c-subunits with TMH-4 of subunit a, whereby
cAsp-61 of one of the c-subunits is always deprotonated. The
rotation of c2L and c2R brings the binding sites of two

adjacent c-subunits in contact with aArg-210 and with the

FIGURE 7 Hydrogen-bond network formed between the binding sites

(cAsp-61) and the terminal residues of the proton periplasm (aAsn-214) and

cytoplasm (aSer-206) channels. The critical residue aArg-210 forms

transient hydrogen bonds with both binding sites.

FIGURE 8 Concerted rotation of the c-subunit outer helix and the c10

complex in a lipid bilayer. The c2L helix has been forced to rotate clockwise

by 1808. Shown in the instance when the salt bridge is transferred between

two neighboring c-subunits, i.e., when the conformation cAsp-61�–aArg-
210–cAsp-61� has been momentarily assumed.
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terminal residues of the proton half-channels, aSer-206 and

aAsn-214 (Figs. 7 and 8). The direction in which the c10
oligomer can rotate from this conformation depends on the

protonation state of the binding sites. The rotation can only

proceed when one of the binding sites is protonated, whereas

the (deprotonated) other forms a salt bridge with aArg-210.
Thus, the direction of the c10 rotation is controlled by the

proton-motive force, which determines the probability of the

binding sites’ protonation and deprotonation.

Millisecond Fo motor dynamics

To examine how well the interaction between a- and c-sub-
units revealed by steered MD can be reconciled with the

overall Fo function we analyze the Fo operation emerging

from our mathematical modeling, as described above and

presented in Fig. 9. We focus on the conformations of three

residues: the two binding sites (cAsp-61) in contact with the

a-subunit, and aArg-210. The binding site located clockwise
from subunit a (viewed from the cytoplasmic side) is referred

to as cAsp-61L, and the other one as cAsp-61R. As shown in
Fig. 9 a, the angular coordinate of the a-subunit, ua, reveals
10 full revolutions within 100 ms against a load of 41 pN nm

imposed by the F1 unit (only part of the trajectory is shown in

Fig. 9).

Fig. 9 b, which shows distances cAsp-61L–aArg-210 and

cAsp-61R–aArg-210 demonstrates that, at any time, at least

one binding site is deprotonated, i.e., forms a salt bridge with

aArg-210 (short distance). The protonation states of cAsp-
61L and cAsp-61R over the same period of time are shown in

Fig. 9 c. When both binding sites are deprotonated,

a complex of three charged residues (cAsp-61R, cAsp-61L,
and aArg-210) is formed and has a stable dynamic structure:

one binding site forms a salt bridge with aArg-210, whereas
the other interacts with the dipole formed by those residues.

Within the complex, the salt bridge often transfers from one

binding site to the other. The time between the subsequent

salt bridge transfers depends on the angular coordinate of

subunit a and can be as small as 10 ms. The total energy of

the nonbonded interaction between the three residues barely

changes with time, as shown by the blue line in Fig. 9 d.
Reconciling the energy plot with the protonation states of the

binding sites, we find that the potential energy stored in

a single cAsp-61–aArg-210 salt bridge is;19 kBT, which is
higher by only 2 kBT than the potential energy of the cAsp-
61L–aArg-210–cAsp-61R complex. This small difference

in energy permits the salt bridge transfer from one c-subunit
to another and, thereby, enables the rotation of the c10
oligomer.

The numerical analysis of our model shows that the

average rotation rate of the c10 complex at the physiological

conditions, i.e., t ¼ 10 kBT and Dm ¼ 8.8 kBT per H1, is

;75 revolutions per second. This corresponds closely to the

rotation rate measured in experiments, i.e.,;100 revolutions

per second (Yasuda et al., 2001). However, our rate is by

a factor of two smaller than the one resulting from the model

of Elston et al. (1998). This difference originates primarily

from a different stoichiometry of the c-subunit oligomer

assumed in the two models: following recent experiments

(Jiang et al., 2001), we assumed a 10-mer of the c-subunits,
whereas the model in Rastogi and Girvin (1999) and in

Dmitriev et al. (1999) assumed a 12-mer. In one revolution,

the total electrochemical energy that can be transformed into

a torque is proportional to the number of the c-subunits in Fo.
Thus, at physiological conditions, the ratio of the load torque

to the total input energy is larger in our model, which

naturally results in a slower rotation of the ring of c-subunits.
On the other hand, our model predicts a better performance

of the Fo motor in the ATP hydrolysis regime.

