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ABSTRACT Patch-clamp recording provides an unprecedented means for study of detailed kinetics of ion channels at the
single molecule level. Analysis of the recordings often begins with idealization of noisy recordings into continuous dwell-time
sequences. Success of an analysis is contingent on accuracy of the idealization. I present here a statistical procedure based on
hidden Markov modeling and k-means segmentation. The approach assumes a Markov scheme involving discrete
conformational transitions for the kinetics of the channel and a white background noise for contamination of the observations.
The idealization is sought to maximize a posteriori probability of the state sequence corresponding to the samples. The
approach constitutes two fundamental steps. First, given a model, the Viterbi algorithm is applied to determine the most likely
state sequence. With the resultant idealization, the model parameters are then empirically refined. The transition probabilities
are calculated from the state sequences, and the current amplitudes and noise variances are determined from the ensemble
means and variances of those samples belonging to the same conductance classes. The two steps are iterated until the
likelihood is maximized. In practice, the algorithm converges rapidly, taking only a few iterations. Because the noise is taken into
explicit account, it allows for a low signal/noise ratio, and consequently a relatively high bandwidth. The approach is applicable
to data containing subconductance levels or multiple channels and permits state-dependent noises. Examples are given to
elucidate its performance and practical applicability.

INTRODUCTION

Currents flowing through single ionic channels contain

valuable information about mechanisms of ion permeation

and channel gating. The magnitude of the current indicates

the rate of ion flux through the channel, and step changes in

the current indicate visible gating kinetics. However, single-

channel patch-clamp measurements are invariably contam-

inated by background noise from a variety of sources in-

cluding the seal resistance, electronic noise in the amplifier,

and shot-noise in the open channel. This noise can be

substantial relative to the small current of interest. One of the

first stages in the analysis of patch-clamp data is to uncover

the underlying single-channel currents, i.e., to idealize the

currents so that they appear as they would be in the absence

of noise.

Traditionally, single-channel currents are detected by

a combination of low-pass filtering and half-amplitude

threshold crossing (Sachs et al., 1982; Sigworth, 1983;

Gration et al., 1982). Although conceptually simple, these

methods suffer from the problem of band-limiting dis-

tortions. Because of the small magnitude of the unitary

current, heavy filtering is usually necessary so that different

conductance levels can be distinguished unambiguously.

The finite time response of the low-pass filter, however, may

reduce short transitions below threshold and therefore

prevent them from being detected. These missed events

result in apparent increases in the duration of the experi-

mentally observed dwell times. In the extreme case of small

currents with rapid kinetics, the majority of events may be

missed. In addition, the noise in the records can either

facilitate or depress the detection of individual events,

depending on the direction of the noise, and these effects of

noise do not cancel out (Blatz and Magleby, 1986). Large

noise peaks may be identified as false events.

The threshold crossing techniques incur their limitations

in part because of their simplistic assumption that the data

points are independent of each other. In reality, the

transitions of the channel are time-dependent, and the closed

and open samples tend to occur in long runs. Consequently,

an improved detection would necessitate the use of

information from adjacent samples. Several methods of this

type have been developed. For example, Moghaddamjoo

(1991) proposed a segmentation procedure in which se-

quential samples are processed and an event is detected

only if the variation of samples within a class is minimized

while the variation between classes is maximized. Fredkin

and Rice (1992a) introduced two Bayesian restoration

methods based on statistical smoothing through the use of

a two-state Markov chain. VanDongen and others consid-

ered the use of slope threshold in addition to amplitude

threshold to minimize spurious transitions (VanDongen,

1996; Tyerman et al., 1992). Nonlinear filtering techniques

such as Hinkley detector, which detects abrupt and time-

dependent variations, have also been exploited (Draber and

Schultze, 1994; Schultze and Draber, 1993). Besides

improvements on temporal resolutions, many of these ap-

proaches feature a generalized applicability to ion chan-

nels with multiple conductance levels, and sometimes even

unknown amplitudes.
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Hidden Markov modeling (HMM) provides a general

paradigm that takes account of the statistical characteristics

of both signal and noise simultaneously. The technique has

gained popularity in analysis of single-channel currents

(Chung et al., 1990; Fredkin and Rice, 1992b; Qin et al.,

2000b; Venkataramanan and Sigworth, 2002). Within this

framework, channel activity is modeled as a first-order

Markov process to which is added white Gaussian noise. The

parameters of the model are estimated by maximizing the

a priori probability using either the Baum-Welch reestima-

tions or an optimization-based approach (Qin et al., 2000a).

The single-channel current is then uncovered as the most

likely state sequence by maximizing the a posteriori

probability using the Viterbi algorithm (Forney, 1973).

Compared to threshold crossing, the approach has a signif-

icantly improved detection performance and is particularly

well suited for the case in which the signal/noise ratio is

poor. However, the maximization of likelihood and the re-

estimation of parameters are generally a time-consuming

process because of the need to evaluate the probability of

each state at each sample point. The standard Baum-Welch

reestimation requires a computational load that is quadrat-

ically proportional to the complexity of the model and

linearly to the length of the dataset.

