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ABSTRACT Extracellular local field potentials are usually modeled as arising from a set of current sources embedded in
a homogeneous extracellular medium. Although this formalism can successfully model several properties of extracellular local
field potentials, it does not account for their frequency-dependent attenuation with distance, a property essential to correctly
model extracellular spikes. Here we derive expressions for the extracellular potential that include this frequency-dependent
attenuation. We first show that, if the extracellular conductivity is nonhomogeneous, there is induction of nonhomogeneous
charge densities that may result in a low-pass filter. We next derive a simplified model consisting of a punctual (or spherical)
current source with spherically symmetric conductivity/permittivity gradients around the source. We analyze the effect of
different radial profiles of conductivity and permittivity on the frequency-filtering behavior of this model. We show that this simple
model generally displays low-pass filtering behavior, in which fast electrical events (such as Na1-mediated action potentials)
attenuate very steeply with distance, whereas slower (K1-mediated) events propagate over larger distances in extracellular
space, in qualitative agreement with experimental observations. This simple model can be used to obtain frequency-dependent
extracellular field potentials without taking into account explicitly the complex folding of extracellular space.

INTRODUCTION

Extracellular potentials, such as local field potentials (LFPs)

or the electroencephalogram (EEG), are routinely measured

in electrophysiological experiments. The fact that action

potentials have a limited participation to the genesis of the

EEG or LFPs was noted from early studies. Bremer (1938,

1949) proposed that the EEG is generated by nonpropagating

potentials, based on the mismatch of time course between

EEG waves and action potentials. Eccles (1951) proposed

that LFP and EEG activities are generated by summated

postsynaptic potentials arising from the synchronized ex-

citation of cortical neurons. Intracellular recordings from

cortical neurons later demonstrated a close correspondence

between EEG/LFP activity and synaptic potentials (Klee

et al., 1965; Creutzfeldt et al., 1966a,b). The current view is

that EEG and LFPs are generated by synchronized synaptic

currents arising on cortical neurons, possibly through the

formation of dipoles (Nunez, 1981; Niedermeyer and Lopes

da Silva, 1998).

The fact that action potentials do not participate to EEG-

related activities indicate strong frequency-filtering proper-

ties of cortical tissue. High frequencies ([�100 Hz), such as

that produced by action potentials, are subject to a severe

attenuation, and therefore are visible only for electrodes im-

mediately adjacent to the recorded cell. On the other hand,

low-frequency events, such as synaptic potentials, attenuate

less with distance. These events can therefore propagate over

large distances in extracellular space and be recordable as far

as on the surface of the scalp, where they can participate in

the genesis of the EEG. This frequency-dependent behavior

is also seen routinely in extracellular unit recordings: the

amplitude of extracellularly recorded spikes is very sensitive

to the position of the electrode, but slow events show much

less sensitivity to the position. In other words, an extracellu-

lar electrode records slow events that originate from a large

number of neighboring neurons, whereas the action potentials

are recorded only for the cell(s) immediately adjacent to the

electrode. This fundamental property allows us to resolve

single units from extracellular recordings.

However, little is known about the physical basis of the

frequency-dependent attenuation of extracellular potentials

in cortex. By contrast to intracellular events, for which bio-

physical mechanisms have been remarkably well charac-

terized during the last 50 years (reviewed in Koch (1999)),

comparatively little has been done to investigate the bio-

physical mechanisms underlying the genesis of extracellular

field potentials (see review by Nunez (1981)). The reason is

that LFPs result from complex interactions involving many

factors, such as the spatial distribution of current sources, the

spatial distribution of positive and negative electric charges

(forming dipoles), their time evolution (dynamics), as well as

the conductive and permittivity properties of the extracellular

medium. One of the simplest and widely used model of LFP

activity considers current sources embedded in a homoge-

neous extracellular medium (Nunez, 1981; Koch and Segev,

1998). Although this formalism has been successful in many

instances (Rall and Shepherd, 1968; Klee and Rall, 1977;

Protopapas et al., 1998; Destexhe, 1998), it does not account

for the frequency-dependent attenuation and therefore is

inadequate for modeling extracellular field potentials in-

cluding spike activity.
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In this article, we would like to investigate possible

physical grounds for the frequency-filtering properties of

LFPs. We start from first principles (Maxwell equations) and

consider different conditions of current sources and extra-

cellular media. We delineate the cases leading to frequency-

filtering properties consistent with physiological data. We

show that the assumption of a resistive homogeneous ex-

tracellular medium cannot account for the frequency-

dependent attenuation. It is necessary to take into account

the inhomogeneous structure of the extracellular medium (in

both permittivity and conductivity) to account for frequency-

dependent attenuation. We next analyze a simplified repre-

sentation of current sources in nonhomogeneous media, and

provide a simplified model that could be applied to simulate

extracellular field potentials without using complex repre-

sentations of extracellular space. We terminate by showing

a concrete example of the genesis of extracellular LFPs from

a conductance-based spiking neuron model.

MATERIAL AND METHODS

We will first develop a general formalism to express the temporal variations

of extracellular potential, as well as a simple model in which most of the

calculations can be done analytically (see ‘‘General theory’’ section; see also

Appendices 1 and 2 for details). We will next explore this simplified model

numerically to illustrate its frequency-filtering behavior (‘‘Numerical

simulations’’ section), in which we have performed two computations. i),

Calculate the impedance: the impedance is given by an integral, which was

evaluated numerically by standard numerical integration routines; and ii),

convert time-dependent functions into frequency spectra. These conversions

were done via Fourier transformation (as well as its reverse transformation),

which were carried out in C using standard numerical routines (Press et al.,

1986).

