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ABSTRACT We present a molecular dynamics study of cytochrome c oxidase from Paracoccus denitrificans in the fully
oxidized state, embedded in a fully hydrated dimyristoylphosphatidylcholine lipid bilayer membrane. Parallel simulations with
different levels of protein hydration, 1.125 ns each in length, were carried out under conditions of constant temperature and
pressure using three-dimensional periodic boundary conditions and full electrostatics to investigate the distribution and
dynamics of water molecules and their corresponding hydrogen-bonded networks inside cytochrome c oxidase. The majority of
the water molecules had residence times shorter than 100 ps, but a few water molecules are fixed inside the protein for up to
1.125 ns. The hydrogen-bonded network in cytochrome c oxidase is not uniformly distributed, and the degree of water
arrangement is variable. The average number of solvent sites in the proton-conducting K- and D-pathways was determined. In
contrast to single water files in narrow geometries we observe significant diffusion of individual water molecules along these
pathways. The highly fluctuating hydrogen-bonded networks, combined with the significant diffusion of individual water
molecules, provide a basis for the transfer of protons in cytochrome c oxidase, therefore leading to a better understanding of the
mechanism of proton pumping.

INTRODUCTION

Cytochrome c oxidase (COX), located in the inner mem-

brane of mitochondria and many bacteria, is one of the most

intensively studied membrane proteins. It catalyzes the

terminal step in cellular respiration, a transfer of four elec-

trons from cytochrome c to dioxygen (Babcock and Wik-

ström, 1992). The reduction of dioxygen to water is

accompanied by the translocation of four protons across

the inner mitochondrial membrane or the bacterial cytoplas-

mic membrane (Wikström, 1977). The resulting electro-

chemical proton gradient can be used by ATP synthase to

generate ATP. Atomic structures of cytochrome c oxidase

from Paracoccus denitrificans (Iwata et al., 1995; Osterme-

ier et al., 1997), bovine heart mitochondria (Tshukihara et al.,

1996), and Rhodobacter sphaeroides (Svensson-Ek et al.,

2002) have been determined by x-ray crystallography.

Subunit II of COX contains a bimetallic CuA center and

subunit I contains two redox-active cofactors: a low spin

heme a and a binuclear metal center formed by the heme a3

and CuB (Iwata et al., 1995; reviewed by Ferguson-Miller

and Babcock, 1996; Michel, 1998). Electrons from cyto-

chrome c are transferred to the CuA center and then further

via heme a to the binuclear center (see Babcock and

Wikström, 1992; Michel, 1998; Mills and Ferguson-Miller,

2003; Brzezinski and Larsson, 2003 for reviews). Within the

binuclear center, molecular oxygen is bound to the heme a3

iron, then reduced, and two molecules of water are formed.

The results of site-directed mutagenesis experiments

(Thomas et al., 1993; Fetter et al., 1995; Garcia-Horsman

et al., 1995; Brzezinski and Adelroth, 1998; Mills and

Ferguson-Miller, 1998; Aagaard et al., 2000; Zaslavsky and

Gennis, 2000; Pfitzner et al., 2000) and the analysis of the

structural data (Iwata et al., 1995) indicate two different

proton transfer pathways. The K-pathway (for chemical

protons) of proton transfer leads to the active site through the

essential lysine residue Lys-354, and the D-pathway (for

pumped protons) named after Asp-124 leads from the Asp-

124 via a solvent-filled cavity to Glu-278. Beyond Glu-278

the pathway of protons is unclear. It may lead directly to the

binuclear site via a temporarily established chain of water

molecules or to the heme a3 propionate (Iwata et al., 1995),

either by direct contacts upon conformational changes of

Glu-278, or via unresolved intervening water molecules

(reviewed by Michel, 1998). It has been suggested that these

two proton pathways may be functionally associated with

different parts of the catalytic cycle (Konstantinov et al.,

1997). Despite recent advances in our structural knowledge

(Ostermeier et al., 1997; Tshukihara et al., 1996; Svensson-

Ek et al., 2002), the mechanism of coupling the redox

processes to proton pumping in COX is largely unknown.

Proton transfer via a hydrogen-bonded network in a

membrane protein was proposed several years ago (Nagle

and Morowitz, 1978). An experimentally well-characterized

example of such a network in a biomolecule is bacteriorho-

dopsin, where water molecules visible in the crystals seem to

be involved in a hydrogen-bonding network (Le Coutre et al.,

1995; reviewed by Luecke, 2000).
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The literature dealing with hydration of both bacterial and

mitochondrial cytochrome c oxidases focuses on the pre-

diction of bound water molecules within the proton-

conducting D- and K-pathways (Riistama et al., 1997;

