
Bridging the Gap between Stochastic and Deterministic Regimes
in the Kinetic Simulations of the Biochemical Reaction Networks

Jacek Pucha1ka and Andrzej M. Kierzek
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland

ABSTRACT The biochemical reaction networks include elementary reactions differing by many orders of magnitude in the
numbers of molecules involved. The kinetics of reactions involving small numbers of molecules can be studied by exact
stochastic simulation. This approach is not practical for the simulation of metabolic processes because of the computational
cost of accounting for individual molecular collisions. We present the ‘‘maximal time step method,’’ a novel approach combining
the Gibson and Bruck algorithm with the Gillespie t-leap method. This algorithm allows stochastic simulation of systems
composed of both intensive metabolic reactions and regulatory processes involving small numbers of molecules. The method is
applied to the simulation of glucose, lactose, and glycerol metabolism in Escherichia coli. The gene expression, signal
transduction, transport, and enzymatic activities are modeled simultaneously. We show that random fluctuations in gene
expression can propagate to the level of metabolic processes. In the cells switching from glucose to a mixture of lactose and
glycerol, random delays in transcription initiation determine whether lactose or glycerol operon is induced. In a small fraction of
cells severe decrease in metabolic activity may also occur. Both effects are epigenetically inherited by the progeny of the cell in
which the random delay in transcription initiation occurred.

INTRODUCTION

The availability of voluminous data describing the molecu-

lar components of living cells motivate mathematical and

computer simulation studies aimed at understanding how the

complex dynamics of cellular processes emerges as a result of

the individual molecular interactions (Tyson et. al., 2001;

Endy and Brent, 2001). The models of cellular processes are

most commonly formulated in the framework of deterministic

chemical kinetics. The elementary molecular interactions are

modeled in terms of differential rate equations and the

temporal changes in concentrations of molecular species or

their stationary state values are studied. This approach applied

to study large networks of molecular interactions has already

provided valuable results, for example in studies of yeast cell

cycle (Sveiczer et al., 2000) and applications in metabolic

engineering (Hoefnagel et al., 2002).Whole-cell scalemodels

of metabolic pathways are also emerging (Edwards et al.,

2001, Tomita et al., 1999).

The major difficulty in applying deterministic chemical

kinetics to modeling of cellular processes is that they occur

in very small volumes and hence frequently involve very

small numbers of molecules. For example, in gene expres-

sion processes a few molecules of transcription factor may

interact with a single ‘‘molecule’’ of gene regulatory region

(there are on average only 10 molecules of Lac repressor

in E. coli cells; Levin, 1999). In these cases modeling of

reactions as continuous fluxes of matter is no longer correct.

Moreover, significant stochastic fluctuations that occur in

reactions involving small numbers of molecules may

influence biochemical processes. The presence of the

stochastic effects in gene expression and signal transduction

processes have been shown by both theoretical and experi-

mental approaches (Levin et al., 1998; McAdams and Arkin,

1997; Kierzek et al., 2001; Ozbudak et al., 2002; Elowitz

et al., 2002; see Rao et al. (2002) for review). Therefore,

stochastic effects must be studied to understand how com-

plex networks of molecular interactions determine the precise

regulation of cellular processes, despite the inherent noise

present in the system.

To study the stochastic effects in biochemical reactions,

stochastic formulation of chemical kinetics and Monte Carlo

computer simulation approaches have been used. The exact

computer simulationmethods, such as theGillespie algorithm

(Gillespie, 1977), explicitly account for the individual re-

active collisions among the molecules. Using these meth-

ods the statistical samples of possible, independent time

courses can be computed for systems of coupled chemical

reactions. Analysis of the trajectories generated in these

simulations allows for studies of the stochastic fluctuations

in the numbers of molecules present in the system. The

conclusions of these studies remain valid for both large and

arbitrarily small numbers of molecules. However, it is not

possible to use exact simulation methods to study systems

containing a large number of molecules due to the computa-

tional cost of accounting for individual molecular collisions.

For example, in Gillespie’s direct method two random

numbers must be computer generated for every elementary

reaction event. It was shown that to perform a stochastic

simulation of a single intensive enzymatic reaction occurring

in the timescale of one cell generation,;109 random numbers

must be generated (Kierzek, 2002). Even with the application

of recent advances in the exact stochastic algorithms, the

number of reaction events that may be simulated is of the

order of 1010 per day on a single CPU (Endy andBrent, 2001).
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Taking into account that for every computational experiment

many trajectories need to be simulated and that many experi-

ments must be performed to study the system with different

parameter configurations, the application of exact stochastic

simulation algorithms to large metabolic networks is not

practical.

As it is clear from the above considerations, there is a gap

between the stochastic and deterministic regimes in the

simulations of biochemical processes. Intensive metabolic

reactions involving 108–109 molecules may be accurately

modeled using deterministic formulation of chemical kinet-

ics. This approach cannot be used to study cellular processes

such as gene regulation that involve very small numbers of

molecules. The exact stochastic computer simulation algo-

rithms capable of modeling these processes are in turn unable

to model metabolic reactions due to the computational cost.

Therefore, there is a need for the consistent computer

simulation algorithm allowing one to study simultaneously

systems involving gene expression, signal transduction, and

enzyme activity.

The problem of efficient simulation of systems involving

reactions varying acrossmultiple scales of time andmolecular

concentrations has been already addressed by Haseltine

and Rawlings (2002) and Rao and Arkin (2003). Haseltine

and Rawlings partition the system into the subsets of ‘‘slow’’

and ‘‘fast’’ reactions, and approximate the fast reactions either

deterministically or as Langevin equations. In the method of

Rao and Arkin, some of the reactions are explicitly simulated

with the Gillespie algorithm whereas others are described

by random variables distributed according to the probability

density functions at quasistationary state. Both of themethods

require direct intervention of the modeler to partition the

system into reaction sets covering different time and con-

centration regimes. In this work we present the ‘‘maximal

time step method,’’ an alternative algorithm for stochastic

kinetic simulations of biochemical systems, which combines

the Gibson and Bruck (2000) algorithm with Gillespie’s

(2001) ‘‘t-leap’’ method used to simulate ‘‘slow’’ and ‘‘fast’’

reaction subsets, respectively. The new algorithm is also

capable of automatic partitioning of the reaction sets. We

also show the application of the algorithm to the stochastic

simulation of sugar metabolism, inducer exclusion, and ca-

tabolic repression processes in E. coli. To the best of our

knowledge this is the first attempt to simulate the stochas-

tic kinetics of a system composed of reactions describing

regulation of gene expression, enzyme activity, and transport

and signal transduction processes simultaneously. This

allows us to study the stochastic effects occurring in a system

containing all the essential elements responsible for reg-

ulation of cellular metabolism. Our results indicate that

stochastic fluctuations in gene expression can propagate to the

level of metabolic processes and cause significant physio-

logical effects in a particular cell. We show that random

delays in the induction of glycerol and lactose operons cause

population heterogeneity when the cells switch carbon source

from glucose to a mixture of lactose and glycerol. In a small

fraction of cells switching from glucose to lactose, random

delays in the lactose operon induction result in severe de-

crease in metabolic activity. Both effects are epigenetically

inherited by the progeny of the cell in which random delay in

gene expression occurred.