To test this formalism, we also considered a simple biophysical model of

a spiking neuron containing voltage-dependent and synaptic conductances

(last part of ‘‘Numerical simulations’’ section). A single-compartment

neuron was constructed and included conductance-based models of voltage-

dependent conductances and synaptic conductances. This model was

described by the following membrane equation:

Cm

dV

dt
¼ �gLðV � ELÞ � gNaðV � ENaÞ � gKdðV � EKÞ

� gMðV � EKÞ � geðV � EeÞ; (1)

where Cm ¼ 1 mF/cm2 is the specific membrane capacitance, gL ¼ 4.52 3

10�5 S/cm2 and EL ¼ �70 mV are the leak conductance and reversal

potential. gNa ¼ 0:05 S=cm2 and gKd ¼ 0:01 S=cm2 are the voltage-

dependent Na1 and K1 conductances responsible for action potentials and

were described by a modified version of the Hodgkin and Huxley (1952)

model. gM ¼ 53 10�4 S=cm2 is a slow voltage-dependent K1 conductance

responsible for spike-frequency adaptation. ge ¼ 0:4mS is a fast glutama-

tergic (excitatory) synaptic conductance. The voltage-dependent conduc-

tances were described by conventional Hodgkin-Huxley type models

adapted for modeling neocortical neurons, and the synaptic conductance

was described by a first-order kinetic model of neurotransmitter binding to

postsynaptic receptors. These models and their kinetic parameters were

described in detail in a previous publication (Destexhe and Paré, 1999). All

numerical simulations were performed using the NEURON simulation

environment (Hines and Carnevale, 1997).

GENERAL THEORY

In this section, we outline the main features of the model

starting from first principles (Maxwell equations). We will

consider a number of different special cases and derive

a simplified model with radial (spherical) symmetry. In the

‘‘Numerical simulations’’ section, we will investigate nu-

merically the behavior of this simplified model.

InMaxwell’s theory, the electric properties of a conductive

medium are determined by two parameters, conductivity s

and permittivity e. Although conductivity quantifies the local
relation between the electric field and the current, permit-

tivity characterizes the response of the system in terms of

separation of opposite charges (polarization) in the presence

of an electric field. Maxwell’s theory of electromagnetism

allows one to compute electric and magnetic fields or po-

tentials, for a given distribution of charges and electric cur-

rents. Because charges move very slowly in biological media,

the effects of magnetic fields are very small compared to that

of the electric field and will be neglected here.

One of Maxwell’s equations is Gauss’ law:

= � ðeEÞ ¼ r: (2)

Here E denotes the electric field, D ¼ eE is the called

displacement, and r is the charge density of the extracellular

medium, also allowed to vary slowly in time.

The continuity equation relates the current density j to the
charge density r:

= � j1 @r

@t
¼ 0; (3)

which states a balance between the electric flux into some

volume and the change of the total charge in this volume. In

other words, no charge will get lost.

Finally, combining Ohm’s law

j ¼ sE; (4)

and Eq. 3 we have for scalar conductivity

= � ðsEÞ1 @r

@t
¼ 0: (5)

In the following, we will assume that electric currents are

distributed on the surface of the membrane (ionic currents),

and that these currents are allowed to vary in time. Also, we

have E ¼ �=V because the magnetic field is negligible.

Below, we successively consider different cases of

increasing complexity, starting with a homogeneous extra-

cellular medium, then going over to nonhomogeneous media.

Homogeneous extracellular media

Consider a membrane embedded in a homogeneous extra-

cellular medium, with conductivity s and permittivity e
being held constant in space and time. As shown in

Appendix 3, using the assumption s ¼ s0 ¼ const., e ¼
e0 ¼ const., we get for each spectral component
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ð=VvÞ � ð
=ðs1 iveÞ
ðs1 iveÞ Þ1DVv ¼ DVv ¼ 0: (6)

Hence we find

DVv ¼ � rv

e
¼ 0: (7)

Using the inverse Fourier transform, this yields

DVðx; tÞ ¼ � r

e
¼ 0: (8)

One observes that the charge density r vanishes at the

exterior of the sources. The solution depends on the geom-

etry considered, its symmetries and boundary conditions.

Moreover, the field is necessarily independent of frequency

because the same equation is valid for all frequencies.

Therefore, homogeneous media cannot display frequency-de-

pendent properties.

Nonhomogeneous extracellular media

To account for frequency-dependent attenuation, we need

to consider more realistic cases. A possible source of

frequency-dependent attenuation is the presence of inhomo-

geneities in the conductivity and permittivity of the extra-

cellular medium. We consider here different cases of spatial

inhomogeneities of conductivity.

Stationary currents in spherically symmetric
nonhomogeneous media

Before investigating the general case, let us first consider

the case of a static spherical current source embedded in

a medium where the conductivity s conserves spherical

symmetry, but varies as a function of distance r (as above we
assume that s does not depend on time). We also continue to

assume that permittivity e is homogeneous. If the total

current flowing through the sphere of radius R is denoted by

I, then the radial dependence of the current density is given

by

jðrÞ ¼ I

4pr
2 er: (9)

In this case, the charge density r is nonzero and is given

by

r ¼ � e
s
j � = logs: (10)

Then Ohm’s law implies for the spherically symmetric

electric field

EðrÞ ¼ I

4pr
2
sðrÞ

er: (11)

The spherically symmetric electric potential is obtained by

integrating the electric field, giving

V ¼ �
ðr

‘

E � ds ¼
ðr

‘

Erðr9Þdr9 ¼
ð‘

r

I

4pr9
2
sðr9Þ

dr9: (12)

Details of the calculation can be found in Appendix 1. If

a constant conductivity is taken, this equation leads to the

following expression:

VðrÞ ¼ I

4psr
; (13)

which is widely used to model extracellular field potentials

(Nunez, 1981; Koch and Segev, 1998).

Equation 12 shows that the potential may decrease or even

increase, depending on the spatial variations of s. An

important consequence is that such net charge creates its own

electric field (so-called secondary field), which will be

analyzed in more detail below. What is the physical origin of

this nonzero net charge? The current density behaves like J }
1/r2, (Eq. 9), and the electric field like E } 1/(s(r)r2), (Eq.
11). Consequently, there will be accumulations of charges in

some regions of lower conductivity, similar to traffic jams.

Consider a more realistic case in which the conductivity of

the extracellular space is constant on average, but displays

spatial fluctuations around this average. This could corre-

spond for example to different processes and obstacles in the

extracellular medium. In this case, the electric field, going

like 1/r2on average, fluctuates locally. This creates local

areas of positive and negative charge, i.e., electric dipoles.

Those dipoles also create a secondary electric field.

However, to account for frequency dependence, time-

varying current sources must necessarily be considered, in

which case the situation is more complex. We will show

below that in this case, the frequency response will be

determined by the ratio s/e.