Hofacker and Schulten, 1998; Pomès et al., 1998; Zheng

et al., 2003; Wikström et al., 2003). Riistama et al. (1997)

used a statistical-mechanical ‘‘potential of mean force’’

methodology (Garcia et al., 1996) to place bound water

molecules within proton pathways based on the x-ray

coordinates of the mitochondrial cytochrome aa3 from

bovine heart. Hofacker and Schulten (1998) and Zheng

et al. (2003) determined likely water sites using the program

DOWSER (Zhang and Hermans, 1996) and refined the water

positions using energy minimization and molecular dy-

namics simulations. The large number of water molecules

suggests an important contribution to the proton path-

ways studied—the pathways for transport of oxygen and

protons—by predicting the distribution of water molecules in

the protein and by molecular dynamics (MD) simulation of

oxygen diffusion for COX from P. denitrificans.
To place water molecules in the two-subunit enzyme of

cytochrome c oxidase we have used the program GRID

(Goodford, 1985). This method has already been successful

in locating water positions in a number of crystal structures,

for example, in cytochrome P450cam (Wade, 1990; Helms

and Wade, 1995), and in acetylcholinesterase (Henchman

and McCammon, 2002). The program implements a compu-

tationally fast method of determining energetically favorable

ligand binding sites on molecules of known structure. The

probe molecule is moved through the protein matrix on

a grid, and at each point, energies are calculated as a sum of

Lennard-Jones, electrostatic, and hydrogen-bonding terms

with explicit modeling of hydrogen-bond geometries. Since

certain dynamic features of cytochrome c oxidase cannot be

captured by crystallographic techniques, MD has been used

to elucidate conformational fluctuations and COX-water

mobility (Hofacker and Schulten, 1998; Backgren et al.,

2000; Zheng et al., 2003; Wikström et al., 2003). There are

some examples of studies where different redox states of

protein systems have been analyzed using MD procedures

(Hayashi et al., 2002; Bret et al., 2002; Wikström et al.,

2003). However, fully atomic simulations of membrane

proteins must include a lipid bilayer to model the natural

environment. Given the irregular shape of membrane pro-

teins, obtaining a correctly configured initial system is

a nontrivial task, and yet the reliability of the subsequent

simulation may depend on how carefully this is performed.

To build these protein-lipid bilayer systems, two approaches

have been reported in the literature. The first (Petrache et al,

2000; Woolf and Roux, 1994, 1996; Berneche et al., 1998;

Bernache and Roux, 2000), which was used in this study,

consists of building a bilayer around the protein lipid by

lipid, each individual molecule being selected from a library

of lipid conformers. The second approach (Shen at al., 1997;

Tieleman and Berendsen, 1998) uses a previously equili-

brated lipid bilayer, in which a cylindrical hole to accomm-

odate the protein is created by the application of weak

repulsive radial forces of the lipid atoms. In both cases the

protein-lipid system is energy-minimized before the MD

simulation.

The purpose of this work was to identify and characterize

hydrogen-bonded networks inside the protein as possible

pathways for proton transport in cytochrome c oxidase by

predicting water binding sites and then characterizing the

hydrogen-bonded networks during molecular dynamics

simulations.

SIMULATION DETAILS

Coordinates

The starting configuration of the fully oxidized two-subunit

COX from P. denitrificans at 2.7 Å resolution was the

Protein Data Bank (PDB) entry 1AR1, designated post-1AR1
after further refinement (A. Harrenga and H. Michel,

unpublished; the coordinate set is available upon request).

This structure was obtained under oxidizing conditions. This

set of coordinates contains a Mg21 ion, located at the

interface between subunits I and II, that is coordinated by

His-403, Asp-404, Glu(II)218, a Ca21 ion bound to His-59,

Gly-61, Gln-63, and Glu-56, and 88 water molecules. A

hydroxide ion OH� was modeled at a distance of 2.05 Å

from the CuB, in agreement with previous theoretical

calculations (Kannt et al., 1998). Hydrogens were added to

the structure by using CHARMM’s hbuild function (Brünger

and Karplus, 1988).

Charges on the protein atoms and ionizable groups in

different protonation states were taken from the

CHARMM22 force field (MacKerell et al., 1995, 1998).

Lys-354 was assigned as neutral because of its hydrophobic

environment. Partial atomic charges for neutral Lys-354 as

well as for protonated Asp-399, and for protonated Glu-278,

were taken from the AMBER96 force field. Because all

titrating protons have been positioned in the structure, we

can describe the deprotonation/protonation of the particular

residue as the addition of an explicit hydrogen atom.

Electrostatic calculations (in these calculations water

molecules were not included explicitly) showed that Lys-

354 is in its neutral state over a wide pH range (pH 4–11.5)

(Kannt et al., 1998). However, this has been questioned

recently because water molecules hydrogen-bonded to Lys-

362 and Ser-299 were found in the Rh. sphaeroides COX

structure (Svensson-Ek et al., 2002). This observation has

led to the postulation that Lys-362 is protonated at pH ¼ 7

(Rh. sphaeroides numbering) (Svensson-Ek et al., 2002).

One heme a3 propionate shares a proton with Asp-399; all

other propionates are deprotonated at pH ¼ 7 (Kannt et al.,

1998).

The atomic partial charges for the redox centers—the

heme a and heme a3 sites, the His-276-to-Tyr-280 crosslink
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and for CuB and its three histidine ligands (His-276, His-325,

and His-326) for the fully oxidized enzyme—were obtained

from quantum chemical calculations (see Fig. 1, A–E).

Atom-centered point charges for the heme a and heme a3 and

the copper center were derived from restrained electrostatic

potential fits on model systems using the ESP module of

NWChem 4.1 employing the 6-31G* basis set (NWChem, A

Computational Chemistry Package for Parallel Computers,

Version 4.1., 2002). Computing partial atomic charges for

unusual cofactors by the electrostatic potential (ESP) fit

method is not the standard procedure in the CHARMM

community and is therefore a potential source of error.