In the following section we shall present formulation and

justification of the maximal time step method. Theoretical

background will be briefly introduced to establish notation

and the algorithm will be formulated and justified by both

theoretical considerations and numerical comparisons with

the Gillespie algorithm. Quasistationary-state approximation

will also be introduced in the context of stochastic chemical

kinetics and our algorithm. In the last subsection, perfor-

mance of the maximal time step method will be evaluated by

comparison with the Gibson and Bruck (2000) approach.

Subsequently, we shall present the model of E. coli sugar
metabolism, used to test the maximal time step method, and

investigate stochastic effects occurring in the complex bio-

chemical reaction networks. In the results section we shall

present computer simulations of the E. coli sugar metabolism

model. The article ends with the discussion of the maximal

time step method and the molecular mechanisms responsible

for the stochastic effects observed in the simulation of the

model system.

COMPUTER SIMULATION ALGORITHM

In the following sections we will present a novel stochastic

simulation algorithm for systems of coupled chemical

reactions. We shall begin by establishing our notation and

briefly reviewing the details of stochastic chemical kinetics

relevant to our work. Then the algorithm will be justified by

both theoretical considerations and numerical tests.

Stochastic chemical kinetics and stochastic
partitioning of the system

We will be concerned with the system of N chemical species

(S1, . . . ,SN) that interact through M reactions (R1, . . . ,RM) in

the specified volume V of reaction environment at constant

temperature. The dynamical state of the system is specified

by X(t) ¼ (X1(t), . . . ,XN(t)), where Xi(t) is the number of

molecules of the i-th species present in the reaction

environment at time t. If the system is well stirred or the

number of nonreactive molecular collisions is significantly

larger than the number of reactive collisions (Gillespie,

1977), each reaction Rm can be described by its propensity

function am such that:

amðxÞdt[ probability; (1)

given the current state of the system X(t) ¼ x, that reaction
Rm will occur somewhere inside the volume V in the next

infinitesimal time interval (t,t 1 dt).

1358 Pucha1ka and Kierzek

Biophysical Journal 86(3) 1357–1372



Reaction Rm is fully characterized by the propensity

function am and the state-change vector vm such that:

vmi [ the change in the number of Si molecules produced

by one elementary reaction Rm: (2)

For the elementary reaction mechanisms, propensity

function of reaction Rm is computed as the product of

stochastic rate constant cm and the number of distinct Rm

molecular reactant combinations available in the current state

of the system x. For example, if Rm is the reaction S1 1 S2!
S3 then the am(x) ¼ cm X1 X2 and vm ¼ (�1,�1,11,0, . . . ,0).
If the quasisteady-state assumption is used, am(x) may be

computed as the other function of the numbers of reactants

present in the system at state x (Rao and Arkin, 2003).

The time evolution for the system under consideration

is completely described by the chemical master equation

(McQuarrie, 1967), which gives the probability P(x,tjx0,t0)
of the system being in the state x at time t, given the initial

state of the system x0 at time t0:

dPðx; tjx0; t0Þ=dt ¼ +
j¼1;...;M

½ajðx� vjÞPðx� vj; tjx0; t0Þ

� ajðxÞPðx; tjx0; t0Þ�: (3)

Due to the intractability of the chemical master equation,

the stochastic simulation algorithms were formulated, which

use the reaction probability density function P(t,mjx,t) to

generate the statistical sample of the system time courses. By

definition P(t,mjx,t)dt is the probability, given the state of

the system X(t) ¼ x, that the next reaction in the system will

occur in the infinitesimal time interval (t 1 t, t 1 t 1 dt)
and will be an Rm reaction, and it has the form (Gillespie

1977):

Pðt;mjx; tÞ ¼ amðxÞexpð�a0ðxÞtÞ where

a0ðxÞ ¼ +
1;...;M

amðxÞ: (4)

It has been shown that both the chemical master equation

and the reaction probability density function are rigorous

consequences of Eq. 1.

In the stochastic simulation a random pair (t,m) is

generated according to joint probability density function

P(t,mjx,t), and the simulation variables are updated in the

following way: i), the state of the system is updated by

adding the state change vector vm; ii), the time of the

simulation t is increased by t; and iii), the propensity

functions of all the reactions are recomputed. Iteration of

these steps, until the preset timescale is covered, results in

the single time course of the system. The appropriate number

of the independent simulations generates a sample of time

courses that are used to compute statistical properties of the

system.

There are two equivalent algorithms for generation of

(t,m). In the direct method t is generated as a sample of

E(a0(x)), the exponential random variable with parameter

a0(x), and m is an integer number drawn from the interval

[1, . . . ,M] with the point probability am(x)/a0(x). In the first

reaction method the tentative reaction time tm is generated

for every reaction as a sample of E(am(x)). Subsequently, the
reaction with the least tentative time is chosen as the reaction

that will occur next and therefore the random pair (t,m) is

generated as (tmin ¼ min(t1, . . . ,tM), Rmin ). The first

reaction method is less effective than the direct method

because in the single iteration of the algorithm the random

number must be generated for every reaction whereas only

two random numbers are required by the single iteration of

direct method. However, this method has been modified by

Gibson and Bruck (2000), which resulted in the most

effective stochastic simulation algorithm referred to as the

next reaction method.

In the next reaction method the tentative waiting time is

computed with respect to the starting time of the simulation

rather than with respect to the current simulation time. In the

given step of the simulation the tentative waiting time is also

generated only for the reaction that occurred in this step (for

the one for which the previously generated random number

was ‘‘used’’). For other reactions in the system the reaction

times are computed according to the formula:

tm ¼ am;old=amðxÞðtm;old � tÞ1 t; (5)

where tm is the tentative waiting time of reaction Rm, t is
simulation time, and am,old and tm,old are the propensity

function and waiting time of the reaction Rm in the previous

step.

Moreover, only those propensity functions, the values of

which have been affected by the reaction that occurred in the

current step, are computed. Therefore, single iteration of

the Gibson and Bruck method requires generation of only

one pseudo-random number and the number of propensity

function updates is also greatly reduced. Determination of

propensity functions to be updated is facilitated by the ap-

plication of dependency graph and indexed priority queue.

The reader is referred to the original work (Gibson and

Bruck, 2000) for the details and justification of the method.

The methods described above are frequently referred to

as exact simulation algorithms. These method are rigorous

consequences of the fundamental hypothesis stating that

every reaction may be characterized by the propensity

function (Eq. 1; see Gillespie (1977) for details). This ac-

curacy is, however, achieved at the price of a significant

computational burden because for every reactive collision

happening in the system at least one random number must be

generated. Gillespie (2001) has formulated an approximated

method that achieves significant gain in the speed of sto-

chastic simulations with an acceptable loss in accuracy. In

this approach, dubbed the t-leap method, the number of

reactive collisions km happening within the specified time

step t is computed for every reaction Rm as P(amt), a Poisson
random variable with parameter amt. Subsequently, the time

of the simulation is increased by t and the state of the system
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is updated taking into account km ‘‘firings’’ of every reaction

in the system:

Xðt1 tÞ ¼ XðtÞ1 +
j¼1;...;M

kjvj: (6)