This work extends the study of hidden Markov modeling

for single-channel analysis. A simplified HMM approach for

idealization of single-channel currents is presented. The

approach is based on the segmental k-means (SKM) method

(Rabiner et al., 1986). As an alternative to Baum-Welch

reestimations, the algorithm is computationally more ef-

ficient, thereby alleviating the problem of heavy computa-

tions required by the standard HMM. Yet the algorithm

maintains the essence of HMM to allow the statistics of

both channel kinetics and noise characteristics to be taken

into account explicitly in a natural but concise manner. The

method, although it estimates models, is intended for

idealization of current traces; after this, more sophisticated

dwell-time analysis techniques such as histogram fitting or

the full dwell-time maximum likelihood approach (Qin et al.,

1996, 1997) can be used for model estimation. In the

following, the theory of the algorithm is first described.

Some issues on implementation and practical use of the

algorithm are then addressed. Finally, a number of examples

are chosen to demonstrate its performance as well as its

limitations.

THEORY

A standard hidden Markov model is used to describe the

data. The transitions of the channel are modeled as a Markov

process with a discrete number of states, which may refer to

the conformations of a protein. The transitions between the

states are continuous in time. But in practice, they are ob-

served as discrete samples. Accordingly, a discrete transition

probability matrix, namely,

A ¼ ½aij�N3N

is used to describe the transitions, where the (i,j)th element aij
is the probability of making a transition from state i to state j
within a sampling interval Dt, and the diagonal element aii
defines the probability to stay in the current state.

The transition matrix A completely determines the

kinetics of the channel, assuming a memoryless system,

i.e., the transition at any time is only a function of the current

state independent of the previous history. It is related to the

rate constant matrix Q by

A ¼ expðQDtÞ; (1)

where the (i,j)th element of Q, qij, is the rate of transitions

from state i to state j, and the diagonal ones are defined so

that each row sums to equal zero. Although there is a unique

correspondence between the two matrices, the transition

probability matrix does not allow specification of disallowed

transitions, since its elements generally do not vanish and

there is always a chance that the channel may arrive at state

j indirectly from state i within a sampling duration even

though they are not connected directly. Nevertheless, the

sampling interval should be relatively fine to minimize the

occurrence of such high-order transitions.

In accordance with observations, each state of the channel

is designated with a conductance. Assume a total number of

M different conductance levels, and let Ii, i ¼ 1,2. . .M, be the

corresponding current amplitudes. Some of the states may

possess an identical conductance. Therefore, there may be

more states than conductance levels, i.e., M # N. In the

simplest case, there are only two conductance levels,

corresponding to closed and open, respectively. However,

the model itself is general, without any restriction on the

number of subconductance levels. The time series of the

observed samples will be denoted by yt, t ¼ 1. . .T, and the

underlying state sequence by st, t ¼ 1. . .T.
The transitions of the channel are not only masked by

aggregation of multiple kinetic states into the same

conductance, but also by noise. It is assumed that the noise

is additive, white, and follows a Gaussian distribution. The

noise can be state-dependent, but for practical consideration,

it is only assumed to be conductance-specific. States within

the same conductance class have the same noise. By doing

so, excessive open noise is allowed. Let si
2 denote the

variance of the noise at the ith conductance level. Then, given
the channel being in conductance i at time t, the resultant

observation has a probability distribution

biðytÞ ¼
1ffiffiffiffiffiffi
2p

p
si

exp � yt � Iið Þ2

2s
2

i

� �
: (2)

Note that the probability of the observation does not depend

on the previous state of the channel or the history of the

noise. It is possible to include one previous point within the

standard HMM framework. But, an explicit account of the

history dependence requires expansion of the state space,
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which would result in an exponential increase in the

computational load.

The idealization of the currents can be considered as

a restoration problem, i.e., to uncover the underlying state

sequence st values from the observations yt values.

Apparently, there are many possible solutions, depending

on which criterion is used. The idealization considered here

is sought to maximize the a posteriori probability of the state

sequence, i.e.,

Pr ðs1s2 . . . sT; y1y2 . . . yT; lg ¼ max; (3)

where l ¼ {aij’s, Ii’s, si’s} designates all model para-

meters. The probability is also called the likelihood of the

idealization.

Making use of the probabilistic model for the channel and

the noise, the likelihood can be formulated explicitly. Ac-

cording to the Bayes law, it can be cast into the probability

of the state sequence itself, multiplied by the probability

observing the samples given that state sequence, leading to

Prðs; y;lÞ ¼ ps1as1s2 � � � asT�1sT 3 bs1 y1ð Þbs2 y2ð Þ � � � bsT yTð Þ;
(4)

where the probability of the state sequence Pr(s) is broken
into an initial probability p, multiplied by the subsequent

transition probabilities through the entire sequence. The

problem of idealization is then to choose among all possible

choices a state sequence s and a set of model parameters l so

that the probability is maximal.

The problem involves optimization on two categories of

unknowns: the state sequence and the model parameters. The

first is discrete, although the number of choices may be

astronomically large, whereas the second is continuous in

values. One approach to the problem is to treat the two types

of variables separately and optimize them alternately over

each domain,

max
l

max
s

Prðs; y;lÞ ¼ max
s

max
l

Pr s; y;lð Þ: (5)

That is, the probability is first optimized over s at a fixed

model l and then the state sequence is fixed to optimize the

model l. The first corresponds to idealization of the data

with a known model, and the second reestimation of model

parameters based on a known idealization along with the

given observations.