However, electrostatic potential charges combined with

CHARMM gave good agreement with experimental pKa

values in electrostatic continuum calculations for bacterial

photosynthetic reaction centers (Rabenstein et al., 1998). For

protoporphyrin IX (heme) a 3-21G optimized structure as

well as a high-resolution crystal structure geometry were

used. However, the charges obtained for the hemes showed

only little dependence on the molecular geometry employed.

In particular we found a partial charge of 0.36 for Fe(III)

only; the ligating nitrogens compensate most of the positive

charge. The partial charge of NE2 decreases from �0.70 in

a neutral histidine (HSD) to –0.14 in the case of a five-

coordinated Fe(III) and to �0.42 for a six-coordinated

Fe(III), whereas the partial charges of the nitrogens on the

porphyrin ring change to �0.10 for Fe(III). The calcium ion

was modeled with its formal �2 e charge. This is not

believed very crucial because the ion is strongly coordinated

by four residues (see above) (Ostermeier et al., 1997).

Therefore, its partial atomic charge is shielded from the

environment and it is bound in a stable geometry.

Internal water modeling

The program GRID (Goodford, 1985) was run with a water

probe over the two-subunit structure of cytochrome c
oxidase to identify possible water binding sites. Due to the

large size of ;13,000 atoms, the system was split into eight

parts, and the GRID program was run for each part

independently. The largest region with a favorable binding

energy in the GRID energy map was in an internal cavity

close to Glu-278 where a structural water molecule, WS, was

detected. Although this water molecule is clearly defined in

the electron density map, GRID was used to position it in the

cavity without using the information from the experimental

coordinates. GRID calculations over the whole internal

cavity region gave an energy of �14 kcal/mol for this water

probe, which indicates favorable hydration. After locating

the energy minimum, its position was refined and an internal

GRID water molecule, WG, was then assigned to it. GRID

was then run again with input coordinates containing this

water molecule. A second energy minimum was found and

a second water molecule assigned to it. The criteria for water

placement in a cavity were that the energy was \�8 kcal/

mol for the first set of coordinates (W8 water molecules), and

\�12 kcal/mol for the second set of coordinates (W12 water

molecules), and that each water molecule generates at least

two hydrogen bonds (Helms and Wade, 1995). The GRID

procedure was repeated four times keeping all previously

located water molecules until further waters could be added

in suitably deep energy minima (\�8 kcal/mol or \�12

kcal/mol) in the last round, indicating that all cavities were

fully solvated for the chosen energy criteria (Wade and

Goodford, 1993). The GRID energy function is very short-

ranged. Electrostatic interactions are computed using a cutoff

of only 4.5 Å. Therefore, although potentially of signifi-

cance, the order of the parts is irrelevant because water

molecules in the boxes hardly interact with those in other

boxes.

Initial setup of protein-membrane-water system

As described in the following, a proper membrane

environment of the cytochrome c oxidase was provided by

constructing a dimyristoylphosphatidylcholine (DMPC)

lipid bilayer. We followed the general protocol for molecular

dynamics (MD) simulations (Berneche et al., 1998; Ber-

neche and Roux, 2000) to construct the initial configuration

of a protein-membrane-water system. The microscopic

system consists of cytochrome c oxidase (two subunits of

549 and 252 amino acids, respectively), 181 DMPC lipids

(90 in the top and 91 in the bottom layer), 88 internal crystal

waters WS, and 24,323 bulk water molecules (W0, W1, W2,

W3, and W4). Additionally, 176 internal water molecules

(W12 water molecules WG) or 755 internal water molecules

(W8 water molecules WG) constructed using the GRID

method were included in the calculations, and 42 Na1 and 30

Cl� ions were randomly inserted to simulate a 100 mM

aqueous salt solution (ions were positioned[6 Å away from

the bilayer and protein, and no ion pairs were allowed to

form). After solvation the entire system consisted of 101,852

atoms (the W12 set of coordinates) and 103,589 atoms (the

W8 set of coordinates).

The membrane normal is oriented along the z axis, and the

center of the bilayer is at z ¼ 0. The protein was oriented

along the z axis, in a position that left the hydrophilic

residues in contact with the W0 water, and the hydrophobic

residues in contact with lipid acyl chains. The ratio of

oxygen and carbon atoms of \0.2 along the membrane

normal for z values from –17 Å to 117 Å, corresponds to the

hydrophobic part of the protein surface (Lancaster and

Michel, 1997). Periodic boundary conditions were applied in

the x,y directions to simulate an infinite planar layer and in

the z direction to simulate a bilayer system; the periodic

system has the dimensions 90 3 90 3 125 Å3. Whereas the

x,y dimensions are kept constant, the z dimension of the

unitary cell was allowed to vary according to the constant

pressure and temperature thermodynamic ensemble with

a fixed surface area (Berneche et al., 1998, Berneche and
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FIGURE 1 (A) Partial atomic charges for the fully oxidized heme a/heme a3 derived from quantum chemical calculations. (B) Partial atomic charges for Tyr-

280–His-276 crosslink (charges for His-276 are listed in C); (C) partial atomic charges for the histidine ligands to CuB. The charges on His-326 were restrained

to be identical to those of His-325 and therefore not shown. (D) Partial atomic charges for the histidine ligand to Fe atom of heme a3. (E) Partial atomic charges

for histidine ligands to Fe atom of heme a; the two His ligands carry the same charges.
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Roux, 2000). To surround the protein by a complete lipid

environment the dimension of the system in the x,y plane was

set at 90 Å 3 90 Å, corresponding to an area of 8100 Å2.