Therefore, in the single iteration of the algorithm a much

larger interval of simulation time is covered than in the case

of exact methods because the time step t is expected to

be significantly longer than the exact waiting time for the

individual reactive collision. Similar to the methods for

numerical integration of deterministic kinetic equations, the

accuracy of t-leap depends on the time step. The value of t

should be such that the change of propensity functions for all

the reactions in the system is ‘‘effectively infinitesimal’’

within the time interval (t,t 1 t) where t is the current

simulation time. For the systems involving large numbers of

molecules, the km values are in the order of tens of individual

reaction events and will not cause ‘‘noticeable’’ changes of

propensity functions. In this case many elementary reactions

could be ‘‘leaped over’’ and the time step could be large. It is

also worth noting that within the limit of increasingly large

numbers of molecules the t-leap method converges to

chemical Langevin equation and deterministic kinetics. It

can easily be shown that when the propensity functions in the

system are very large the P(amt) � N(amt, �amt), where
N(amt, �amt) is the normal random variable with a mean

and variance equal to amt. In this case km ¼ am(x)t 1

�am(x)tN(0,1) and the simulation is equivalent to numerical

integration of the chemical Langevin equation (Gillespie,

2001). In the thermodynamic limit aj(x) t ! ‘ and km ¼
aj(x)t. In this case, simulation becomes equivalent to the

Euler formula for numerically solving deterministic reaction

rate equations.

The t-leap method and numerical solutions of chemical

Langevin equation and deterministic rate equations ‘‘leap’’

over many reaction events on the simulation time axis, which

results in a significant gain in the speed of computations,

with respect to exact simulation algorithms, in systems

containing large numbers of molecules. If, on the other hand,

the system contains even a single reaction with very small

numbers of substrate molecules the assumptions of both

deterministic kinetics and the chemical Langevin equation

are no longer satisfied, and these methods cannot be used.

The t-leap method can be used in such a case but it is no

longer efficient because the length of the correct time step

is determined by the reaction with the smallest number of

reactant molecules, and it is of the order of waiting times

occurring in exact simulation algorithms (Gillespie, 2001).

Therefore, the approximated methods mentioned above do

not provide a practical solution for systems composed of

reactions with propensity functions varying by several orders

of magnitude. The intuitive solution to this problem would

be to apply the exact simulation algorithms to the ‘‘slow’’

reactions, involving small numbers of molecules, and

approximate the ‘‘fast’’ reactions, involving large numbers

of molecules by a method that does not account for indi-

vidual reactive collisions. This idea has been already formally

justified (Haseltine and Rawlings, 2002; Rao and Arkin,

2003) and referred to as stochastic partitioning.

In the algorithm presented below we simulate the slow

reaction subset by the Gibson and Bruck method and the

fast reaction subset by the t-leap method. This approach

resembles the one used by Haseltine and Rawlings (2002),

with the difference that the latter authors combine exact

stochastic simulation with the chemical Langevin equation

and deterministic kinetics. Similar to Rao and Arkin (2003),

we also use quasistationary-state approximation to model

reactions for which this assumption is valid and the pa-

rameters of elementary processes are difficult to estimate. The

major difference between our approach and the methods

described above is the dynamic partitioning of the system.

During the simulation, reactions are being moved between

the subsets, according to their propensity functions, rather

than being assigned to the subset at the beginning of the

simulation.

Stochastic simulation algorithm

In this section, we formulate a new stochastic simulation

algorithm that we name the ‘‘maximal time step method.’’

For the clarity of description we introduce the following

three procedures. The ‘‘Partition’’ procedure denotes all the

operations used for the stochastic partitioning of the system.

The ‘‘UpdateSlow’’ and ‘‘UpdateFast’’ procedures denote

all the operations necessary to update propensity functions

of the slow and fast reactions, respectively, and change

assignment of some of these reactions to the reaction subsets.

We will first describe the algorithm using these procedures to

simplify description and subsequently present them in detail.

The E(a) and P(a) will denote samples from random

variables distributed according to exponential and Poisson

distributions, respectively. Exponentially distributed random

numbers are generated using the following formula:

EðaÞ ¼ �1=a ln r; (7)

where r is the random variable uniformly distributed over

(0,1).

The Poisson random variable was generated as described

by Atkinson (1979). The unit interval random numbers were

generated by the Marsaglia et al. (1990) algorithm.

The maximal time step method

In our method the user sets the maximal time step k

(maximal t-leap time). If, in the given iteration of the

algorithm the minimal tentative time tmin of the slow

reactions is within the next time step of length k, then the

slow reactions are updated according to the exact simulation
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method of Gibson and Bruck (2000), and the fast reactions

are updated according to t-leap method with the time step

tmin�t (where t is the time of the simulation at the end of

previous iteration). Otherwise, none of the slow reactions is

considered to occur and the state of the system is updated

according to the t-leap method applied to the subset of fast

reactions with the time step set to k. This results in the

following procedure:

Initialization

1. Set: i), the initial time of the simulation t to the initial value
t0; ii), initial state of the system to x0¼ (X1(t0), . . . ,XN(t0));
iii), the state change vectors (v1, . . . ,vM) describing M

reactions (R1, . . . ,RM); iv), the maximum time step k.

2. For each reaction Rm build the list Lm containing all

reactions of which propensity functions are affected by

the reaction Rm (reactions, the substrates of which, are

also either substrates or products of reaction Rm).

3. For each reaction Rm compute the propensity function

am(x0) and the putative waiting time tm ¼ E(am(x0))1 t0.
4. Select reaction Rmin such that tmin ¼ min(t1, . . . ,tM) set

the simulation time t ¼ tmin and compute new state of the

system x(t) ¼ vmin 1 x0.
5. Execute ‘‘Partition’’ procedure, which defines two re-

action subsets: slow-reaction subset Sslow ¼ (R1, . . . ,RO)

and fast-reaction subset Sfast ¼ (RO11, . . . ,RM).

Iteration

1. If the slow reaction was executed in the previous

iteration, execute ‘‘UpdateSlow’’ procedure.

2. Choose reaction Rmin 2 Sslow such that tmin ¼
min(t1, . . . ,tO).

3. If tmin � t ¼\k, set the state of the system to vmin 1 x(t)
and the time increment dt ¼ (tmin�t).

4. If tmin � t[ k set dt ¼ k.

5. For every fast reaction Rm 2 Sfast, generate km ¼ P(am dt).
6. Set the state of the system to x(t) 1 +j¼O11, . . . ,M kjvj.
7. Increase time of the simulation t by dt.
8. Execute ‘‘UpdateFast’’ procedure.

9. Go to step 1.

Termination

Stop the calculations when t[ Tmax.

Stochastic partitioning of the system is defined as follows.

The reaction Rmmust satisfy two conditions to be assigned to

the fast-reaction subset:

Condition 1:minfX1ðtÞ; . . . ;XsðtÞgm[n; (8)

where fX1(t), . . . ,Xs(t)gm, is the set of the numbers of

molecules of the s substrates of reaction Rm. In the case of

the second order reaction involving molecules of the same

species (2S1 ! S2), the condition X1[ n/2 is used.

Condition 2: amðxÞ=a0[r: (9)

The n and r are user-defined constants. It should be noted

that minfX1(t), . . . ,Xs(t)gm corresponds to the maximal

number of possible occurrences of reaction Rm in the time

interval in which it is considered to be independent of other

reactions in the systems (substrates of Rm are neither pro-

duced nor consumed by other reactions). The number of

occurrences of isolated reaction Rm cannot be larger than the

amount of least numerous substrate. The ratio am(x)/a0 is the
probability of the reaction Rm to occur in the step of exact

simulation algorithm. The ‘‘Partition’’ has, therefore, the

following form:

Partition.