The idealization of the state sequence given a model is

essentially a discrete optimization problem. Given N pos-

sible states at each time, there are a total of NT permutations

of state sequences. Since the probability of each sequence

can be calculated readily using Eq. 4, it is conceivable to

attempt an exhausted search, i.e., to enumerate all state

sequences, compare their probabilities, and then determine

the one giving the maximal probability. Unfortunately, the

strategy is practically unrealistic. Even in the simplest case

with two states, there are 2T sequences for T samples. A

small number of 100 samples will result in 1030 state

sequences, for which a simple enumeration would take

[1023 years on a computer operating at 1 GHz.

A realistic approach to the problem is the Viterbi

algorithm (Forney, 1973), which exploits the unique

structure of the problem in combination with the power of

dynamic programming (Cormen et al., 1998). The algorithm

is recursive and proceeds as follows. Let f1(i) ¼ pibi(y1) for
1# i # N. Then the following recursion for 2# t # T and 1

# j # N is

ftð jÞ ¼ max
1#i#N

ft�1 ið Þaijbj ytð Þ
� �

; (6)

and

ctðjÞ ¼ i�; (7)

where i* is a choice of an index i that maximizes ft(i). Upon
termination, the likelihood is given by

Prðs; y;lÞ ¼ max
1#i#N

fT ið Þ: (8)

The most likely state sequence can be recovered from c

as follows. Let sT ¼ i*, which maximizes fT(i). Then for

T $ t $ 2, st–1 ¼ ct(st).
The basic idea of the Viterbi algorithm is schematically

illustrated in Fig. 1. It performs the idealization through time

successively. At each time t, it keeps track of the optimal

state sequences (pathways) leading to all possible states at

that point. Then, an optimal sequence up to the next time t 1
1 is constructed by examining all existing N sequences up to

time t in combination with an appropriate transition from

time t to t 1 1. Because the probabilities of the state se-

quences up to time t are remembered, the construction of

the new extended sequences requires only N2 computations,

as implied by Eq. 6. The idealization of the entire dataset

therefore takes on the order of N2T operations, which is

quadratic on the number of states and linear on the number of

samples, as opposed to the exponential dependence required

by an exhaustive search.

FIGURE 1 Illustration of the Viterbi algorithm. The optimal sequence

leading to a given state at time t 1 1 can be constructed from the sequences

up to time t combined with a single transition from the previous ending state

at time t to the given state at time t 1 1.
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The result of the Viterbi detection is optimal relative to the

model used. In practice, the model is unknown before

analysis. As a result, the model parameters need to be

estimated. Given an idealization, the estimation can be done

empirically. To estimate the current amplitudes and noise

variances, one can classify the samples into clusters

according to their conductance. The current amplitudes and

noise variances can then be estimated as the means and

variances of the samples within each cluster, respectively,

Îi ¼
+
st2Ci

yt

+
st2Ci

1
; (9)

ŝ
2

i ¼
+
st2Ci

ðyt � ÎiÞ2

+
st2Ci

1
; (10)

where Ci denotes the states of the ith conductance class, and
the denominator represents the number of samples that are

idealized into Ci. Similarly, the transition probability can be

estimated by counting the number of transitions occurring

from each state, i.e.,

âij ¼
nði; jÞ
n ið Þ ; (11)

where n(i) is the number of occurrences of state i and n(i,j)
the number of occurrences that state j is an immediate

successor of state i.
Ideally, the new estimates of the model parameters should

agree with those that initiate the idealization. When the

model is unknown, however, they may not be equal, in

which case the estimates can be used to upgrade the model.

This leads to an iterative loop as shown in Fig. 2, where an

initial model, l0, is chosen, and the Viterbi algorithm is used

to find an optimal idealization from which the model

parameters are reestimated. The iteration continues until it

converges, for example, when the difference of the parameter

values in two consecutive iterations becomes less than

a preset small tolerance. This is the essence of the segmental

k-means method (Rabiner et al., 1986). Convergence of the

algorithm is assured (Juang and Rabiner, 1990), and the

reestimated model parameters always give rise to an im-

proved likelihood value at each iteration. As illustrated by

examples in the following, the convergence is generally fast,

taking only a few iterations.

IMPLEMENTATION

The segmental k-mean method has a computational load

mainly limited by the Viterbi algorithm. The reestimation of

model parameters involves only a negligible amount of

computation, which is linear on both data length and the

number of states. There are several ways to improve the

Viterbi algorithm to reduce its complexity. One is to

implement the algorithm in the log domain. Instead of

calculating ft(i), one calculates lnft(i). The recursion Eq. 6

becomes

lnftðjÞ ¼ max
1#i#N

lnft�1 ið Þ1ln aij

� �
1ln bj ytð Þ; (12)

which indicates that the log probability lnft(i) can be

calculated from its precedent. More importantly, the re-

cursion now involves no multiplication. The algorithm can

be implemented with only additions, which is efficient to

compute. The use of log probabilities also avoids the problem

of numeric overflow. The term ft(i) can be considered as

a product of probabilities over samples, and if the number of

samples is large, the product will eventually exceed the range

of computer precision. With the log representation, the

problem is avoided.

The other maneuver that can improve the efficiency of the

algorithm is to calculate the Gaussian distributions before

recursions. This can be done using a lookup table. During

recursions, the deviation of a sample from a conductance

level can be calculated and discretized to find the appropriate

distribution values from the table. This alleviates the ex-

pensive computation of exponential functions involved in

the distributions.