Time-varying currents in nonhomogeneous media

Let us now consider the general case where both e and s are

nonhomogeneous in space, but constant in time. We assume

that the current source is allowed to vary in time. The

continuity equation implies that the charge density is also

time dependent. Ohm’s law implies that the electric field has

a time dependence as well, and so will also the extracellular

potential. Due to the inhomogeneity of e, the extracellular

potential does no longer satisfy Poisson’s equation. To study

the frequency dependence of the extracellular potential, we

perform a Fourier transform of the electric field, the

potential, and likewise of the charge density r.

rv, the component of frequency v of the temporal Fourier

transform of the charge density r, satisfies

@

@t
rv ¼ ivrv: (14)

This equation expresses the differential law of charge

conservation for a given Fourier component. Now we con-

sider the Gauss’ law (Eq. 2), the law of charge conservation
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in differential form (Eq. 5), and carry out the Fourier

transform with respect to time. Taking into account Eq. 14

yields

DVv¼�ð=VvÞ � ð=ðs1 iveÞÞ
s1 ive

¼�ð=VvÞ � ð=logðs1 iveÞÞ:

(15)

For details, see Appendix 2.

This equation is general and applies to any particular

symmetries (under the assumption of scalar conductivity).

We consider below a series of special cases, as well as spe-

cial symmetries.

Special cases

As a first special case, consider Eq. 15 when permittivity is

constant. Then Ohm’s law (Eq. 4) implies

DVv ¼ � rv

e
: (16)

Constant permittivity also implies =ðs1iveÞ ¼ =ðsÞ:
Hence Eq. 15 takes the form

DVv ¼ �=Vv � =s
s1 ive

¼ � rv

e
: (17)

We therefore observe the occurrence of a (complex) phase

difference between the induced charge density r/e and the

current density j (recall: �=Vv ¼ Ev ¼ jv/s). This effect

depends on the frequency v of the Fourier component. Such

phenomenon is well known from electric circuits of the

resistance-capacitance (RC) type, where in general a phase

difference between potential and current is observed. In

particular, if the potential vanishes at some time t, the electric
charge density will not immediately go to zero.

Equation 17 shows that for high enough frequency the

induced charge density goes to zero. On the other hand, for

low-frequency phenomena, the charge density will carry out

large fluctuations and will be sensitive to spatial fluctuations

of conductivity. This has important consequences for in-

terpreting LFP activity (see ‘‘Frequency-filtering properties

of nonhomogeneous media’’ section).

As another special case, consider Eq. 15 when the

conductivity is constant. The law of charge conservation in

differential form Eq. 5 then becomes

DVv ¼ 1

s

@rv

@t
: (18)

Constant conductivity also implies =ðs1 iveÞ ¼ =ðiveÞ:
Hence Eq. 15 takes the form

DVv ¼ �=Vv � =ive
s1 ive

¼ 1

s

@rv

@t
¼ � 1

s
= � j: (19)

This means in the limit of low frequencies that there are no

current sinks or sources.

A third noteworthy special case is when both permittivity

and conductivity are nonhomogeneous, but have a fixed ratio:

e
s
¼ const: (20)

Under those circumstances one obtains

DVv ¼ �ð=VvÞ � ð=sÞ
s

¼ �ð=VvÞ � ð=logðsÞÞ: (21)

All frequency dependence cancels out; the potential

becomes frequency independent. This result shows that

variations of conductivity are not sufficient to determine

frequency-filtering properties, but the physically meaningful

quantity is the ratio e/s, which must vary to yield frequency-

dependent properties, as we will see below.

Frequency-filtering properties of nonhomogeneous media

We now analyze the frequency-filtering properties of Eq. 15.

Consider this equation in two limit cases: i), v � s/e (low
frequency limit); in this case, log(s 1 ive) � log(s), the

solution becomes independent of the permittivity e and is

determined only by the conductivity s and ii), v� s/e (high
frequency limit); in this case, log(s 1 ive) � log(ive), and
permittivity only determines the solution. These two cases

will be considered in more detail below. The critical

frequency around which this transition will occur depends

on the relative values of s and e, and one can define the

following critical frequency fcr

fcr ¼ 2pvcr; vcr ¼
s

e
: (22)

As an example, consider the value of average resistivity

rres (inverse of conductivity s) measured in rabbit cerebral

cortex (Ranck, 1963), giving rres ¼ 3 Vm. Taking the

permittivity of salt water (e¼ 73 10�10 F/m), gives a critical

frequency of fcr of ;1010 Hz. Thus, this analysis shows that

the behavior will be similar for low and high frequency

limits. However, if one evaluates 2ps/e for a resting

membrane (closed ion channels; r ’ 109 Vm and e ’
10�10 F=m), one finds for the critical frequency a value in the

range between 0 and 100 Hz. The phenomenon of induced

charges will be likely to play a role in the frequency range

of synaptic inputs in cerebral cortex (0–40 Hz). On the other

hand, higher frequencies ([100 Hz)—such as action po-

tentials—are likely to cause negligible variations in charge

density.

Further, we can compare Eq. 15 to cases where there is no

frequency dependence (i.e., Laplace Eq. 8). At the limit

of high frequencies, the left term of Eq. 15 vanishes and

this equation becomes equivalent to Eq. 8, showing that for

high frequencies, one recovers the same behavior as for

a homogeneous medium. To have a low-pass filter, similar to

what is observed from extracellular recordings, one must

have a situation in which the attenuation of the potential at
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low frequencies must be less than for homogeneous media.

Inspection of the left term of Eq. 15 shows that the

attenuation can be either less or more pronounced, resulting

in low- or high-pass filters. The type of filter will depend on

the behavior of the gradients of conductivity and permit-

tivity. This behavior will be analyzed numerically in more

detail later (see ‘‘Numerical simulations’’ section).

Time-varying currents in spherically symmetric
nonhomogeneous media

To calculate the extracellular potential V generated by time-

varying currents in nonhomogeneous media, Eq. 15 must be

integrated by incorporating details about the particular

geometry of current sources and extracellular properties. A

general method for solving this problem is, e.g., finite-

element analysis, which allows us to explicitly incorporate

the complex shape and composition of extracellular space

around neurons. However, this approach requires us to

integrate complex morphological data and appropriate

simulation tools. We defer this to a future study. To have

a model of LFPs applicable to standard neuron models, we

follow here a simpler approach, based on the following

simplification: we consider that the variations of conductiv-

ity and permittivity have a radial symmetry in the vicinity of

the current sources. This simplification allows us to obtain

simpler expressions of the extracellular potential, still

displaying frequency dependence, and apply this formalism

using standard simulation tools.