1. Assign all reactions to the slow reaction subset Sslow.

2. For every reaction Rm, move this reaction to the fast

reaction subset Sfast if minfX1(t), . . . ,Xs(t)gm [ n and

am(x)/a0 [ r.

Let tm,old, am,old denote tentative waiting time and

propensity function of the reaction Rm at the last of the

previous steps when am [ 0. If am ¼ 0, the tm ¼ 1‘.

Whenever, in the simulation, am ¼ 0, the waiting time for the

reaction Rm is set to a very large number, exceeding Tmax.

The ‘‘UpdateFast’’ and ‘‘UpdateSlow’’ procedures are

defined as follows:

UpdateSlow. For the reaction Rm 2 Sslow that has

occurred in the previous iteration execute the following

steps:

1. Compute the propensity function am (x), where x is the

current state of the system.

2. If minfX1(t), . . . ,Xs(t)gm [ n AND am(x)/a0 [ r move

reaction Rm to Sfast and go to step 4.

3. Generate tm ¼ E(am(x)) 1 t.
4. For each reaction Rj 2 Lm.

a) Compute aj(x).
b) If minfX1(t), . . . ,Xs(t)gj [ n AND aj(x)/a0 [ r move

reaction Rj to Sfast.

c) Else if Rj 2 Sfast AND (minfX1(t), . . . ,Xs(t)gj #¼ n
OR aj(x)/a0 #¼ r), move Rj to Sslow and set: tj ¼
E(aj(x)) 1 t.

d) Else if Rj2 Sslow AND (minfX1(t), . . . ,Xs(t)gj#¼ nOR
aj(x)/a0 #¼ r) compute: tj ¼ aj,old/aj(x)(tj,old � t)1 t.

UpdateFast. For each reaction Rm 2 Sfast, execute the

following steps:

1. Compute am(x).
2. If minfX1(t), . . . ,Xs(t)gm \ n OR am(x)/a0 \ r move Rm

to Sslow and set tm ¼ E(am(x)) 1 t.
3. For every reaction Rj such that Rj 2 Lm AND Rj 2 Sslow:

a) Compute aj(x).
b) If minfX1(t), . . . ,Xs(t)gj[ n AND aj(x)/a0[ r, move

reaction Rj to Sfast and skip the next step.

c) Compute tj ¼ aj,old(x)/aj(x)(tj,old � t) 1 t.
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Justification of the algorithm

Consider a particular step of the maximal time step method

when the system is in the state x at the time t. We will show

that this step can be considered as the following two

independent simulations of length k: i), the simulation

performed with the next reaction method on the system

composed of reactions belonging to Sslow; and ii), the

simulation performed with the t-leap method on the system

composed of reactions belonging to Sfast. If this is the case,

the algorithm presented above will be an approximated

method correct within the assumptions of the t-leap method

(next reaction method is exact and brings no assumptions

other than the fundamental hypothesis).

If k will be set to the value no greater than the smallest

reaction time within Sslow:

k # tmin � t and tmin ¼ minðt1; . . . ; tOÞ; (10)

then no slow reaction will occur in the time interval (t, tmin)

and, as a consequence, simulation performed on Sfast will not

be affected by slow reactions. If tmin � t ¼ k, then one

reaction belonging to Sslow will occur. This single reaction

event, occurring at exact time tmin, will not influence the

t-leap method simulation of Sfast within the time interval

(t, tmin).

The condition for the correctness of the t-leap simula-

tion running on Sfast is that the changes of all propensity

functions, within one time step, will be infinitesimally small

(Gillespie, 2001):

8ðRj 2 SfastÞaðxnewÞ � aðxÞ ffi 0 where

xnew ¼ x1 +
j¼O1 1;...;M

PðajðxÞkÞvj: (11)

If this condition is satisfied, reactions belonging to Sfast
would cause infinitesimally small change in the propensity

functions of reactions belonging to Sslow. Therefore, the

simulation running on Sslow will be independent of the one

running on Sfast within the limit of the same condition that

is required for the correctness of the t-leap method. We

conclude, therefore, that the maximal time step and the t-

leap methods are correct within the limits of exactly the same

approximation.

The argument presented above implies that at every step of

the simulation the partitioning of the system into Sslow and

Sfast and the maximal time step k are such that in the next

step the change of propensity functions of all fast reactions

will be infinitesimally small. Gillespie (2001) presented

various methods to estimate acceptable change of propensity

functions during the simulation. In our opinion, optimization

of the Sslow, Sfast, and k at every step of the simulation would

be computationally expensive. We have therefore used the

two heuristic conditions, expressed by Eqs. 8 and 9 for the

stochastic partitioning of the system. The maximal num-

ber of possible reaction occurrences (n) was used to assign

reactions involving large numbers of molecules to Sfast, and

those involving small numbers of molecules to Sslow.

Additionally, the probability of the occurrence of the given

reaction (r) was used to move to Sslow those reactions that

have very low probability of occurrence (e.g., due to low

stochastic rate constants) and avoid unnecessary generations

of small kj values.
The parameters n, r, and k can be selected empirically

using the following rules. The parameter nmay be arbitrarily

set to 100 because in the case of lower values the change of

propensity function resulting from a single ‘‘firing’’ of the

fast reaction would be larger than 1%, which is a reasonable

arbitrary threshold value to evaluate agreement with Eq. 11.

The larger value of n should, however, be avoided as it would
increase the number of slow reactions, for which individual

reaction events are considered and decrease performance

of the method. The value of maximal time step k may be

selected empirically by numerical tests. Too large maximal

time step values would result in the numbers of ‘‘firings’’

of some fast reactions exceeding the numbers of available

substrate molecules. This error is very easy to detect as

it manifests itself by negative values of the numbers of

molecules computed for certain molecular species. Very low

maximal time step values would decrease performance of the

method because the numbers of ‘‘firings’’ of fast reactions

would become very low and the performance would become

similar to that of an exact stochastic simulation. As discussed

above, the parameter r is used to exclude reactions with very
low rate constants and large numbers of substrate molecules

from the list of fast reactions. This improves computational

efficiency as the low numbers of reaction ‘‘firings’’ are not

generated as the Poisson random numbers. Parameter r has to
be set empirically by monitoring performance of the test

calculations.

Fig. 1 presents a comparison of the maximal time step

method and direct method for the model of LacZ and LacY

gene expression described in detail elsewhere (Kierzek,

2002). This system involves slow reactions modeling gene

expression processes and very intensive reactions describing

enzymatic and transport activities of the LacZ and LacY

products. Very good agreement with exact simulations

results is achieved for the parameter values of n ¼ 100, r ¼
10�4, and k ¼ 10�3 s. These parameters were used in other

simulations described in this work.

We conclude that the maximal time step method is

an approximate stochastic simulation algorithm, which is

correct within the limits defined by Gillespie (2001) for the

t-leap algorithm, and that the maximal time step method is

able to accurately reproduce the results of exact stochastic

simulations.