Application to single-channel currents

The algorithm described above has been tested extensively in

the context of idealization of single-channel currents. In the

following, a few representative examples are presented.

These examples are intended to illustrate the basic per-

formance of the idealization. The algorithm has many

features—for example, the allowance for multiple conduc-

tance levels or multiple channels, excessive opening noise,

constraints on parameters, and so on. The usage of these

features is straightforward and will not be discussed here.

The algorithm was implemented in C/C11 language with

a Windows graphical interface to support user-interactive

manipulations. The interface provides convenient tools for

initialization of current amplitudes and noise variances,

which are typically ‘‘grabbed’’ from a highlighted region on

FIGURE 2 Block diagram of the SKM algorithm, consisting of two

iterative steps, idealization via the Viterbi algorithm and reestimation of

model parameters.
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a data trace. A state model with appropriately specified rate

constants is used for initializing the transition probabilities.

The program is available through the IcE/QuB software suite

(www.qub.buffalo.edu).

Sensitivity to noise and channel kinetics

One advantage of the algorithm is its tolerance for noise. For

certain types of channels, good idealization can be achieved

at a signal/noise ratio as low as i/s ¼ 2. As an example,

consider the data shown in Fig. 3 A (noisy trace), which were
simulated from a two-state model (Scheme I) with current

amplitude i ¼ 1 pA and noise standard deviation s ¼ 0.5 pA.

The rate constants of the model were k12 ¼ k21 ¼ 100 s�1.

The data were sampled at 100 ms, and a total of 1,000,000

samples were generated. Fig. 3 A (bottom trace) shows the
resultant idealization by the algorithm, which agrees well

with the true currents, as shown on the top. In total, the

simulation resulted in 9967 dwell-times with a mean

duration of 10.03 ms. The idealization recovered 9067

events giving a mean duration of 11.03 ms. The error rate of

the idealization was therefore within 10% for both the

number of events and the mean dwell-time duration. The

algorithm was insensitive to the starting values of the model.

Repeat of the idealization with different starting values led to

comparable results. Fig. 3 B shows the convergence of the

log likelihood through iterations. The algorithm generally

converged in a few iterations.

FIGURE 3 An example of idealization. (A) A stretch of data (middle trace) simulated from a two-state model with S/N ¼ 2:1. The clean trace above it was

the ideal current before being superimposed with noise. The trace below it was the resultant idealization by the segmental k-mean algorithm. (B) Convergence
behavior of the algorithm. The likelihood was normalized by the number of samples. The iterations started at the initial parameter values i ¼�0.5,1.5; s ¼ 0.1;

and k ¼ 1000 as opposed to their true values i ¼ 0,1; s ¼ 0.5; and k ¼ 100, respectively. (C) Distribution of occupancy probability of a dense grid of

conductance levels uniformly placed between the minimal and the maximal currents. The distribution exhibited two narrow peaks corresponding to the unitary

conductance levels of the channel.
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At a signal/noise ratio of 2:1, the noise from the two

conductance levels overlapped significantly. Without a priori

knowledge, it is nearly impossible by visual inspection to tell

how many conductance levels the channel has or even

whether there is channel activity at all, as apparent in Fig. 3.

One approach to address such questions is to idealize the data

with a sufficient number of conductance levels and then

examine the abundance of individual levels. As a test,

consider the above data. A set of equally spaced 100

conductance levels were placed from the minimal to the

maximal current amplitudes. The algorithm was then applied

to segment the data into these preset levels, assuming each

level represented a state and transitions occurred only

between adjacent levels. From the resultant idealization,

the occupancy probability of each level was calculated. Fig.

3 C shows the distribution of these probabilities over all

levels. As expected, the distribution exhibited two sharp

peaks at positions corresponding to the unitary current

amplitudes of the channel. Therefore, even under the

condition where the discrete channel activity is concealed

by noise, the algorithm is sensitive enough to reveal the

presence of the activity. Similar plots of a posterior

occupancy probability could be also achieved with the full-

likelihood Baum-Welch reestimation procedure (Chung

et al., 1990), but the segmental k-means method is more

efficient, especially when the model has a high complexity.

Although the algorithm worked well with a noise level as

high as s ¼ 0.5 pA in the above test, this cannot be taken as

a general criterion. Its performance also relies on channel

kinetics. As the kinetics get fast, the tolerance for noise

declines. Fig. 4 A shows the error rates of the idealization as

a function of noise level at several kinetic settings. The

results were obtained using the same simulation conditions

as stated above, except for the rates and noise that were

subject to examination. Although the errors were\10% at

k 3 Dt ¼ 0.01 with noise up to s ¼ 0.55 pA, the same

accuracy could only be achieved with s ¼ 0.35 pA when the

kinetics became 10 times faster.

The interplay between kinetics and noise is also evident

from Fig. 4 B, which plots the error rates of idealizations as

a direct function of kinetics. Interestingly, for a fixed noise

level, the error rates of both the number of events and their

mean duration showed a biphasic change. The errors

increased initially as the kinetics speed up, but it reached

a ceiling k 3 Dt � 0.1, beyond which a further increase of

kinetics led to a reduction on the errors. One possible

explanation for this biphasic dependence is that with

extremely fast kinetics, the correlation between adjacent

samples becomes weakened and the channel activity behaves

statistically more like a white noise. As a result, the detection

of the currents can be actually reinforced by the presence of

noise. From the figure, it is evident that the detection

degraded rapidly with the increase of either kinetics or noise,

consistent with the previous observations in Fig. 4 A.
The algorithm compares favorably with the threshold

detection. Fig. 5 shows a direct comparison between the two

methods in terms of the number of events and the mean

dwell-time duration. As expected, the SKM method exhibits

a much higher tolerance for noise. In addition, the erroneous

events resulting from SKM appear to be fundamentally

different from those obtained with threshold detection.