Consider Eq. 15 for the case of a spherically symmetric

system. Then the potential obeys

d
2
Vv

dr
2 1

2

r

dVv

dr
1

1

ðs1 iveÞ
dðs1 iveÞ

dr

dVv

dr
¼ 0: (23)

Integrating this equation gives the following relation

between two points r1 and r2 in the extracellular space,

r
2

1

dVv

dr
ðr1Þ ½sðr1Þ1 iveðr1Þ� ¼ r

2

2

dVv

dr
ðr2Þ ½sðr2Þ1 iveðr2Þ�:

(24)

This can be verified by differentiating this equation with

respect to r, which then yields Eq. 23. Integrating Eq. 24

once more yields (assuming the extracellular potential

vanishes at large distances, Vv(‘) ¼ 0)

Vvðr1Þ ¼
Iv

4psðRÞ

ð‘

r1

dr9
1

r9
2

sðRÞ1 iv eðRÞ
sðr9Þ1 iv eðr9Þ : (25)

This will be the main equation forming the basis of our

simplified model of LFP. In the numerical part (‘‘Numerical

simulations’’ section), we will solve this equation for

different spatial profiles of s and e. To this end, it is useful

to define the impedance:

Zvðr1Þ ¼
1

4psðRÞ

ð‘

r1

dr9
1

r9
2

sðRÞ1 iv eðRÞ
sðr9Þ1 iv eðr9Þ : (26)

Then Eq. 25 becomes

Vvðr1Þ ¼ Zvðr1ÞIv: (27)

The impedance is therefore the ‘‘filter’’ applied to the

v-frequency component of the current source, to yield the

corresponding frequency component of the extracellular

potential. In the next section, we will examine the frequency-

filtering properties of different extracellular media by cal-

culating numerically the impedance for different cases of

spatial inhomogeneities of conductivity and permittivity.

NUMERICAL SIMULATIONS

In this section, we use the expressions of the extracellular

potential obtained above. In particular we analyze the

behavior of the extracellular potential generated by a current

source in a spherically symmetric nonhomogeneous medium

(Eq. 25), and its associated impedance (Eq. 26). We

investigated the frequency-filtering properties obtained for

different cases of increasing complexity of the radial profile

of s and e. The goal is to determine the conditions of spatial

variations of conductivity and permittivity for which the

frequency-filtering properties are consistent with physio-

logical data. We terminate by an application of this model

to calculating the LFP generated by a conductance-based

spiking neuron model.

Parameters

Precise experimental data on the variations of permittivity e
and conductivity s in the extracellular medium have not

been measured so far. However, averaged values of these

parameters are available from macroscopic measurements. A

value for s, averaged over large extracellular distances, sav,

was measured by Ranck (1963) and was between 0.28 S/m

and 0.43 S/m, for 5 Hz and 5 kHz, respectively. The

macroscopic frequency dependence of conductivity seems

therefore relatively weak. However, the situation is different

microscopically. As reviewed in Nunez (1981), the conduc-

tivity of the cerebro-spinal fluid (CSF) is 1.56 S/m whereas

the typical conductivity of membranes is from 10�9 to 3.53

10�9 S/m. This value was obtained from the resting (leak)

membrane conductance of cortical neurons, typically around

4.5 3 10�5 S/cm2, multiplied by the thickness of the

membrane (2–8 nm; Peters et al., 1991). Other types of

membranes, such as myelinated or unmyelinated fibers, and

glial cells, have different membrane conductances, which are

in the range of 0.1–10�6 S/cm2 (Hille, 2001). At microscopic

scales, there is therefore ;9 orders of magnitude variations

of conductivity.

Permittivity variations are not so dramatic. Fluids have

higher permittivity, for example it is about 73 10�10 F/m for
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sea water. Membranes have a permittivity of from 10�11 to 8

3 10�11 F/m. The latter value was derived from the specific

capacitance of membranes, C ¼ 1 mF/cm2 (Johnston and

Wu, 1997), and assuming a membrane thickness of 2–8 nm

(Peters et al., 1991). Because those variations are small

compared to the variations of conductivity, it is a good ap-

proximation to consider the permittivity as a constant. In the

following, we will use the reference value of e ¼ 10�10 F/m.

In the following we will use normalized values for

conductivity s(r)/s(R) and permittivity e(r)/s(R). Because
the membrane is always surrounded by extracellular fluid, the

conductivity at the source is s(R) ¼ 1.56 S/m. Based on the

values estimated above, we use in simulations the values for

the normalized conductivity s(r)/s(R) included between

large values (equal to unity) and a low value of 2 3 10�9.

Similarly, the normalized (constant) value of permittivity will

be e(r)/s(R) ¼ 6 3 10�11 s. We have verified that no quali-

tative change results from variations of these parameters.

Frequency-filtering properties of spherically
symmetric media

We calculated numerically the impedance (Eq. 26) for

different cases of spatial variations of conductivity and

permittivity. In all cases we assumed a current source with

spherical geometry, characterized by radius R, and that s and

e vary according to a radial (spherical) symmetry around this

current source (see scheme in Fig. 1 A). For each case, we

represented the normalized impedance

Z̃vðrÞ ¼ ZvðrÞ=ZvðRÞ; (28)

which allows better comparison between the different cases.

Because the value of impedance does not depend on the

absolute value of permittivity and conductivity (dividing s

and e by a constant factor does not change Zv(r) in Eq. 26),

we used the normalized conductivity s(r)/s(R) and the

normalized permittivity e(r)/s(R) defined above. It is also

convenient to represent all distances in units of R, although
we also considered absolute values of distances (see below).

We first investigated a simple case of smooth variations of

those parameters, to illustrate the different types of frequency

filtering that can be obtained in this model. The profiles of

conductivity and permittivity are shown in Fig. 1, B and C.
These curves tend to be the same asymptotic value for large

distances. The corresponding impedance is shown as

a function of frequency f in Fig. 1, D–F (see Appendix 3

for details of the method). When the ratio s/e is kept constant
(Fig. 1, D–F, short-dashed line), there is no frequency

dependence as analyzed above in the ‘‘Special cases’’

section. In the case of a decreasing conductivity with

distance combined with constant permittivity, one has a high-

pass filter (Fig. 1, D–F, long-dashed line). By contrast, a low-

FIGURE 1 Radial variations of conductivity and permittivity can induce frequency-filtering properties. (A) Scheme of the current source in radial symmetry.