Quasistationary-state approximation

In the stochastic kineticmodel, based on no other assumptions

than the fundamental hypothesis, only elementary reaction

mechanisms can be used. These are: i), conversion or decay of

1362 Pucha1ka and Kierzek

Biophysical Journal 86(3) 1357–1372



a single molecule; ii), reactive collision of two different

molecules; and iii), reactive collision of two molecules of the

same substance. The reactive collision of more than two

molecules at the exact time is unlikely and can be represented

as the sequence of bimolecular collisions. The stochastic rate

constants of these reactions can be computed from de-

terministic rate constants. This rigorous approach is un-

fortunately not practical for modeling of large biochemical

reaction networks because the kinetic constants of elementary

reactions are difficult to measure and are, therefore, rarely

available. On the contrary, in many cases the parameters

of the deterministic rate equations describing complex

reaction mechanisms (e.g., Michelis-Menten, Monod-Wy-

man-Changeux, etc.) are available. The complex reaction

mechanisms are valid within the assumption that the in-

stantaneous rates of change of some transitory intermediate

species (e.g., enzyme-substrate complexes) are equal to zero

on the timescale of interest. Following Rao and Arkin (2003)

we will refer to this assumption as the quasisteady-state

assumption (QSSA). The QSSA allows elimination of

intermediate species from the model. Their presence is

implicitly accounted for in the equations describing complex

reaction mechanisms.

Rao and Arkin (2003) have shown that QSSA can be

applied in the context of stochastic kinetics and Gillespie

algorithm simulations. They have derived chemical master

equations describing Michaelis-Menten and competitive

inhibition reaction mechanisms. In both cases the enzymatic

activities could be approximated, in the stochastic frame-

work, by the reactions describing overall enzymatic activity

with the propensity functions set to familiar expressions

of deterministic kinetics. For example, the enzyme with a

Michaelis-Menten mechanism could be modeled as a single

reaction:

Rm: S1 ! S2 amðxÞ ¼ VmaxX1=ðKm 1X1Þ; (12)

where S1, S2 denote substrate and product, respectively. Rao

and Arkin (2003) concluded that similar derivations could

probably be provided also for other complex reaction

mechanisms known from deterministic kinetics. They have

also shown that the computation of propensity functions

according to complex reaction mechanisms is one of the

ways to include QSSA into Gillespie algorithm simulation.

The same idea has been also numerically tested by van Gend

and Kummel (2001). On the other hand, recent results of

Bundschuh et al. (2003) show that if the Hill equation is used

to model the propensity of transcription initiation in auto-

regulated genes, the magnitude of stochastic fluctuations is

significantly overestimated. This example shows that appli-

cation of certain complex reaction mechanisms in the context

of particular network topologies may result in errors in noise

levels.

The primary goal of our modeling studies is to show the

applicability of themaximal time stepmethod to simulation of

biochemical reaction networks, including simultaneously

gene expression signal transduction and enzymatic activities.

Building of a suitable test case model without assuming

complex reactionmechanismswould not be possible. It is also

clear that in the near future, complex reaction mechanisms,

properly describing both means and variances will be for-

mulated and used in the stochastic simulations. For exam-

ple Bundschuh et al. (2003) formulated an effective reaction

mechanism, alternative to the Hill equation, that allowed

correct variance estimation in the case of autoregulated genes.

Thus, it is useful to test the applicability of the maximal time

step method on a biochemical reaction network involving all

the essential components, even if some of the propensity

functions are modeled by equations that may introduce errors

FIGURE 1 Comparison of the maximal time step method with exact stochastic simulation. Both methods were applied to the benchmark example of

a constitutive lactose operon expression described in details elsewhere (Kierzek, 2002). The continuous lines represent the mean and6 1 SD values computed

according to 100 independent simulations with Gillespie algorithm. Dotted lines represent the mean and6 1 SD time courses obtained with the maximal time

step method. (A) The number of mRNAmolecules. (B) The number of b-galactosidase reactions (denoted as product). Note that the maximal time step method

is able to accurately simulate the trajectories for the chemical species, present in the same reaction environment, with amounts differing by seven orders of

magnitude.
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in noise estimation. We have, therefore, tested the applica-

bility of the method on the model involving various complex

reaction mechanisms, and discussed the influence of this

approximation on the simulation results.

Performance of maximal time step method

We have used the model of LacZ and LacY gene expression

(Kierzek, 2002) as a benchmark example to evaluate per-

formance of the maximal time step method in comparison

with the Gibson and Bruck method, the most effective

algorithm of exact stochastic simulations. Simulation of the

single trajectory for this system by the maximal time step

method required an average of 3.5 3 107 random number

generations whereas simulations with the Gibson and Bruck

method required 1.5 3 109 random numbers. Thus, the

maximal time step method required ;42 times fewer ex-

ecutions of the random number generator than the Gibson and

Bruckmethod. In terms of computational times (compared on

Athlon 1700XP1 processor under Linux operating system)

the simulation of the single trajectory for the benchmark

systemwith the maximal time step method was on average 36

times faster than the simulation with Gibson and Bruck

algorithm as implemented in our program. The discrepancy

between the performance gains expressed in terms of random

number generations and execution times results from a high

cost of the Poisson random number generation. The

computational efficiency could be further increased, without

a noticeable loss of accuracy, by the application of the

Michaelis-Menten reaction mechanism to model b-galacto-

sidase activity. When the complex reaction mechanism was

applied, the average number of random number generations

per trajectory was 155 times smaller than in the case of the

Gibson andBruckmethod (9.63 106) and execution timewas

107 times shorter.

STOCHASTIC KINETIC MODEL OF GLUCOSE,
LACTOSE, AND GLYCEROL METABOLISM
IN E. COLI

We have constructed the stochastic kinetic model of glucose,

lactose, and glycerol metabolism in E. coli to test the

applicability of the maximal time step method and to study

the stochastic effects in a system composed of all the

essential elements of biochemical reaction networks. The

model included the following biochemical processes: i), all

enzymatic activities taking part in the conversion of glucose,

lactose, and glycerol to pyruvate; ii), metabolic regulation

of these enzymes; iii), PTS-dependent transport of glucose

and PTS-independent transport of lactose and glycerol;

iv), inducer exclusion by the PTS-dependent kinase cascade;

v), cAMP synthesis by adenylate cyclase; vi), expression of

all the genes that products take part in the metabolic and

regulatory processes present in the model; vii), gene reg-

ulation by CRP, LacR, and GlpR transcription factors. The

model contains 94 substances interacting through 120

reaction channels. It contains both reactions involving very

small numbers of molecules, such as regulation of the lac-

tose operon (10 LacR molecules binding to 1 promoter

‘‘molecule’’) and very intensive reactions with the rates

reaching 107 reaction events per second (activity of the

transporters). The difference between the smallest and

largest values of the propensity functions in our model

may be as large as nine orders of magnitude. One should

also note that the model includes representative examples

of many essential cellular processes, i.e., gene regulation,

activity, and regulation of metabolic enzymes, transport, and

signal-transduction cascades. Therefore, the model provides

a difficult and realistic example on which the maximal time

step method can be tested. It also offers opportunity to study

the stochastic effects in the large biochemical reaction

network.

Another reason for selecting glucose, lactose, and glycerol

metabolism in E. coli as our model system is the detailed

knowledge of the biochemical reactions involved and the

availability of quantitative parameters. In the series of recent

works (Wang et al., 2001; Kremling et al., 2001; Kremling

and Gilles, 2001) quantitative data concerning the metabo-

lism of glucose, lactose, saccharose, and glycerol were

collected from the literature and the dynamics of biochemical

reaction networks was studied using deterministic kinetics.