Since the average cross-sectional area of a DMPC molecule

is 64 Å2 (Gennis, 1989; Nagle, 1993), the difference in the

cross-sectional area of COX between the periplasmic side

(2319 Å2) and the cytoplasmic side (2247 Å2) corresponds

to ;1 lipid. The appropriate number of lipids can be

determined to be 90 for the upper layer and 91 for the lower

layer. The DMPC molecules were taken from a library of

2000 preequilibrated and prehydrated DMPCs (Pastor et al.,

1991; Venable et al., 1993). The resulting configuration of

the W12 is shown in Fig. 2.

Equilibration and dynamics

The minimization and dynamics simulations were performed

using the academic version c28b2 of the biomolecular

simulation package CHARMM (Brooks et al., 1983). The

protein was initially fixed and the system was minimized

by 1000 steps of steepest descent followed by 1000 steps

of adopted-basis Newton-Raphson. A number of energy

restraints were used during the minimization and at the

beginning of the equilibration period to ensure a smooth

relaxation of the system toward an equilibrated configuration

(Berneche et al., 1998; Berneche and Roux, 2000). A

harmonic potential of 10 kcal mol�1 Å�2 was applied to the

backbone atoms to prevent large spurious motions, the center

of mass of the lipid polar heads was kept at ;z ¼6 17 Å by

planar harmonic constraints to maintain the planarity of the

membrane, and the penetration of water into the bilayer

region was prevented by the use of planar potentials in the

z direction. The protein and water constraints were then

decreased to 5 kcal mol�1 Å�2 and were gradually reduced

to get a free system after 575 ps of equilibration. The only

remaining constraints are those on lipid headgroups (see

below) and harmonic distance restraints between CuB and its

ligands His-276, His-325, His-326, OH� and CuB, OH�, and

the Fe atom of heme a3, the Fe atom of heme a3 and His-411,

the Fe atom of heme a and His-413, the Fe atom of heme

FIGURE 2 Simulation system setup

(side view): two-subunits of cyto-

chrome c oxidase embedded in a DMPC

membrane solvated by a 100 mM NaCl

aqueous salt solution (the Na1 ions are

yellow and the Cl� ions are blue). The

snapshot was taken at the beginning of

the molecular dynamics production

phase after 575 ps of equilibration for

the W12 set.
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a and His-94, CuA(I) and Cys(II)220, CuA(I) and His(II)181,

CuA(II) and Cys(II)216, CuA(II) and Met(II)227, Mg and

Glu(II)78, Mg and His-403, and Mg and Asp-404. The

simulations were performed under three-dimensional peri-

odic boundary conditions, with constant temperature of T ¼
330 K and pressure. The average temperature was 330 K,

above the gel-liquid crystal phase transition temperature, and

consistent with experimental conditions (Woolf and Roux,

1996). The system was equilibrated for 250 ps by molecular

dynamics simulation. The system was coupled to a heat bath

at 330 K by the use of Verlet dynamics for the first 575 ps;

the time steps were 2 fs. The coordinates were saved every 5

ps and the nonbonded and image lists were updated every 20

steps. The list of nonbonded interactions was truncated at 12

Å, using a group-based cutoff. The nonbonded van der

Waals interaction was switched off at 10–12 Å. The

electrostatic interactions were computed without truncation,

using the particle-mesh Ewald algorithm (Essmann et al.,

1995) with an order of 4; FFT grid points for the charge mesh

per Å were 90 3 90 3 125. In the particle-mesh Ewald

method implemented in CHARMM the electrostatic energy

is split into a direct and a reciprocal Ewald sum. A real space

Gaussian-width k of 0.3 Å�1 was used. All bonds involving

hydrogen atoms were constrained by applying the SHAKE

algorithm (Ryckaert et al., 1977).

The all-atom potential energy functions of PARAM-22 for

protein (MacKerrell et al., 1995, 1998) and phospholipids

(Schlenkrich et al., 1996) were used. The TIP3P potential

was used for the water molecules (Jorgensen et al., 1983).

During the production trajectory, the center of mass of the

protein was restrained to the center of the x,y plane. The

overall simulation time was ;1125 ps.

All molecular structures were drawn using the Visual

Molecular Dynamic Software VMD 1.8 (Humphrey et al.,

1996).

It is important to consider possible methodological limi-

tations of our simulation protocol. The main limitation is the

harmonic restraint potential constantly applied to the head-

groups of the DMPC lipids during the molecular dynamics

production phase after equilibration to avoid a structural

FIGURE 3 Root mean-square deviation (RMSD) relative to the x-ray

structure as a function of time, calculated over all backbone atoms (black
line), side-chain atoms (gray line), and heme a/a3 atoms (light gray). (A)

RMSD from the W12 set of coordinates; (B) RMSD from the W8 set.

FIGURE 4 RMSF of the backbone atoms calculated from the molecular

dynamics trajectories at 1–45 ps (black line), 450–495 ps (red line), 1080–

1125 ps (green line), and from the experimental B-factor (blue line). All

values are averaged over the individual amino acids. (a) RMSF from the

W12 set. (b) RMSF from the W8 set.
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disorder of the lipid phase observed without restraints.

Although the times of the present simulation were nearly 600

ps for equilibration and 1125 ps for the molecular dynamics

production run, they seem still not long enough for a full

equilibration of the lipid phase. The restraints will not, how-

ever, influence the energetics and dynamics of the internal

water molecules in cytochrome c oxidase that was the main

focus of this work.