Although the absolute errors of the idealization increase

with noise in both cases, they proceed in opposite directions.

The SKM method always underestimates the total number of

events, whereas the threshold detection overestimates it.

Consistently, the mean dwell-time duration is underesti-

mated with SKM but overestimated with threshold. This

suggests that the errors involved in SKM idealization are

primarily due to missed events whereas threshold detection

results in false events. To this extent, the SKM detection is

advantageous since the missed events, but not the false

events, can be corrected during the stage of dwell-time

analysis. To avoid the problem of false events, the threshold

analysis has to rely on heavy filtering to minimize errors.

It is of interest to know the type of events that may go

undetected in the idealization. This information is particu-

larly useful for specification of dead times in dwell-time

analysis to correct for the effects of missed events. Fig. 6

shows the distribution of the number of missed events at

different durations (in multiples of the sampling duration).

The exact distribution varied with kinetics and noise.

However, it was common that the missed events at all

conditions were predominantly the brief ones, with lifetimes

on the order of a few Dt. Furthermore, the distribution

appeared to decay exponentially. Beyond 2Dt, the errors

reached a plateau and became essentially invariant to kinetics

and noise. Therefore, most of the errors arising in the

idealization by the algorithm can be attributed to the events

with durations \2–3 Dt. This relatively fixed range of

missed events offers the possibility for specification of

a constant dead time irrespective of underlying channel

kinetics or noise level, which is in contrast to threshold

detection, where the dead time increases with the level of

low-pass filtering.

The SKM detection is not a full maximum likelihood

method in the sense that the parameter estimates are not

based on a posteriori probability. This raises the question

whether the resultant parameter estimates retain the asymp-

totic properties of the full maximal likelihood estimates such

as being efficient and unbiased. Fig. 7 illustrates the

deviations of the parameter estimates in the above model

as a function of data length, which varied over a range of

[100-fold. The plots suggest that the estimates of current

amplitudes and noise standard deviation tended to be

SCHEME I
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unbiased, and the variances of the estimates decreased as

more samples were included. On the other hand, the kinetic

parameters, including both rates and the number of events,

exhibited a constant deviation regardless of data length,

although their variances decreased too. This suggests that the

kinetic estimates given by the algorithm tend to be biased,

which is as expected since the estimates are performed

empirically and the idealization suffers from omission of

brief events.

Model dependence

This example examines the model dependence of the algo-

rithm. A model for Ca21-activated K1 channels (Scheme II)

was used (Magleby and Pallotta, 1983). Table 1 lists the

values of the rate constants used in simulation. The model has

aggregated states, three closed and two open, and the

lifetimes of the states span a broad range from tens of

milliseconds to submilliseconds. For testing, a total of

1,000,000 samples were simulated, which gave rise to 14,788

dwell-times (16,414 before sampling), with mean closed and

FIGURE 4 Errors of detections as functions of noise (A) and channel kinetics (B). The increase of noise led to a monotonic degradation on the performance

of idealization, whereas the increase of channel kinetics gave rise to biphasic dependence. Rapid kinetics improved detections presumably because of

facilitation of noise, as described in the text.

SCHEME II
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open durations of 3.52 and 3.25 ms, respectively. Data was

sampled at 50 ms. The unitary current of the channel was 1

pA, and the noise standard deviation s ¼ 0.25 pA.

The simulated data were idealized with models of various

topologies. The models examined included the true model

(Scheme II), a three-state model (Scheme III), a two-state

model (Scheme I), and an uncoupled model (Scheme IV). In

all cases, the parameters of the model were subject to

reestimation. Table 2 lists some key parameters from the

resultant idealizations. With all models, the algorithm

accurately recovered the current amplitudes and noise

standard deviations, indicating that the estimates of these

parameters are independent of model complexity. The re-

estimates of the dwell-times had a comparable performance

among all schemes except for the two-state model. The full

model led to 14,054 dwell-times with mean durations tC ¼
3.61 and tO ¼ 3.33 ms, which differed from their simulated

values by ;5%. The three-state model, despite its reduced

complexity, performed remarkably well; the differences

from the full model for both the number of dwell-times and

the mean durations were #1%. The two-state model, how-

ever, showed an error[10%, as compared to the simulated

data.

FIGURE 5 Comparison to threshold detection. The segmental k-means

method gave more accurate idealization than the threshold detection as

measured by the number of events (A) and the mean dwell-time duration (B).
The errors of the idealization also occurred in different directions with the

two methods. The segmental k-means method tended to underestimate the

number of events and overestimate the mean dwell-time duration.

Conversely, the threshold detection led to an excessive number of events

with underestimated durations.

FIGURE 6 Distribution of the number of missed events. The algorithm

made erroneous detections mostly on the brief events. As the durations of the

events increased, the accuracy of their detections was improved exponen-

tially. The errors generally fell off under 10% for durations [2–3 Dt,

irrespective of the noise level (A) or the channel kinetics (B).