Authors built models of bacterial strains growing on either

glucose/lactose (Kremling et al., 2001) or saccharose/

glycerol (Wang et al., 2001). To verify the model and

identify unknown quantitative parameters, measurements of

gene-induction kinetics and substrate composition have been

performed. Thus, the models of Kremling et al. (2001) and

Wang et. al. (2001) constitute a unique collection of ex-

perimentally verified kinetic parameters for a large bio-

chemical reaction network.

We have used the results of the works described above to

construct our model. Most of the reactions in these pub-

lications were modeled by the complex reaction mechanisms,

and it was not possible to estimate the parameters of

the elementary reactions. Therefore, the propensity functions

of enzymatic, transport, and most of the signal-transduction

reactions in ourmodelwere computed using complex reaction

mechanisms parameterized by Kremling et al. (2001) and

Wang et al. (2001). We have, however, used a more detailed

model of gene expression. In the works of Kremling et al. and

Wang et al., mRNAwas treated as a transient intermediate and

was not present in the model. We have treated mRNA

explicitly and used a two-step model of gene expression in

which transcription, translation, andmRNAdegradationwere

modeled as separate reactions. On the other hand we did

not use more detailed models of gene expression, involving

isomerization of a closed complex and treating explicitly

RNA polymerase and ribosome binding (e.g., Kierzek et al.

(2001)). Recently, Swain et al. (2002) have shown that

a simplified two-step model of gene expression is capable of

1364 Pucha1ka and Kierzek

Biophysical Journal 86(3) 1357–1372



reproducing the properties of the stochastic kinetics of a more

complex model. Our numerical comparisons of the detailed

model (Kierzek et al., 2001) and the simplified, two-step one

(data not shown) are in agreement with these conclusions.We

believe, therefore, that simplified models of gene expression,

in which transcription and translation initiation reactions are

‘‘lumped’’ together and modeled as pseudo-first-order

reactions or complex reaction mechanisms, can be used for

the modeling of complex biochemical reaction networks.

Transcriptional regulation by CRP, LacR, and GlpR proteins

was modeled by computing propensity functions of tran-

scription initiation reactions according to complex reaction

mechanisms parameterized by Kremling et al. (2001) and

Wang et al. (2001).

A simple model of cell division was used to perform

simulations in the timescale of several cellular generations.

In all the simulations the generation time of 2100 s was used.

The dependence of the generation time on the state of the

system was not studied in the current version of the model.

During the simulation of the particular bacterial generation,

the volume of the reaction environment was linearly doubled

and after the simulation reached the generation time, the

numbers of all molecules except DNA elements were divided

by two and the volume was reset to its initial value. The

growth of the volume was simulated by linear decrease of all

the volume-dependent rate and equilibrium constants in the

model (see Kierzek et al. (2001); Kierzek (2002) for details).

In the deterministic simulations, the concentrations of

molecules in the total volume of all the cells growing in the

medium are studied. To account for the stochastic effects, the

numbers of molecules contained in the volume of a single cell

must be used. Therefore, the initial amounts of extracellular

sugar molecules must be calculated as the numbers of mol-

ecules per single cell rather than as the concentrations in the

medium. We have assumed that the volume of the en-

vironment inwhich the cells grow ismuch larger than the total

volume of growing cells and, therefore, does not change

during the experiment. Thus, the parameters of reactions

describing transport of substances from the extracellular

environment into the cell were not changed during the

simulation.

A full list of reactions, complex reaction mechanism

formulas and parameters of our model are given in the

supplementary material. Fig. 2 shows the schema of a bio-

chemical reaction network defined by the model.

RESULTS

We have performed the maximal time step method

simulation of the system described above in which initial

conditions were set to the following values. The numbers of

all DNA elements were set to 1, the number of external

glucose molecules was set to 1012, the number of ATP

molecules was set to 106, and the numbers of all other

molecules were set to 0. Within the timescale of the

simulation, covering 10 bacterial generations, the system

reached stationary state and the average number of

molecules, present at the end of simulation, was computed

for every molecular species according to 100 independent

time courses. These values (see online supplementary

material) served as the initial conditions for seven sub-

sequent maximal time step method simulations in which the

initial numbers of external glucose, lactose, and glycerol

molecules were varied (Table 1). In every experiment 100

individual time courses of the system, representing in-

dividual cells, were simulated. In simulations 1–4 a large

number of external glucose molecules was accompanied by

a large number of lactose and/or glycerol molecules. The

amounts of sugar molecules were set in such a way that the

numbers of carbon units were equal in the different carbon

sources; the number of lactose molecules was twice lower

than the number of glucose molecules and the number of

glycerol molecules was twice higher. The number of glucose

molecules corresponded to experimental conditions used by

Kremling et al. (2001). According to the results of simu-

lations 1–4, presented in Table 1, lactose and glycerol

operons remain repressed if glucose is available in the

medium. As a consequence, only glucose is used as a carbon

source, and glycerol and lactose are not consumed under

these conditions. In the three subsequent simulations the

initial number of glucose molecules was decreased 1000

times. Under these conditions the external glucose was de-

pleted after ;5000 s, the glycerol or lactose operons were

induced, and the cells used other carbon sources. When both

glycerol and lactose were present in the medium, the lactose

operon was expressed at a higher level than the glycerol

operon and lactose was the preferred carbon source

(simulation 7, Table 1).

We conclude that our model qualitatively reproduces the

well-known phenomena of inducer exclusion, catabolic

repression, and diauxic shift growth. The cells grown on

a mixture of sugars use exclusively glucose as a carbon

source, and the genes encoding proteins used for metabolism

of other sugars are expressed at very low levels. If the glucose

is depleted in the medium, the cells switch to one of the other

available carbon sources. To assess quantitative accuracy

of the model, we have compared the numbers of b-gal-

actosidase molecules present in the cells grown on lactose

(simulation 6) with the quantitative data of Kremling et al.

(2001). According to our simulations, 7524 6 2356 b-gal-

actosidase molecules were present in the cell at the beginning

of the 10th generation. The stationary number of LacZ protein

molecules calculated according to the data of Kremling et al.

(2001), for the cell volume equal to 10�15 L was 5500

(experimental error was not given). We considered this level

of quantitative accuracy sufficient for testing the maximal

time step method on a realistic example and to justify con-

clusions concerning stochastic effects on the model. We have

not, therefore, fit model parameters further to achieve better

agreement with b-galactosidase induction data.
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FIGURE 2 Schema representing the model of E. coli glucose, lactose, and glycerol metabolism used in this work. Nodes represent substances and arrows

represent reactions. The node shapes have the following meanings: ellipsoid, DNA and mRNA species; tetragonal, metabolites; hexagonal, enzymes and

transporters; trapezoid, external pools of glucose, lactose, and glycerol. The names of the molecular species are explained (see online supplementary material).