The current source is assumed to be spherical (solid line; radius R). The conductivity and permittivity vary in radial symmetry according to the distance r from
the center of the source. (B) Conductivity s versus radial distance r. Two cases are shown: (1) sðrÞ=sðRÞ ¼ 11

ffiffiffiffiffiffiffiffiffi
r0=r

p
and (2) sðrÞ=sðRÞ ¼ 1�

ffiffiffiffiffiffiffiffiffi
r0=r

p
;

where r0 ¼ 0.2025 R (R ¼ 1 here). (C) Permittivity e versus radial distance r. The two curves shown are: (3) e(r)/s(R) ¼ 0.01 and (4)

eðrÞ=sðRÞ ¼ 0:01 ½1�
ffiffiffiffiffiffiffiffiffi
r0=r

p
�: (D–F) Real part (D), imaginary part (E), and norm (F) of the impedance zvðr ¼ 5RÞ versus frequency f. Combining the profiles

(1) and (3) in B and C leads to a high-pass filter (long-dashed line), whereas (213) gives low-pass characteristics (solid line). The combination (214) is such

that sðrÞ=eðrÞ ¼ const:; in which case there is no frequency dependence (short-dashed line).
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pass filter is observed if an increasing conductivity with

distance is combined with a constant permittivity (Fig. 1, D–

F, solid line). Thus, there is a clear frequency-dependent

behavior when s and/or e vary as function of distance r, if
the ratio s/e is not constant. This also shows that low- and

high-pass filters are both possible, depending on the exact

form of the function s(r) and e(r). The impedance can also

have a nonzero imaginary part, which means that beyond

resistivity, the medium also has capacitive properties. In this

case, there will be a phase difference between the potential

and the current.

We next considered a case characterized by a localized

drop of conductivity (Fig. 2 A) while permittivity was kept

constant (Fig. 2 B). The resulting impedance measured at

different distances from the source is shown in Fig. 2, C–E,
as a function of frequency f. In this case, for distances around
the conductivity drop, there is a moderate frequency

dependence with low-pass characteristics (Fig. 2, C–E,
short-dashed and long-dashed lines). However, for larger

distances, the imaginary part is zero and there is no

frequency dependence (Fig. 2, C–E, solid lines). This is

explained by the fact that for large distances s(r)¼ s(R) and
e(r) ¼ e(R). This behavior can also be seen in the attenuation
of the different frequency components illustrated in Fig. 2 F.
There is a different attenuation only for distances around the

region where conductivity varies.

Because the extracellular space is composed of alternating

fluids and membranes (Peters et al., 1991), which have high

and low conductivity, respectively, we have next considered

the situation where conductivity fluctuates periodically with

distance (Fig. 3). Considering a cosine function of con-

ductivity (Fig. 3 A) with constant permittivity (Fig. 3 B)
leads to a rather strong frequency-dependent attenuation (Fig.

3, C–E) with low-pass characteristics. There was a strong

attenuation with distance for all frequencies (Fig. 3 F). Very
similar results were obtained with other periodic functions

(for example by replacing cos by sin in the function used in

Fig. 3 A), different oscillation periods, or even for damped

oscillations of conductivity (not shown).

It could be argued that although fluids and membranes

alternate in extracellular space, there is an efficient diffusion

of ions only in the extracellular fluid around the membrane.

For larger distances, diffusion becomes increasingly difficult

because of the increased probability of meeting obstacles. In

this case, conductivity would be highest around the source

and progressively decrease to an ‘‘average’’ conductivity

level for larger distances. This situation is illustrated in Fig.

4. We have considered that the conductivity is highest at the

source, then decreases exponentially with distance with

a space constant l (Fig. 4 A; note that in this case, real

distances were used). Permittivity was constant (Fig. 4 B).
The resulting impedance displayed pronounced frequency-

filtering properties with low-pass characteristics (Fig. 4,

C–E). In particular, the attenuation with distance revealed

FIGURE 2 Frequency-filtering properties obtained by a localized drop in conductivity. (A) Profile of conductivity versus distance. The conductivity was

described by sðrÞ=sðRÞ ¼ 1� 0:2ðr � 6RÞ=R for 6R\r\11R; sðrÞ=sðRÞ ¼ �110:2ðr � 6RÞ=R for 11R\r\16R; and sðrÞ=sðRÞ ¼ 1 otherwise. (B)

Profile of permittivity. eðrÞ=sðRÞ was constant and equal to 0.01. (C–E) Real part (C), imaginary part (D), and norm (E) of the impedance as a function of

frequency f. ZvðrÞ is shown for different distances r away from the source. (F) Attenuation of the impedance norm jZwðrÞj with distance. The different curves
correspond to three different frequencies.
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strong differences between low and high frequencies of the

spectrum (Fig. 4 F). Similar results can be obtained with

other decreasing functions of connectivity (not shown).

The above examples show that there can be a strong

frequency-filtering behavior, with low-pass characteristics as

observed in experiments. However, although these examples

show a more effective filtering for high frequencies, it still

remains to be shown that the high frequencies attenuate more

steeply with distance compared to low frequencies. To this

end, we define the quantity:

Q100 ¼ Z100ðrÞ=Z1ðrÞ; (29)

where Z1 and Z100 are the impedances computed at 1 Hz and

100 Hz, respectively. This ratio quantifies the differential

filtering of fast and slow frequencies as a function of distance

r. Fig. 5 A displays the Q100 values obtained for some of the

examples considered above. In the case of a localized drop of

conductivity (Fig. 5 A, Drop), there was an effect of distance
for r\16R, then the Q100 remained equal to unity for further

distances. This behavior is in agreement with the impedance

shown in Fig. 2, in which case there was no frequency

filtering for r[16R. For oscillatory conductivities (Fig. 5 A,
Osc), the Q100 was always\1, consistent with the low-pass

frequency-filtering behavior observed in Fig. 3. However,

the Q100 oscillated around a value of 0.6 and did not further

decrease with distance. Thus, in this case, although there was

a clear low-pass filtering behavior, all frequencies still

contribute by the same relative amount to the extracellular

potential, regardless of distance. On the other hand, with

exponential decay of conductivity, the Q100 monotonically

decreased with distance (Fig. 5 A, Exp). Thus, this case

shows both low-pass filtering behavior (Fig. 4) and a stronger

attenuation of high frequencies compared to low frequencies

(Fig. 5 A, Exp), which is in qualitative agreement with

experiments. Analyzing exponentially decaying conductiv-

ities of different space constants (Fig. 5 B) revealed that the

various patterns of distance dependence approximately

followed the pattern of conductivity (Fig. 5 C). This type

of conductivity profile is relatively simple and plausible, and

will be the one considered in the biophysical model

investigated below.