SCHEME III
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The testing suggests that the performance of the algorithm

does not degrade continuously with the complexity of the

model used. Instead, it is relatively insensitive to a wide

range of models provided they have a reasonable complex-

ity. The model becomes an issue only when it is over-

simplistic and cannot accommodate the major features of the

data. In the above example, the data compromised at least

two populations of dwell-times with the mean lifetimes

separated by about an order of magnitude. Any model of

a single closed state is therefore inadequate to represent

them. As a consequence, a significant number of events,

especially the ones with brief durations, were inevitably

missed upon the use of a two-state model.

The insensitivity of the algorithm to model topology can

also be seen from the reestimates of kinetic parameters. For

the full model given above, the transition probability matrix

was estimated as

A ¼

0 1 0 0 0

0 0:998 0:001 0:001 0

0 0:011 0:837 0 0:152
0 0:042 0 0:958 0

0 0 0:014 0 0:986

2
66664

3
77775:

Note that a12 ¼ 1 and a21 ¼ 0, as if the first closed state

was absent. This was the case because the lifetimes of C1 and

C2 were long as opposed to the sampling duration, and

collectively they could be represented by a single state. In

general, the algorithm performs poorly on the estimation of

rates especially between aggregated states, indicating that

a model with reduced complexity suffices for a valid

idealization.

Since the idealization is the first stage of data analysis, it

becomes an issue how to choose a model with adequate

complexity. A practical solution to the problem is to develop

the model and perform the idealization retrospectively. First,

a simplistic model can be used to obtain a relatively coarse

idealization. The resulting dwell-time distributions can then

be explored for extra components, based on which a model

with sufficient complexity can be established. As an

example, the data simulated above was first idealized with

a two-state model. Fitting of the resultant distributions

resolved three closed and two open states. Since the true

model topology was unknown, a five-state uncoupled model,

as shown in Scheme IV, was used to refine the idealization.

A model of this type possessed the maximal complexity for

a given number of states that could be possibly resolved for

a binary channel based on single-channel measurements (Hui

et al., 2003). With the model, the data was reidealized. The

results, as shown in Table 2, were improved and became

comparable to those obtained with the full model.

Low-pass filtering

In this example, the performance of the algorithm in the

presence of low-pass filtering is examined. The two-state

model in Scheme I was again used. The simulation

conditions were chosen similar to typical experimental

settings. The channel had a lifetime of 1 ms for both

openings and closures, corresponding to a rate of 1000 s�1.

The noise had a standard deviation of s ¼ 0.5 pA, relative to

a 1-pA unitary current. The sampling rate was 50 kHz. A

total of 1,000,000 samples were generated. Data were filtered

to different extents before idealization. Standard Gaussian

digital filters with specified cutoff frequencies were used.

Fig. 8 summarizes the idealization performance as

a function of filtering frequency. Also shown are the results

from noise-free data to isolate the effect of filtering from that

of noise. In the absence of noise, the idealization exhibited

a plateau of performance over a wide range of frequency

extending from 25 to 5 kHz. Within this range, the error rates

on the number of events and the mean dwell-time durations

were both\10%. The algorithm started to show significant

errors\5 kHz. Further filtering resulted in rapid degradation

on idealization. At 1 kHz, the error rate reached nearly 50%

for the number of events and[90% for the mean dwell-time

duration.

FIGURE 7 Asymptotic estimates of model parameters. The estimates of

current amplitudes and noise standard deviations appeared to be unbiased

and their variances decreased with the length of samples. The number of

dwell-times and the rate constants, however, show a constant bias from their

true values irrespective of the data length.

SCHEME IV
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The addition of noise complicated the effect of filtering,

but did not alter the basic characteristics. Filtering[5 kHz

remained to have errors \10%. A notable difference from

the noise-free case was that the error rates of the idealization

did not increase monotonically with the level of filtering;

instead, it peaked ;10 kHz before entering the rapidly

degrading phase. This arose presumably as a result of

tradeoff between signal/noise ratio and band-limiting dis-

tortions. With little filtering, the noise was high, thereby

limiting detections of short events. As filtering increased, the

signal/noise ratio improved, and so did the idealization. With

further filtering, however, the distortions introduced by low-

pass filtering became significant, which caused reduction on

the accuracy of the detection again. This biphasic trend

suggests that there exists an optimal filtering frequency in

practice, although its precise value is less certain pending on

the level of noise and the kinetics of the channel.

Application to experimental data

As the final example, the applicability of the algorithm to real

experimental data is demonstrated. The data was recorded

from a mutant, recombinant mouse n-methyl-d-aspartate
(NMDA)-activated receptor expressed in Xenopus oocytes.

The recordings were made from outside-out patches (Fig. 9

A, top trace). In these patches, only a single channel was

active. The data were digitized at a sampling rate of 20 kHz

and low-pass filtered to 10 kHz. A total of 100,000 samples

were analyzed. Channel opening is indicated by upward

deflection of the signal.

The currents appeared to reside at three amplitude levels.

Fig. 9 B shows the distribution of the occupancy probability

of 30 conductance levels, which were uniformly placed

between the minimal (�12 pA) and the maximal (4 pA)

current amplitudes. The distribution exhibited three distinct

peaks, confirming the existence of a substate. The peaks

were located approximately at �7.5, �5, and 0 pA,

respectively. Having determined the number and the initial

values of conductance levels, the data were reidealized with

a nonaggregated three-state model. Fig. 9 A (middle trace)
shows the resulting idealization of the data above. Table 3

summarizes the estimated signal statistics.