Different lines denote different reaction classes: metabolic reactions (solid line); protein synthesis (dotted line); transcription regulation (dashed line); and

metabolic regulation (dash-dotted line). Color version of the schema is included (see online supplementary material).
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The results of simulations 5, 6, and 7 indicate that the fate

of single cells may be significantly different than the average

population behavior after the switch of carbon source. Fig. 3

shows the time courses for the glycolytic pathway outflow

obtained in the simulations. During the change of carbon

source the glycolytic pathway outflow decreases as a result

of glucose depletion and delay time in the synthesis of

proteins necessary for the consumption of other sugars.

On average, the activity of glycolytic pathway returns to

its previous values after lactose or glycerol operons are ac-

tivated and their products synthesized. However, in the case

of several individual time courses the delay time of the return

to the previous metabolic activity is much longer than the

average, and there is one particular trajectory in which the

outflow of glycolytic pathway drops close to zero. This

trajectory represents the cell that switches to the stationary

phase or dies before it is able to use a carbon source other

than glucose.

Fig. 4 shows the time courses for cAMP, EIIAP, and

b-galactosidase in simulation 6 in which the single trajectory

with significantly decreased metabolic activity occurred. The

cAMP level is low when the cell grows on glucose, reaches

its maximal value immediately after glucose depletion, and

drops to the new stationary state. Very similar cAMP time

courses were also obtained in simulations 5 and 7. According

to the simulation results in the majority of individual cells

catabolic operons are activated when the number of cAMP

molecules is maximal. In the case of eight trajectories,

activation of the lactose operon was significantly delayed but

the operon was eventually activated despite the fact that

cAMP level was no longer at its maximal value. In one of the

cells, activation of the lactose operon was delayed so much

that the activity of the glycolytic pathway became very low

and the number of PEP molecules was not sufficient for

phosphorylation of the EIIA protein. This resulted in the

dilution of the remaining EIIAP pool in this particular cell,

lack of adenylate cyclase activation by EIIAP, and a decrease

in the cAMP level. In the absence of cAMP the lactose

operon could not be activated, the cell could not use lactose

as a carbon source, and the glycolytic pathway outflow was

decreased close to zero.

Significant differences between individual cells and the

average outcome were also observed in simulation 7,

modeling the growth on a mixture of lactose and glycerol.

Fig. 3 D shows that all of the cells returned to the same

stationary state of glycolytic pathway after the change of

carbon source. One cell was significantly delayed but man-

aged to recover. However, results of simulation 7 (Fig. 5)

indicate that the population is heterogeneous. Most of the

cells use lactose as a carbon source, but some of them grow

on glycerol. The burst of cAMP level occurring after glucose

depletion results in the activation of both glycerol and lactose

operons in most of the cells. Subsequently, in the majority of

individual time courses the glycerol operon is switched off.

In;10% of cells, activation of the lactose operon is delayed

and the glycerol operon becomes fully activated. In some of

these cells the lactose operon becomes activated after a long

delay time and the activity of the glycerol operon is re-

pressed. In none of the individual cells both operons reach

their stationary states simultaneously. Activation of the lac-

tose operon results in repression of the glycerol operon. The

mechanism that is responsible for this effect involves

inhibition of glycerol kinase by fructose-1,6-bisphosphate,

which is an intermediate product of hexose metabolism.

Inhibition of glycerol phosphorylation results in a decrease

in glycerol-3P, which activates the expression of the glycerol

operon by binding to GlpR repressor.

DISCUSSION

In this work we formulate the maximal time step method,

a novel algorithm for the stochastic kinetic simulation of

biochemical reaction networks. The method is an approxi-

mated stochastic simulation algorithm correct within the

limit of the large values of propensity functions within the

fast reaction subset. Numerical tests, performed on the

example of constitutive lactose operon expression (Kierzek,

2002), show that the maximal time step method accurately

reproduces the results of exact stochastic simulations in

the case of systems in which the propensity functions of

individual reactions differ by many orders of magnitude. The

maximal time step method simulation is[30-fold faster than

TABLE 1 Initial conditions of the computer simulations performed in this work and resulting induction of Lac and Glp operons

Number of

external glucose

molecules/cell*

Number of

external lactose

molecules/cell*

Number of

external glycerol

molecules/cell*

Number of

LacZ moleculesy
Number of

GlpF moleculesy

1 1012 0 0 0.00 6 0.00 0.26 6 1.21

2 1012 5 3 1011 0 0.02 6 0.20 0.70 6 3.83

3 1012 0 2 3 1012 0.00 6 0.00 0.26 6 1.21

4 1012 5 3 1011 2 3 1012 1.67 6 16.51 0.64 6 2.59

5 109 0 2 3 1012 10.22 6 14.77 10,992 6 685.6

6 109 5 3 1011 0 7694 6 2051 79.55 6 41.04

7 109 5 3 1011 2 3 1012 7968 6 1572 621.9 6 1864

*The total number of sugar molecules present in the medium in the experimental setup of Kremling et al. (2001) was divided by the total number of cells. The

volume of the cell and the cell density were set to 10�15 L and 280 g/L, respectively.
yThe mean and standard deviation of the number of protein molecules at the beginning of the 10th bacterial generation.
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the exact stochastic simulation performed with the Gibson

and Bruck algorithm. The simulation using both the maximal

time step method and quasistationary-state approximation is

;100-fold more efficient than the simulation performed with

the Gibson and Bruck algorithm. Our method is an

alternative to the related approach of Haseltine and Rawlings

(2002). The two major differences are: i), our method uses

Gibson and Bruck for the slow reaction subset and the

Gillespie t-leap method for the fast reaction subset instead of

combining Gillespie’s direct method with the integration of

the chemical Langevin equation; ii), our method dynamically

partitions the reactions to slow and fast subsets, according to

the state of the system, whereas in the Haseltine and

Rawlings method the partition of the system is specified

during the initialization stage.

Despite the effort that is required to empirically determine

parameters n, r, and k, the user would benefit from the

automatic partitioning of the reaction sets. In the course of

simulations described above, many of the reactions change

their propensity functions by many orders of magnitude.

Therefore, permanent assignment of these reactions to the

reaction subsets may result in the simulation of the individual

reaction events for the fast reaction, which would decrease

method performance, or in the t-leap step applied to slow

reaction, which could lead to an error. Moreover, according

to our experience, both accuracy and performance of the

FIGURE 3 The glycolytic pathway outflow under different conditions. The time courses for 10 bacterial generations are shown. After every generation time

of 2100 s the number of all molecules in the system except DNA elements is divided by two and the volume is reset to its initial value. The glycolytic pathway

outflow is computed as the number of pyruvate molecules processed by the first order reaction representing the total pyruvate consumption by all metabolic

processes in the cell. The rate constant of this reaction was set to 10 1/s following Wang et al. (2001). Four plots represent glycolytic pathway outflow under

different conditions. (A) Large number of glucose molecules. The time course shown was obtained in simulation 1 where glucose alone was present. Results for

simulations 2, 3, and 4 were nearly identical. (B) Small number of glucose and large number of glycerol molecules. (C) Small number of glucose and large

number of lactose molecules. (D) Small number of glucose and large numbers of glycerol and lactose molecules.
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maximal time step method is robust with respect to

parameter choice. For example, in the simulations described

above, the parameter k rarely influenced calculations. In

most cases one of the slow reactions occurred fast enough to

determine the time step of the t-leap step applied to fast

reaction subset. The robustness of parameter choice also may

be illustrated by the fact that parameters selected for the

simulation of a simple LacZ, LacY gene expression model

were applicable to the simulation of the complex system,

including most of the classes of interactions observed in the

biochemical reaction networks. This shows that the param-

eters presented in this work will most probably be a reason-

able choice for the simulation of a variety of systems or at

least provide a good starting point for further fine tuning. The

choice of k ¼ 10�3 s is additionally supported by the

observation that on average, the small number of propensity

functions change within the time interval of 10�3 s. In the

simulation of E. coli sugar metabolism model, containing

120 reactions, the average number of propensity functions

that are affected within the time interval of 10�3 s is 22.