ANALYSIS OF THE TRAJECTORIES FROM
THE SIMULATIONS

Hydrogen bonds

The hydrogen-bond patterns were analyzed from the pro-

duction trajectories with 0.15 ps time resolution. The criteria

for a hydrogen bond (A. . .H – D) was that the distance

between the acceptor and the hydrogen atom (A . . . H)

should be \2.5 Å and an A . . . H – D angle of [1208

(Eriksson et al., 1995; Eriksson and Nilsson, 1995; Tang and

Nilsson, 1999). The percentage of occupancy of a hydrogen

bond was defined as the number of frames with the hydrogen

bond present divided by the total number of frames used for

analysis. The lifetime of a hydrogen bond was calculated as

the time elapsed from its first appearance until it was first

broken. The average lifetime of a hydrogen bond during the

simulation was then calculated as the average of all of its

occurrences excluding those with a lifetime \1 ps.

Root mean-square deviations (RMSD) and
atomic fluctuations (RMSF)

The coordinate sets from every 0.15 ps of the production run

were superimposed on the initial structure of the system by

minimizing the mass-weighted root mean-square deviations

(RMSD) of the heavy atoms from the initial structure. The

average RMSD values of the Ca atoms, side chains, and

some amino acids were then calculated for the entire MD

trajectory.

B-factors (Debye-Waller factor) from the x-ray structure

of the two-subunit structure of cytochrome c oxidase were

compared with the atomic fluctuations (RMSF) in the sim-

ulation using the relation

hDr2

i i ¼
3Bi

8p
2 ; (1)

where Dri is the atomic displacement for atom i and Bi is the

corresponding B-factor.

Diffusion coefficient

The diffusion coefficients for water molecules (DH2O) in the

simulated system were estimated using the Einstein relation

(Eriksson et al., 1995a),

FIGURE 5 RMSF of the backbone atoms calculated from the molecu-

lar dynamics trajectories for the W12 and W8 sets of water molecules during

1–45 ps (a), 450–495 ps (b), and 1080–1125 ps (c). All values are aver-

aged over the individual amino acids; the backbone atoms from the W12 set

of coordinates are shown in black; the backbone atoms from the W8 set of

coordinates are shown in red.
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lim ðt ! ‘Þ d=dt hðRðtÞ � Rð0ÞÞ2i ¼ 6D; (2)

where h i denotes an average over the water molecules and

R(t) the position of a water molecule at time t.

COMPUTATIONAL DETAILS

Internal water modeling was done on a one-processor Alpha

machine using the GRID program (Goodford, 1985). Energy

minimization, membrane modeling, and molecular dynamics

simulations were performed in parallel with 32 processors,

using version c28b2 of the biomolecular simulation program

CHARMM (Brooks et al., 1983) on an IBM RS/6000 PS3

Regatta supercomputer at the Max Planck Society Rechen-

zentrum in Garching. Forty picoseconds of simulation took

10 h of CPU time on 32 Power4 processors.

RESULTS AND DISCUSSION

Predicted water binding regions

Because GRID energies are only effective energies, not true

Gibbs free enthalpies, it is not quite clear which value to

choose for deciding whether predicted hydration sites are

occupied or not. Based on a comparison with free energy

perturbation calculations, GRID energies \�6 kcal/mol

were suggested as a criterion in a previous study on cyto-

chrome P450cam (Helms and Wade, 1995). Here, we tested

two levels of hydration, a looser criterion of accepting all

GRID waters with energies of \�8 kcal/mol and a tighter

criterion by requiring all waters to be more favorable than

�12 kcal/mol. After four GRID cycles for the two-subunit

structure of COX a total of 755 water molecules was found:

176 molecules with interaction energies \�12 kcal/mol,

267 molecules with interaction energies between �12 kcal/

mol and �10 kcal/mol, and 314 molecules with interaction

energies between �10 kcal/mol and �8 kcal/mol. We refer

to the 176 water molecules with interaction energies \�12

kcal/mol as the W12 set of water molecules, and to the 755

water molecules with interaction energies \�8 kcal/mol as

the W8 set. The GRID calculations showed that the 88

crystallographically observed water molecules are all located

in energetically favorable positions.

The general distribution of internal water molecules

detected by x-ray crystallography and found by GRID is in

agreement. Fewer water molecules were found near the

center of the protein, and more were identified in the regions

close to the surface. The results from the GRID calculations

were also compared with the positions of the observed water

molecules in the crystal structure (Svensson-Ek et al., 2002)

of cytochrome c oxidase from Rh. sphaeroides. The com-

parison showed that the water molecules resolved in the

crystal structure are contained in the W12 set of water

molecules.

Average structural properties

After constructing an initial water hydrogen network, MD

simulations were carried out to study the distribution and

dynamics of water molecules. The atomic system W12 at the

beginning of the equilibration procedure is shown in Fig. 1.

Analyzing the deviation of the structure from the initial

crystal structure can assess the stability of the simulated

protein. Fig. 3 presents the root mean-square deviation

(RMSD) of the Ca atoms, side-chain atoms, and heme a/

heme a3 atoms from the corresponding x-ray structure with

respect to the simulation time. The coordinate sets after every

0.15 ps of the production run were superimposed onto the

initial structure of the system. From the beginning of the

dynamics run, the heme clusters seem to have reached

a rather stable state characterized by an average RMSD value

from the crystal structures of 1.6 Å. The RMSD values of Ca

atoms and side-chain atoms are higher. After 575 ps the

average deviation remains at ;1.8 Å for the Ca atoms, and at

2.5 Å for the side-chain atoms. The first 575 ps were

therefore considered as equilibration and not used for

analysis.