FIGURE 9 Stochastic events involved in Fo function. (a) Time evolution

of helix angles u2 (black), u3 (red), uR (green), and rotor angle ua (blue). The

angles are defined in Fig. 4. The a-subunit rotation takes place in discrete

steps (blue line). (b) Distances between residues aArg-210–cAsp-61 of c2L
(black) and aArg-210–cAsp-61 of c2R (red). Respective salt bridges are

formed when these distances decrease below ;0.25 nm. When both

aspartates are deprotonated, a two-color pattern of lines at 0.25 nm indicates

a frequent transfer of the salt bridge from one aspartate to another. When one

of the aspartates is protonated (highlighted regions), a two-color pattern does

not indicate a salt bridge transfer, but originates from the cyclic boundary

conditions invoked when subunit a passes the boundary. (c) Protonation

states of cAsp-61L (black) and cAsp-61R (red) (see text). (d) Nonbonded

interaction energy of the three residues. The steps of the energy function are

correlated with protonation/deprotonation of two cAsp-61 residues and the

step motion of the a-subunit.
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Substeps of the c10 oligomer rotation

The symmetric structure of the c10 oligomer implies that one

cycle of the Fo motor operation is carried out when the c10
oligomer rotates by 2p/10. However, the rotation of the c10
oligomer involves steps that are smaller than 2p/10. Most of

the time, the c10 oligomer is oriented at one of the two

preferred angles characterized by the angular coordinate of

the a4 helix with respect to the neighboring c2 helices of the

c10 oligomer, as shown in Fig. 9 a. Key steps are discernible

as abrupt changes of ua.

The two preferred orientations of the c10 oligomer are

correlated with the conformations of the three key residues at

the interface between subunits a and c10. When both binding

sites (cAsp-61) at the neighboring c2 helices are deproto-

nated, they form a complex with aArg-210. In this

conformation, the salt bridge is frequently transferred from

one binding site to another. In the absence of the load

potential, the time-averaged conformation of the residues is

symmetric with respect to the line connecting centers of a4
and c10. Hence, the average potential of the hydrophobic, and
electrostatic interactions acting on a4 is also symmetric, as

shown in Fig. 10 (left, dashed line). The load potential

imposed by the F1 unit shifts the position of the minimum to

the right from the point equidistant from the neighboring c2
helices. When the binding site on the right receives a proton

from the periplasm, the complex of three residues disso-

ciates. The average potential becomes very asymmetric, with

the minimum position shifted to the left, as shown in Fig. 10

(right). Accordingly, the a4 helix moves to the left, i.e., in

the synthesis direction. If, instead of the periplasm, the

proton is received from the cytoplasm, the binding site on the

left in Fig. 10 (left) drifts away from the three-residue

complex, whereas the a4 helix moves to the right, i.e., in the

hydrolysis direction. To form a three-residue complex again,

the protonated binding site and the residues forming the salt

bridge have to come into contact followed by the

deprotonation of the binding site. As the steps of the c10
oligomer rotations are prompted by the protonation or

deprotonation of the binding sites, the average period of time

that the motor spends in one or another conformation

depends on physiological parameters such as cytoplasm and

periplasm pH and the transmembrane potential.

CONCLUSIONS

MD simulations combined with mathematical modeling

provide new insights into Fo motor operation on the atomic

scale. As summarized in Fig. 6, rotation of the c10 oligomer

relative to the a-subunit and coupled rotations of the outer

TMHs in the c-subunits are seen to play the key role in the Fo
motor function. This protein-roller bearing mechanism, i.e.,

interlocking rotations of c10 as a whole and of its outer

helices individually, results from transfer of the salt bridge

between aArg-210 and deprotonated cAsp-61 from one

c-subunit to another; this transfer is imperative for the c10
oligomer to rotate. The rotation is found to occur in substeps.
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