We apply the maximal time step method to the simulation

of glucose, lactose, and glycerol metabolism in E. coli cells.
To the best of our knowledge this is the first stochastic

simulation of the kinetics of a system involving simulta-

neously the reactions of gene expression, signal transduction,

transport, and enzymatic activity.We use the quasistationary-

state approximation, recently reformulated in terms of

stochastic chemical kinetics by Rao and Arkin (2003), to

describe reactions by the complex mechanisms. This lets us

use kinetic parameters experimentally verified by Kremling

et al. (2001) and Wang et al. (2001). The simulations

reproduce the catabolic repression and inducer exclusion

phenomena of theE. coli cells growing on amixture of carbon

sources. Despite the reduction of the model, by the

application of complex reaction mechanisms, there is still

a difference of many orders of magnitude between the

FIGURE 4 Induction of lactose operon. The time courses shown on the plots were obtained in simulation 6 (small number of glucose and large number of

lactose molecules). Glucose is completely depleted during the first 5000 s of the simulation. Plots A, B, and C show trajectories for cAMP, EIIAP, and LacZ,

respectively.
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propensity functions of the reactions modeling gene expres-

sion and enzymatic activity. The maximal timestep method

allows stochastic simulations of such a system that would not

be feasible if the Gillespie algorithm alone was used.

Our simulations show that stochastic fluctuations in the

reactions involving small numbers of molecules may

propagate through the reaction network and influence the

time courses of other processes in the system, including

metabolic pathways in which large numbers of molecules are

processed. In particular, the random delay in transcription

initiation of the lactose operon in an individual cell,

switching the carbon source from glucose to glycerol may

result in almost complete shutdown of the glycolytic

pathway. Another effect of the random delay in the ac-

tivation of the lactose operon is the heterogeneity within the

cellular population switching from glucose to a mixture

of lactose and glycerol. Moreover, in both cases the effect

of the random fluctuation occurring in a particular cell is

inherited by its progeny. Delay in the activation of the

lactose operon in the single cell may lead to a continuous

decrease in the glycolytic pathway activity, spanning six

generations of progeny cells (Fig. 3 C). It may also cause the

progeny cells to use glycerol as the carbon source in the

course of several generations (Fig. 5 B). Our results could be
subjected to experimental verification by creating bacterial

strains in which fluorescent proteins are expressed under

control of the lactose and glycerol operons and measuring

fluorescence intensity in single cells. This approach has been

already applied to verify other hypotheses concerning

stochastic effects in cellular processes (Blake et al., 2003,

Elowitz et al., 2002; Ozbudak et al., 2002; Rosenfeld and

Alon, 2003; Setty et al., 2003).

Both glycerol and lactose operons are regulated by

a positive feedback loop. Increase in transcription activity

FIGURE 5 Induction of glycerol and lactose operons in the cells switching from glucose to the mixture of lactose and glycerol. Results of simulation 7 (small

number of glucose and large numbers of glycerol and lactose molecules) are shown. Plots A, B, C, and D show the time courses for LacZ, GlpF, cAMP, and

external glycerol, respectively. Plots B andD show the small subpopulation of cells that express proteins encoded by the glycerol operon and consume glycerol

as a carbon source.
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of the operon results in an increased amount of the lactose/

glucose-3-P, due to an increase in transport activities, which

further derepresses the operon. It has been shown in the

classical papers of Novick and Weiner (1957) and Cohn and

Horibata (1959a,b) that the positive feedback loop present in

bacterial operon is able to maintain an induced state, in the

progeny of the induced cells, even if the inducer concentra-

tion is significantly decreased. The multistationary behavior

of the positive feedback loop can also be presented by

theoretical analysis (see Thomas (1998) and Savageau

(2001) for reviews). A similar phenomenon occurs in our

simulations, where both lactose and glycerol operons are

induced by high amounts of cAMP and in most of the

individual time courses are capable of maintaining the

induced level when the cAMP concentration is lowered to

the new stationary state.

A fast increase in cAMP amount, above the final stationary

level, is an example of the overshooting phenomenon re-

cently described as the property of the regulatory motif

in which the negatively autoregulated unit is activated by an

external signal (Rosenfeld and Alon, 2003). The cAMP

negatively autoregulates its synthesis because the cAMP-

CRP complex represses the expression of adenylate cyclase.

This negatively autoregulated unit is activated by the

increase in EIIAP, resulting from depletion of glucose

(Fig. 2).

In a recent work, Thattai and Shraiman (2003) performed

stationary state analysis of the differential equation model

describing key processes in the PTS-dependent metabolic

switching. Although the deterministic modeling techniques

did not allow the authors to study stochastic effects directly,

they have noted that biochemical noise may result in the

heterogeneity within cellular populations and simultaneous

occupation of all stationary states available for the bio-

chemical reaction network under given conditions. The ex-

istence of the subpopulations in which either lactose or

glycerol are used as a carbon source, predicted by our

detailed kinetic simulations, are in agreement with this

hypothesis. The effect of random fluctuations in gene ex-

pression in a particular cell on its progeny and the role of

overshooting phenomenon in the activation of a catabolic

operon have not been studied by Thattai and Shraiman

(2003).

As discussed before, our model may include equations

describing complex reaction mechanisms that introduce

unrealistic fluctuations in particular reactions. It is therefore

possible that our simulation exaggerates the variance of the

lactose operon transcription initiation, and that under ex-

perimental conditions the population heterogeneity is smaller

than in the case of our simulation results. Even if this is the

case, our simulation still shows that the random event

occurring at gene expression level may propagate, through

the positive and negative feedback loops present in the

biochemical reaction networks, and result in an epigeneti-

cally inheritable effect on cellular metabolism. This mech-

anism is an important factor in the natural selection of

architectures and kinetic constants of reaction networks

controlling gene expression. In some cases ‘‘noisy solu-

tions’’ would be eliminated in the course of evolution be-

cause propagation of noise through the network would cause

excessive perturbations in cellular physiology. In other

cases, the phenomena described above may be explored

as the way to increase variability of isogenic microbial

population.

It is also important to note that the maximal time step

method does not require any particular approach to modeling

of the complex reaction mechanisms, because the propensity

functions computed from elementary reaction mechanisms

and other functions of molecular populations in the sys-

tem can be used. Therefore, both the detailed parameters

obtained by novel experimental approaches (Setty et al.,

2003) and the effective reaction mechanisms correctly

accounting for the noise may be easily incorporated into

maximal time step method simulations. Moreover, simula-

tion results presented in this paper show that stochastic

effects are of interest in studies of the dynamics of

complicated systems involving all essential components of

bacterial physiological processes. We therefore believe, that

the maximal time step method, will be useful in future

studies of the complex dynamics of cellular processes. The

software used for simulations presented in this work is

available on request.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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