FIGURE 6 The distribution of water molecules in the COX during the

simulation.
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To study flexibility along the backbone, the root mean-

square atom-positional fluctuations of the Ca atoms during

the production trajectories were compared with fluctuations

of the crystal structure, derived from the experimental

B-factors (Fig. 4). The MD fluctuations are smaller than the

experimental B-factors. They lack the contributions for the

static lattice disorder of a 2.7 Å crystal structure. However,

the MD and x-ray maxima and minima correlate well with

one another. Regions with high flexibility are N- and C-

termini. This difference may be due to the missing residues

in the simulations. The simulated atomic system includes

residues 17–545 for subunit I of the enzyme, and 1–252 for

the subunit II of the enzyme (Ostermeier et al., 1997).

However, the missing residues 1–16 that were not resolved

in the crystallographic structure could nevertheless have an

influence on the structure and dynamics of the rest of the

protein. Fluctuations of the W12 and W8 systems are

compared in Fig. 5. No significant trend is observed and

neither simulation showed a higher fluctuation than the

other; the fluctuations are ;0.1 Å smaller in the W8 simula-

tions, at later stages again reflecting the denser packing.

Water distribution in cytochrome c oxidase and
its dynamical properties

The identification of protein-bound water molecules and of

hydrogen-bonded networks allows us to study their dynamic

behavior. The water molecules in cytochrome c oxidase for

the W12 set at the start of the simulation are shown in Fig. 6.

Since some of the hydrogen-bonded pathways are assumed

to constitute proton pathways, it is important to estimate their

lifetimes, as that can provide some insights into the effi-

ciency of proton translocation. The average hydrogen-bond-

ing statistics for COX were computed from the 1125 ps W12

and W8 simulations. Table 1 shows the time evolution of the

number of hydrogen bonds between water oxygens and

protein residues. During the first 270 ps of molecular

dynamics production the number increased rapidly, and

reached a steady state. This fact can be ascribed to the

penetration and escape of water molecules into and out of the

enzyme; an imbalance between these two processes causes

the fluctuation. As the MD simulation proceeds, the system

relaxes, and some water molecules get access to the protein

interior, making favorable interactions with residues.

Of the total of (176 1 88) water molecules in the W12

system, 92% had lifetimes of hydrogen-bonding of\100 ps,

and \2% had lifetimes of [1 ns. In the W8 system, 93%

of the total (755 1 88) water molecules had lifetimes of

hydrogen-bonding \100 ps, and \1% had lifetimes of [1

ns. For a further analysis of the dynamic properties of the

internal water molecules in the cytochrome c oxidase, we

calculated the self-diffusion coefficient of water for both the

TABLE 2 Hydrogen bonds between internal water molecules

and amino acids in the K-pathway during 1125 ps of molecular

dynamics production for the W12 set of water molecules binding

sites (with occupancy $20%; please note all listed protein

residues belong to subunit I)

Hydrogen

bonds

Occup.

(%)