To verify the idealization, the raw data were low-pass-

filtered and compared to the restored dwell-time sequence.

Fig. 9 A (bottom trace) shows the same data displayed on

the top trace but low-pass-filtered at 5 kHz. It is evident

that all long events that appeared in the filtered data were

successfully restored. Besides, a number of short events,

which were visually less obvious from the filtered trace, were

also identified. Fig. 9 C shows the all-point amplitude

histogram in superimposition with the theoretical distribu-

tions that were constructed from the estimated statistics. The

overall distribution was in good agreement with the experi-

mental histogram, another indicator suggesting the validity

of the idealization.

DISCUSSION

The segmental k-mean method has been explored for the

purpose of idealization of single-channel currents. The

algorithm relies on probabilistic modeling of data and seeks

idealization that has a maximal likelihood. The method has

many features that are desirable for single-channel analysis,

including its applicability to channels containing subcon-

ductance levels and/or state-dependent noises. In particular,

the method compares favorably to threshold crossing

techniques and allows for a higher level of noise. As such,

it extends the limit of the bandwidth at which data can be

analyzed and therefore permits extraction of fast kinetics.

The segmental k-means method is closely related to

another HMM technique, namely, the Baum-Welch algo-

rithm (Rabiner and Juang, 1986). The latter seeks a model to

maximize the probability of the observed samples given the

model. Mathematically, this is equivalent to summing up the

probability over all possible state sequences. The Baum-

Welch algorithm uses the forward-backward procedure to

evaluate likelihood and Baum’s reestimations to optimize

model parameters. Upon determination of the model, a most

likely state sequence can be restored using the Viterbi

algorithm. The Baum-Welch algorithm is superior to the

segmental k-means method as it is a full likelihood approach

and produces asymptotically unbiased and efficient estimates

of model parameters. The segmental k-means method does

not have these properties. But it has the advantage of being

computationally efficient. This is particularly true when the

Viterbi algorithm is implemented with only addition

operations. Furthermore, despite its theoretical inferiority,

the method produces adequate idealizations, which are

TABLE 2 Results of idealizations obtained with different

models for the data simulated using Scheme II

Scheme

II (fixed*)

Scheme

II (freey) Scheme III Scheme I Scheme IV

ic 0 �0.02 �0.02 �0.02 �0.02

io 1 0.98 0.98 0.98 0.98

sc 0.25 0.25 0.25 0.25 0.25

so 0.25 0.25 0.25 0.25 0.25

tc 3.61 3.70 3.68 3.98 3.69

to 3.33 3.42 3.40 3.68 3.41

Nevent 14,424 14,054 14,110 13,066 14,076

*Parameters of the model were held at their true values.
yParameters of the model were reestimated during idealization.

TABLE 1 Parameter values for simulation with Scheme II

k12 34 k35 3950

k21 180 k53 322

k23 285 IC 0

k32 600 IO 1

k24 120 sC 0.25

k42 2860 sO 0.25
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comparable to those obtained with the Baum-Welch

algorithm. Therefore, the method can be considered as

a good tradeoff between theoretical optimality and practical

applicability yet without compromising accuracy of ideali-

zation.

The weakness of the segmental k-means method is

primarily on its estimation of kinetic parameters of the

channel. The method is more sensitive to amplitude variables

than to transition probabilities. Examples suggested that the

estimates of amplitudes and noise variances are in good

agreement with their true values to a good precision. The

estimates on kinetic rates, however, tend to be biased when

the model has aggregated states. In these cases, the program

sometimes simply sets the transition probabilities between

aggregated states to zero. This kinetic insensitivity is

believed to be a result of the simplistic use of the probability

of a single state sequence as the likelihood. The sequence,

although most likely, contains only a limited amount of

information on the transitions of the channel. In contrast, the

Baum-Welch algorithm makes use of both the most likely

and less likely sequences, which, collectively, provide a large

context of kinetic information. Therefore, a reliable estima-

tion of kinetics requires use of the ultimate full likelihood

approach. The estimation of the transitional probabilities

resulting from the segmental k-means idealization may be

biased.

The relative insensitivity of the segmental k-means

method to channel kinetics, on the other hand, provides

ease for selection of models. In many cases, a nonaggregated

model in which each state corresponds to a conductance

level, proved adequate. For binary channels, a simple two-

state model may suffice. There are cases where an aggregated

model is necessary. This is particularly true when the

channel contains dwell-times that are orders-of-magnitude

different in durations. Under such conditions, introducing

a new state can greatly improve the likelihood as well as

idealization, particularly the detection of the fast transitions.

In practice, an adequate model can be obtained retrospec-

tively. The data can be first idealized with a relatively simple

model. Then the resultant dwell-time distributions can be

explored for additional components. Once the number of

components is determined, a fully connected and uncoupled

model can be used for full idealization. Such a model assures

adequate complexity as it has as many parameters as the two-

dimensional dwell-time distributions, which are known to

contain all the information in the data (Fredkin et al., 1985).