Biophysical model of the frequency-filtering
properties of local field potentials

We have applied the above formalism to model the

frequency dependence of the extracellular field potentials

stemming from a conductance-based spiking neuron model.

The details about the model are given in the Material and

Methods section, whereas the details of the calculation of the

extracellular LFP (general for any current source) is given in

Appendix 3. The profile of conductivity and permittivity

used is that of Fig. 4. We calculated the total membrane

current generated by a single-compartment model of an

FIGURE 3 Frequency-filtering properties obtained from a periodically varying conductivity. (A) Oscillatory profile of conductivity versus distance

ðsðrÞ=sðRÞ ¼ 0:50110:5 � cos½2pðr � RÞ=2R�: (B) Profile of permittivity ðeðrÞ=sðRÞ ¼ 0:01Þ: (C–E) Real part (C), imaginary part (D), and norm (E) of the
impedance Zv(r) versus frequency f. The different curves are taken at different distances r outside of the current source. (F) Attenuation of the impedance norm

jZvðrÞj with distance. The different curves indicate the attenuation obtained at different frequencies.
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adapting cortical neuron, containing voltage-dependent Na1

and K1 conductances for generating action potentials and

a slow voltage-dependent K1 conductance responsible for

spike-frequency adaptation. The model also contained a fast

glutamatergic excitatory synaptic conductance, which was

adjusted to evoke a postsynaptic potential just above

threshold, to evoke a single action potential (Fig. 6 A). The
total membrane current (Fig. 6 B) was calculated and stored

to calculate its Fourier transform (power spectral density

shown in Fig. 6 C). The impedance of the extracellular

medium (Fig. 6 D) was calculated using absolute values of

the parameters (Eq. 26).

This model was used to calculate the field potentials at

different radial distances assuming the neuron was a spherical

source (radius of 105 mm). The extracellular potential is

indicated for 5, 100, 500, and 1000 mm away from the source

(see Fig. 6 E) and strong frequency-filtering properties are

apparent: the fast negative deflection of extracellular voltage

showed a steep attenuation and almost disappeared at 1000

mm (although it had the highest amplitude at 5 mm). In

contrast, the slow positive deflection of the extracellular

potential showed less attenuation with distance and became

dominant at large distances (500 and 1000 mm in the

example of Fig. 6 E). This is best seen from the overlaid

FIGURE 5 Distance dependence of frequency-filtering properties. (A) Ratio of impedance at fast and slow frequencies (Q100) represented as a function of

distance r (units of R). The Q100 ratios are represented for different profiles of conductivity. Drop, localized drop of conductivity (short-dashed line; same

parameters as in Fig. 2). Osc, oscillatory profile of conductivity (solid line; same parameters as in Fig. 3; the dotted line indicates a damped cosine oscillation).

Exp, exponential decrease of conductivity (long-dashed line; same parameters as in Fig. 4 except R ¼ 1; l ¼ 10R). (B) Profiles of conductivity with

exponential decay (same parameters as in Fig. 4; space constants l indicated in mm). (C) Q100 ratios obtained for the conductivity profiles shown in B.

FIGURE 4 Frequency-filtering properties obtained with exponential decrease of conductivity. (A) Profile of conductivity. sðrÞ=sðRÞ decays exponentially
according to sðrÞ=sðRÞ ¼ s01ð1� s0Þ exp½�ðr � RÞ=l�; with a space constant l ¼ 500 mm: (B) Profile of permittivity. eðrÞ=sðRÞ was constant (0.01). (C–
E) Real part (C), imaginary part (D), and norm (E) of the impedance Zv(r) versus frequency f. The different curves show the impedance calculated at different

distances r. (F) Attenuation of the impedance norm jZvðrÞj with distance. The different curves indicate the attenuation obtained at different frequencies.
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traces (see Fig. 6 E, inset), showing the marked difference in

fast and slow components in the field potentials recorded at 5

and 1000 mm.

Thus, this example illustrates that the approach provided

here can lead to a relatively simple model to calculate local

field potentials with frequency-filtering properties. The exact

profiles of filtering and attenuation depend on the exact

shape of the gradients of conductivity/permittivity as well as

on the spherical symmetry inherent to this model. This is

illustrated in Fig. 7 for the other radial profiles of

conductivity considered earlier (drop, periodic, and damped

conductivity). This figure shows that for these particular

profiles, the attenuation of fast and slow deflections is similar

(the global shape of the LFP remains similar although

attenuated in amplitude; see almost perfect overlay in the

inset of Fig. 7 C). There is therefore a negligible frequency-
dependent attenuation in those cases. This is in agreement

with the quasi-absence of frequency-dependent attenuation

evidenced in the quantitative analysis of Fig. 5 (see above).

In contrast, Fig. 6 E shows that a radial model with ex-

ponentially decaying conductivity replicates the experimen-

tal observation that only slow frequencies propagate through

large extracellular distances.

DISCUSSION

In this article, we have provided a model of extracellular field

potentials in nonhomogeneous media. We discuss here the

validity of this model, how it relates to previous studies, and

what perspectives are provided.

FIGURE 6 Frequency-filtered extra-

cellular field potentials in a conduc-

tance-based model. (A) Membrane

potential of a single-compartment model

containing voltage-dependent Na1 and

K1 conductances and a glutamatergic

synaptic conductance. The glutamatergic

synapse was stimulated at t ¼ 5 ms (m)

and evoked an action potential. (B) Total

membrane current generated by this

model. Negative currents correspond to

Na1 and glutamatergic conductances

(inward currents), whereas positive cur-

rents correspond to K1 conductances

(outward currents). (C) Power spectrum

of the total current shown in B. (D)

Impedance at 500 mm from the current

source assuming a radial profile of

conductivity and permittivity (as in Fig.