Average

lifetime Events

OH� OH2 — WS 69 H2 100 1125.0 1
OH� OH2 — WG 7 H1 100 1125.0 1
TRP 358 HN — LYS 354 O 98 12.6 87

HIS 276 HE1 — WS 69 OH2 98 13.1 84
THR 361 HG1 — SER 357 O 97 52.2 21

SER 357 HN — ILE 353 O 94 5.9 180

TYR 280 O — LEU 284 HN 92 7.0 148

TRP 358 HE1 — SER 291 OG 86 4.8 201

SER 291 HN — PHE 287 O 86 4.9 197

THR 351 HG1 — ILE 347 O 85 4.8 199

HEMA3 HO11 — WS 69 OH2 74 13.2 63
HIS 326 HE1 — WG 7 OH2 73 2.8 296
TYR 280 HD2 — HIS 276 O 70 2.4 327

SER 357 OG — GLY 304 HN 68 2.6 295

THR 361 HN — SER 357 O 64 2.4 302

HIS 276 HE1 — WG 7 OH2 59 2.1 315

SER 295 HN — SER 291 O 58 2.8 234

TYR 280 HH — Ws 69 OH2 49 9.7 57
SER 291 HG1 — PHE 287 O 47 5.5 96

HIS 325 HE1 — WS 69 OH2 46 2.9 177
TRP 272 O — HIS 276 HN 44 2.9 171

SER 295 HG1 — SER 291 O 42 3.6 129

TYR 280 HN — HIS 276 O 41 2.3 205

WS 6 OH2 — WG 161 H1 27 4.1 75
GLY 319 O — WS 81 H2 21 79.2 3
WG 161 OH2 — WG 149 H2 21 3.5 68

TABLE 1 Statistics of hydrogen-bond network for the W12

and W8 systems during MD production run

W12 W8

Time,

ps

$90

%

$75

%

$50

%

$25

% Total

$90

%

$75

%

$50

%

$25

% Total

45 23 47 96 266 1455 23 39 107 265 1348

90 31 56 119 289 1417 30 53 112 278 1313

135 29 65 122 301 1325 32 59 120 272 1285

180 36 62 110 304 1353 27 53 110 277 1288

225 33 53 116 313 1440 33 72 128 279 1292

270 37 63 126 381 1400 32 62 132 278 1255

315 37 65 132 306 1358 28 61 131 276 1248

360 44 67 133 311 1449 24 59 125 288 1240

405 39 63 138 292 1316 33 57 132 306 1294

450 37 66 115 296 1406 31 57 117 291 1297

495 34 58 132 293 1427 46 71 137 280 1228

540 33 59 128 309 1379 33 63 129 283 1239

585 33 61 134 310 1335 26 58 130 277 1280

630 38 69 130 291 1335 27 62 128 281 1282

675 37 61 133 292 1345 33 64 129 290 1249

720 45 67 130 306 1358 30 59 127 299 1284

765 40 72 130 290 1363 31 59 118 309 1321

810 37 78 138 315 1321 36 57 120 288 1290

855 37 76 142 314 1374 28 55 125 293 1270

900 42 72 128 309 1358 36 63 133 289 1262

945 44 75 139 302 1407 34 70 136 300 1254

990 33 68 131 300 1411 42 67 135 280 1323

1035 37 70 135 313 1434 37 55 118 305 1352

1080 33 69 136 324 1447 36 75 131 281 1271

1125 40 66 126 310 1458 40 66 128 290 1264
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W12 and the W8 sets of coordinates. The diffusion

coefficients (D) of the water molecules were estimated from

the mean-square displacement obtained from the molecu-

lar dynamics trajectories (Eq. 2). In our simulations, water

molecules were allowed to leave the protein during the

period analyzed. For the 88 water molecules found in the

crystal structure plus the 176 water molecules from the

GRID calculations (W12 set of coordinates), DH2O was (3.0

6 0.005) 3 10–9 m2/s, and for the 88 structural water

molecules plus the 755 water molecules from the W8 set of

coordinates, DH2O was (3.1 6 0.005) 3 10–9 m2/s.

Experimental values for DH2O at 300 K are 2.3 3 10–9 m2/

s (Mills, 1973), and in pure TIP3P water (Jorgensen et al.,

1983) at 300 K DH2O has been estimated to be 1.3–4.2 3

10–9 m2/s (Norberg and Nilsson, 1994).

The simulations show interesting features concerning

the water distribution around the hemes. The hemes and the

axial histidine ligands His-94, His-413, and His-411 were

constructed to be in similar conformations as in the post-

1AR1 structure. In our MD simulations we find that water

molecules form hydrogen bonds with the ND1 atom of the

axial His-413. For the whole period of the simulations, His-

411 formed a hydrogen bond with the O atom of Tyr-391

with an occupancy of 60% and a residence time of 691 ps,

and with water molecule WG114 with an occupancy of 46%

and a residence time of 513 ps.

The water molecules bound to the axial histidines are not

the only water molecules fixed inside the protein for quite

a long time. The majority of water molecules had shorter

residence times than 100 ps, but a few water molecules in the

binuclear center had longer residence times, up to the whole

simulation time (Tables 2–7). In Fig. 9, A and B, and in

Tables 6 and 7, we show that the structural water WS69 in

both the W12 and the W8 sets and calculated water WG7 in

the W8 set remained bound to CuB-ligated OH� during 1125

ps of simulation. There are quite a number of water

molecules trapped within cavities, although in certain cases

there is exchange with the W0 water. The behavior of this

TABLE 3 Hydrogen bonds between internal water molecules

and amino acids in the K-pathway during 1125 ps of molecular

dynamics production for the W8 set of water molecules binding

sites (with occupancy $20%; please note all listed protein

residues belong to subunit I)

Hydrogen

bonds

Occup.

(%)

Average

lifetime Events

OH� OH2 — WS 69 H2 100 1125.0 1
TYR 280 O — LEU 284 HN 93 6.1 171

TRP 358 HN — LYS 354 O 77 4.6 191

SER 357 HN — ILE 353 O 77 3.4 256

TRP 272 O — HIS 276 HN 75 3.5 243

TRP 358 HE1 — SER 291 OG 66 2.9 259

SER 291 HN — PHE 287 O 61 2.6 266

SER 295 HG1 — SER 291 O 59 4.8 137

SER 291 HG1 — PHE 287 O 54 9.6 63

TYR 280 HD2 — HIS 276 O 53 1.9 306

THR 361 HN — SER 357 O 53 3.4 175

THR 351 HG1 — ALA 348 O 50 7.2 78

THR 361 HG1 — SER 357 O 48 11.8 46

TYR 280 HN — HIS 276 O 43 2.1 225

SER 357 HG1 — ILE 353 O 39 9.2 48

TYR 280 HH — WG 188 OH2 33 6.9 54
SER 295 HN — SER 291 O 30 1.8 187

PRO 350 O — WG 379 H1 28 5.1 61
VAL 349 O — W2 6384 H2 27 4.0 76
THR 351 HN — ALA 348 O 27 2.5 121

WS 6 H2 — WG 194 OH2 25 6.9 40
SER 357 OG — GLY 304 HN 24 2.4 114

WS 6 OH2 — WG 164 H1 23 4.3 61
HIS 276 HE1 — WS 69 OH2 22 2.7 90
W2 6384 OH2 — GLY 352 HN 22 2.4 106
VAL 349 O — W2 6384 H1 21 3.4 71
GLY 304 O — WG 194 H2 21 4.0 61
WS 88 OH2 — WG 491 H1 20 3.4 66

TABLE 4 Hydrogen bonds between internal water molecules

and amino acids in the D-pathway during 1125 ps of molecular

dynamics production for the W12 set of water molecules binding

sites (with occupancy $20%; please note all listed protein

residues belong to subunit I)

Hydrogen

bonds

Occup.