Subsequent analysis of idealized dwell-times requires

knowledge of dead time, the minimal duration of the events

that can be reliably detected, to correct for effects of missed

events. With half-amplitude threshold detection, the dead
FIGURE 8 Effect of low-pass filtering. The idealization exhibits a plateau

over a wide range of filtering frequency (25–5 kHz) with errors\10% on

both the number of events and the mean dwell-time durations. In the absence

of noise, the errors increased monotonically (A) with filtering. In the

presence of noise, the dependence became biphasic (B), indicating the

existence of a filtering frequency for the best idealization performance. The

effect of low-pass filtering on idealization by the algorithm is more complex

than on the level of noise. The amount of apparent noise decreased more

rapidly upon filtering than the idealization errors (C).
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time is primarily determined by the rise time of the filter.

When a Gaussian filter is used, the rise time can be explicitly

given as a function of its 3dB cutoff frequency, tr¼ 0.3321/fc
(Colquhoun and Sigworth, 1995). The segmental k-means

method, on the other hand, does not have such a simple rule.

An event is detected not only based on its amplitude but also

on its kinetics. A short-lived event may be detected even

though its amplitude is under the half-amplitude threshold.

This is especially true when the noise is high. Nevertheless,

examples suggest that the events that go undetected in the

segmental k-mean idealization are mostly the brief ones with

duration#2Dt. The limit appears to hold for a large range of

data with different kinetics and noise levels. Furthermore, the

number of missed events appears to decrease exponentially

with duration. Therefore, for the dwell-times resulting from

the segmental k-means method, the dead time is relatively

fixed, intrinsically limited by the method.

The present implementation of the algorithm assumes

unfiltered data, to best match the first-order condition of the

standard HMM. Despite the assumption, the method is

shown to work well with filtered data at a cutoff frequency

up to 5 kHz. Over this range, the performance of the

idealization remains relatively invariant. Since the method

allows for a high level of noise, it generally requires less

filtering than this limit for typical patch-clamp data, and

therefore is devoid of filtering problems as encountered by

FIGURE 9 Restoration of single channel currents of a NMDA receptor. (A) A stretch of raw data recorded at 20 kHz and low-pass-filtered to 10 kHz. The

recording totaled 100,000 samples (5 s), and only the first 10,000 samples (0.5 s) were shown. The trace below it is the dwell-time sequence produced by the

algorithm. The idealization is validated by comparison with the raw data heavily filtered at 1 kHz (bottom trace). (B) The occupancy probability of a set of 30

conductance levels uniformly distributed between the minimal and maximal current amplitudes of the observed data. The distribution reveals three peaks

(�7.5,�5, and 0 pA) corresponding to the conductance levels of the channel. (C) The amplitude histogram ( jagged contour) superimposed with the theoretical

distribution (smooth contour) as constructed from the estimated current amplitudes, noise variances, and occupancy probabilities. The dotted curves are the

density for each of the three conductance levels.
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other methods such as threshold crossing. For moderately

filtered data, it is possible to restore its Nyquist bandwidth

with an appropriately designed inverse filter. But for heavily

filtered data, the correction is limited. Therefore, it is

important to acquire data at a high bandwidth and perform

low-pass-filtering offline.

Theoretically, the method can be extended to take

account of filtering explicitly. A filtered Markov process

exhibits a skewed Gaussian distribution, known as the

b-distribution. Therefore, some extent of filtering effect can

be taken into account by substituting Gaussian distributions

with b-functions. In the paradigm of Markov modeling, it is

possible to extend the model to cope with the correlations

introduced by filtering. A common practice is to define

a meta-state that includes both the current state of the

channel and its precious histories (Qin et al., 2000b;

Venkataramanan and Sigworth, 2002). If the filter has

a response extending over a length of p samples, the meta-

states consist of p-tuples as

st ¼ ðst; st�1; . . . ; st�p11Þt:

The distribution of the observations becomes

bIðytÞ ¼
1ffiffiffiffiffiffi

2p
p

si1

exp � 1

2s
2

i1

yt � +
p

j¼1

hj�1sij

 !2" #
; (13)

where I ¼ (i1,i2,. . .,ip)
t specifies a meta-state and {hi,1 #

i # p} is the impulse response of the filter. The idealization

can be done by applying the segmental k-means method

to the meta-state Markov process. The reestimations of the

current amplitudes and noise variances become

si ¼
1

nðiÞ +
T

t¼1

stð1Þ¼si

1

h0

yt � +
p

j¼2

hj�1Xt jð Þ
" #

; (14)

s
2

i ¼
1

nðiÞ +
T

t¼1

Xtð1Þ¼si

yt � +
p

j¼1

hj�1Xt jð Þ
" #2

; (15)

where n(i) is the number of occurrences of the meta-states in

which state i is the first component, and n(i,j) is the number

of times to have two consecutive meta-states whose first

components are state i and j, respectively. The disadvantage
of such high-order modeling is the greatly increased

computational load, which is exponential on the length of

the filter. Given the insensitivity of the Viterbi detection to

the kinetics of the channel, it is unknown how much

improvement can be gained in practice with a high-order

Markov process.

Although the method has been described in the context of

ion channel modeling, it is applicable to other types of

single-molecule data as well. Common to all these data is

noise contaminating a signal that involves discrete jumps

between states. These are essentially the same characteristics

of single-channel currents. Therefore, it is anticipated that

the method can be used to restore the discrete jumps in these

applications. The benefits that have been observed in single-

channel analysis, such as the allowance for sublevels and

high bandwidths, are expected in those applications as well.
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