4). (E) Extracellular potential calculated

at various distances from the source (5,

100, 500, and 1000 mm). The frequency

filtering properties can be seen by

comparing the negative and positive

deflections of the extracellular potential.

The fast negative deflection almost

disappeared at 1000 mm whereas the

slow positive deflection was still present.

The inset in E (Overlay) shows the traces
at 5 and 1000 mm overlaid.
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The theoretical analysis outlined in the ‘‘General theory’’

section shows that inhomogeneities of extracellular space

(with respect to conductivity and/or permittivity) is a possible

cause for frequency filtering. In general, nonhomogeneous

extracellular media will differently affect the attenuation of

the various frequency components of the current sources.

The physical basis of such differential filtering is the ratio

between conductivity and permittivity, which respective

gradients will determine if extracellular media act as high-

pass or low-pass filters. The composition of extracellular

space is made from the alternance of fluids and membranes

(Peters et al., 1991). Only ;6% of the extracellular space is

devoted to interstitial space (extracellular fluid), whereas the

core of the volume is made by axons (34%), neuronal

dendrites (35%), spines (14%), and glial cells (11%; see

details in Braitenberg and Schüz (1998)). Because these

media have very different conductivity and permittivity, one

may expect the extracellular space to be electrically highly

nonhomogeneous. The structural composition of extracellu-

lar space is thus very likely to be a main determinant of the

frequency-filtering properties of LFPs. In addition, the

conductivity of the extracellular fluid directly beneath the

membrane depends on the ionic concentrations present. It

turns out that the extracellular ionic concentrations may vary

in time, in an activity-dependent manner (reviewed in

Amzica (2002)). Therefore, it is also likely that there is an

activity-dependent contribution to the filtering properties of

the extracellular medium. Here, we did not consider such

time-dependent variations of conductivity, but this type of

contribution is certainly worth being considered by future

theoretical work.

To correctly simulate the frequency-filtering behavior due

to extracellular inhomogeneity, the extracellular potential

should be calculated by a model incorporating details about

the three-dimensional composition of the extracellular me-

dium. Such type of simulations should use methods such as

finite-element analysis. However, the complexity of this type

of analysis, and of the data it requires, makes such

simulations inaccessible to standard models. In addition,

this requires orders of magnitude differences in computa-

tional power needs. For these reasons, we have considered

the option of generating a simplified model under some ap-

proximation. We assumed that the geometry of extracellu-

lar inhomogeneities is spheric around the current source. In

this condition, one can obtain relatively simple expressions

of the extracellular potential such as Eq. 25. Not only this

expression is amenable to theoretical analysis, but it is also

sufficiently simple to be applied to current neuron models

that do not have an explicit representation of extracellular

space.

This method relies on a number of approximations, which

will necessarily impact on the degree of realism provided by

the model. A first approximation was to consider the genesis

of extracellular potentials from a set of independent and

punctual current sources, as in other simplified models of

field potentials (Nunez, 1981; Destexhe, 1998; Koch and

Segev, 1998). This approximation contrasts with the current

sources and sinks (dipoles) underlying the genesis of field

potentials by neurons (Nunez, 1981) and more realistic

distributions should be considered in future extensions of

this work. A second approximation was to consider that the

profiles of conductivity and permittivity variations follow

a radial symmetry around the current source. This approach

therefore considers only the average ‘‘mean-field’’ varia-

tions around the source, and cannot incorporate the local

variations of conductivity arising from different types of

membranes. Electron microscopic reconstructions of the

cortical neuropil (Peters et al., 1991) show that cerebral

cortical tissue consists of a three-dimensional aggregate of

randomly distributed cell types (neurons, glial cells, axons,

myelin, blood vessels). Because each of these elements may

have very different conductivity (Hille, 2001), more accurate

average profiles of conductivity could be obtained by

FIGURE 7 Frequency-filtered extracellular field potentials for different

radial profiles of conductivity. The extracellular potential was calculated

from a conductance-based spiking neuron model (identical to that of Fig. 6)

and was shown at various distances from the source (5, 100, 500, and 1000

mm) for different profile of conductivity. (A) Localized drop in conductivity
(same profile as in Fig. 2 A, with drop starting at r ¼ 120 mm and ending at

r ¼ 280 mm). (B) Same simulation using a periodic conductivity profile

(profile as in Fig. 3 A with same extremal values as in Fig. 6 and a period of 2

mm). (C) Same simulation using damped oscillations of conductivity (same

parameters as in B, with a space constant of l ¼ 500 mm). In all cases, the

attenuation of the fast negative deflection was similar to the slow positive

deflection, in contrast with Fig. 6 E. The inset in C (Overlay) shows the

traces at 5 and 1000 mm overlaid, which are almost superimposable

(compare with inset in Fig. 6 E).
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calculating the radial variations of conductivity and per-

mittivity by averaging the profiles of s and e in all directions
emanating from neuronal membranes using three-dimen-

sional reconstructions of the neuropil. In this case, the par-

ticular conductivity of the different types of membranes

could be incorporated, presumably leading to more accurate

representations compared to the heuristic profiles assumed

here. Another direction would be to measure experimentally

those profiles, but such data are not currently available.

Nevertheless, the heuristic profiles of conductivity and

permittivity used here can give frequency-filtering properties

in good qualitative agreement with experiments.

This approach is, however, not appropriate to investigate

more quantitative problems, such as the precise localiza-

tion of current sources from LFP activity, in which case

quantitative models such as finite element analysis would be

necessary. Intermediate approaches also exist, such as

bidomain models, which have been successfully used for

modeling extracellular potentials in several tissues (Basser

and Roth, 2000; Miller and Henriquez, 1990). The bidomain

approach consists of a different approximation to simulate

the electrical behavior of media composed of elements

of different conductivities. In this case, the medium is

approximated by two spatially uniform ‘‘domains’’ of

conductivity, each described by its own set of Laplace (or

Poisson) equations, and the two sets of equations are coupled

together. This approximation greatly simplifies the boundary

conditions, which can be very complex for media such as

the cerebral cortex. A comparison between the different

approaches (finite-element analysis, bidomain models, and

the present approach) would be needed to evaluate the

advantages and pitfalls of each approximation.

These results lead to several interesting perspectives for

future work or extensions. First, as mentioned above, the

simplified model could be enhanced by comparison with

a more realistic model, for example based on three-

dimensional reconstructions of extracellular space. The

simplified model could be adjusted so that it fits as closely

as possible the behavior of the more realistic model, yielding

more optimal expressions of the radial profiles of conduc-

tivity and permittivity. A second possible direction is the

‘‘reverse’’ problem of estimating neuronal activity based on

LFP measurements. By using data on the spatial and

temporal variations of multisite LFPs and multiunit activity,

it should be possible to estimate what are the respective

contributions of the natural frequency-filtering properties of

extracellular space and the spatial coherence of neuronal

sources in the different frequency components. For example,

it was shown that a consistent relation between LFP and cell

firing extends to large cortical distances ([7 mm) for slow

waves but not for fast oscillations in the gamma (20–60 Hz)

frequency range (Destexhe et al., 1999). A model of LFP is

needed to evaluate whether this effect is really due to

differences in the coherence of neuronal firing (as the single-

unit data indicates), or if a large part could be explained by

the low-pass filtering properties of the extracellular medium.

A combination of experimental recordings and computa-

tional models will be needed to understand how neuronal

activity translates into extracellular field potentials and vice

versa.

APPENDIX 1: EXTRACELLULAR POTENTIAL IN
NONHOMOGENEOUS MEDIA WITH
SPHERICAL SYMMETRY

This Appendix refers to the ‘‘Stationary currents in apherically symmetric

nonhomogeneous media’’ section: Recall s ¼ s(r), e ¼ const. Then Gauss’

law becomes

= � E ¼ r

e
: (30)

The law of charge conservation becomes

� @r

@t
¼ = � ðsEÞ ¼ s= � E1E � ð=sÞ ¼ s

e
r1E � ð=sÞ:

(31)

Using Ohm’s law and assuming s 6¼ 0, this becomes

� @r

@t
¼ s

e
r1 j � ð1

s
=sÞ ¼ s

e
r1 j � = logs: (32)

We make the assumption that the current density j is stationary, i.e., it does
not explicitly depend on time. Also, by assumption s and e are time

independent. Hence denoting a ¼ s=e and b ¼ j � =logs; Eq. 32 takes the

form

r ¼ �eE � = logs: (33)

It shows that the net charge density is different from zero.

Electric field for spherical current source

At the radius r ¼ R, the electric field is given by the current

jjr¼R ¼ sðRÞEjr¼R: (34)

The total current passing through a sphere (surface S, radius r) is given by

I ¼
ð

S

dS � j ¼ SðrÞjðrÞ: (35)

Thus the current density as function of radius r behaves as

jðrÞ ¼ jðrÞer ¼
I

SðrÞ er ¼
I

4pr
2 er: (36)

Ohm’s law implies for the electric field

EðrÞ ¼ 1

sðrÞ jðrÞ ¼
I

4pr
2
sðrÞ

er: (37)

Electric potential

Because the electric field is radially symmetric, so is also the potential,

which obeys
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EðrÞ ¼ � @

@r
VðrÞ: (38)

Its solution is obtained from Eq. 37,

VðrÞ ¼ �
ðr

‘

dr9Eðr9Þ ¼
ð‘

r

1

4pr9
2
sðr9Þ

: (39)

An independent check of this solution can be obtained by considering the

law of charge conservation.

= � ðsEÞ ¼ � @r

@t
: (40)

Because of the time-independent charge density, this is equivalent at

= � ðs=VÞ ¼ ð=sÞ � =V 1sDV ¼ 0: (41)

APPENDIX 2: FOURIER COMPONENT OF THE
EXTRACELLULAR FIELD POTENTIAL

This Appendix refers to the ‘‘Time-varying currents in nonhomogeneous

media’’ section: Starting from Gauss’ law

= � ðeEÞ ¼ r; (42)

the inhomogeneity of e implies

E � ð=eÞ1 e= � E ¼ r: (43)

Then the electric potential obeys

�ð=VÞ � ð=eÞ � eDV ¼ r: (44)

We recall that the potential V and the charge density r are time dependent,

whereas the permittivity e is not. We define the Fourier transform of time-

dependent function f(t) via

fv ¼
ð‘

�‘

dt e
ivt

f ðtÞ: (45)

Now we perform a Fourier transform with respect to time of the potential V

and the charge density r to obtain an equation for the Fourier components at

frequency v,

ð=VvÞ � ð=eÞ1 eDVv ¼ �rv: (46)

Similarly, starting from the differential form of the law of charge

conservation,

= � ðsEÞ ¼ � @r

@t
; (47)

from the Fourier transform of r follows that a component at frequency v

satisfies

ð=VvÞ � ð=sÞ1sDVv ¼ ivrv: (48)

Combining Eqs. 46 and 48 yields

ð=VvÞ � ð=ðs1 iveÞÞ1 ðs1 iveÞDVv ¼ 0: (49)

APPENDIX 3: METHOD TO CALCULATE THE
EXTRACELLULAR FIELD POTENTIAL FROM
POINT CURRENT SOURCES

1. Compute the Fourier component v of the impedance

ZvðrÞ ¼
1

4psðRÞ

ð‘

r

dr9
1

r9
2

½sðRÞ1 iv eðRÞ�
½sðr9Þ1 iv eðr9Þ� ; (50)

where v ¼ 2pf : This expression incorporates the values of the

conductivity s(r) and permittivity e(r) as a function of the distance r.

It is also assumed that Vð‘Þ ¼ 0:

This quantity is computed for each frequency component v of the

spectrum, and for each extracellular distance r considered. It can be

precalculated and stored in a matrix (Z[ f ][r]).

2. For each current source, compute the (complex) Fourier transform of the

total membrane current, which we call here Iv.
3. For each current source, compute the Fourier component v of the

extracellular potential:

VvðrÞ ¼ ZvðrÞIv: (51)

4. For each current source, compute the extracellular potential by applying

the (complex) inverse Fourier transform to Eq. 51.

5. Finally, combine the contributions from all current sources to yield the

extracellular potential at a given position x in the extracellular space.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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