(%)

Average

lifetime Events

TYR 35 O — ALA 39 HN 100 40.0 28

ASN 199 O — THR 203 HG1 100 70.1 16

TYR 35 HN — ILE 31 O 98 17.3 64

SER 134 HN — LEU 130 O 98 15.2 73

ASN 199 O — THR 203 HN 97 8.8 123

SER 193 HN — SER 183 O 95 6.6 163

ASN 199 OD1 — PHE 127 HN 95 5.9 181

GLE 278 HN — PHE 274 O 94 8.4 126

SER 193 O — ALA 197 HN 90 5.5 183

THR 26 O — WG 144 H1 86 10.9 89
ASN 131 HD22 — WG 144 OH2 78 4.3 205
ASP 124 O — ASP 124 HN 76 3.0 281

SER 134 O — TYR 138 HN 74 2.6 318

SER 134 O — SER 192 HG1 73 6.9 118

TYR 35 HH — WG 131 OH2 64 18.4 39
ASN 113 OD1 — ASN 131 HD21 64 3.6 202

ASP 124 OD1 — WG 144 H2 53 85.7 7

ASP 124 OD1 — MET 125 HN 52 6.5 90

ASP 124 OD1 — HSD 28 HD1 51 8.4 69

ASN 113 HN — GLY 109 O 49 2.5 221

ASN 199 HN — LEU 195 O 49 2.3 242

ASN 113 HD22 — GLY 109 O 41 3.2 147

ASN 199 HD22 — WG 143 OH2 41 3.5 130
ASP 124 OD2 — MET 125 HN 40 9.9 45

ASN 113 HD21 — ASN 131 OD1 40 5.5 82

ASN 131 O — TYR 135 HN 39 1.9 225

SER 134 OG — WG 131 H1 38 4.2 103
SER 134 HG1 — LEU 130 O 34 3.1 125

ASP 124 OD2 — WG 144 H2 34 47.4 8

ASN 131 OD1 — WG 131 H2 32 3.3 107

ASP 124 OD2 — HSD 28 HD1 29 4.9 68

ASN 199 HD22 — WG 80 OH2 21 2.7 87
SER 134 OG — WG 131 H2 20 3.5 63
ASN 131 OD1 — WG 131 H1 20 3.2 70
WG 8 H1 — WG 12 OH2 20 10.5 22
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cavity water is like that of mobile water molecules in W0

water with many alternating hydrogen-bond partners. Table

6 lists waters with three, four, and five partners, and we could

only list the interactions with [20% occupancy.

Depending on the definition of the hydrogen-bond

geometry used, our analysis sometimes shows that a contact

between a water molecule and a residue breaks while at the

same time a new interaction between the same water

molecule and another neighboring residue develops. The

water molecule changes its orientation only, and, as a result,

remains trapped in that region for quite a long time, but the

average lifetime of the hydrogen bond is smaller than the

overall residence time of this water molecule. An example of

such a water molecule is water WG158 (Table 7), which can

form hydrogen bonds with His-325 and with water W01385.

The reason for performing two parallel simulations that

only differ by the amount of internal water molecules added,

is, of course, to determine the level of hydration of the

protein interior. All water molecules of the W8 set had GRID

energies \�8 kcal/mol indicating high occupancy. The

hydrogen-bond lifetimes are longer for the W12 set than for

the W8 set. This is due to a greater number of hydrogen-

bonding possibilities in the W8 system that is filled with

water more densely. The MD simulations indicate that the

solvent distribution is more diffuse for higher hydration

states (Helms and Wade, 1998). According to our observa-

TABLE 5 Hydrogen bonds between internal water molecules

and amino acids in the D-pathway during 1125 ps of molecular

dynamics production for the W8 set of water molecules binding

sites (with occupancy $20%; please note all listed protein

residues belong to subunit I)

Hydrogen

bonds

Occup.

(%)

Average

lifetime Events

TYR 35 O — ALA 39 HN 99 22.3 50

ASN 199 O — THR 203 HN 96 8.6 125

TYR 35 HN — ILE 31 O 93 6.4 162

ASN 199 OD1 — PHE 127 HN 93 7.8 134

SER 193 O — ALA 197 HN 87 4.6 215

SER 134 HN — LEU 130 O 81 4.7 195

ASN 199 O — THR 203 HG1 78 11.6 76

SER 134 O — TYR 138 HN 65 2.7 275

SER 193 HN — SER 189 O 50 2.8 202

ASN 131 HN — PHE 127 O 46 2.2 234

TYR 35 HH — WG 540 OH2 43 10.0 49
TYR 114 O — WG 198 H1 41 5.0 91
ASP 124 O — ASP 124 HN 38 1.9 225

ASP 124 OD1 — MET 125 HN 37 4.8 86

PHE 274 O — GLE 278 HN 33 3.8 99

GLE 278 HN — PHE 274 O 33 3.8 99

ASN 113 HD22 — GLY 109 O 32 2.6 140

ASP 124 OD2 — MET 125 HN 31 4.4 79

ASN 199 HN — LEU 195 O 27 1.7 177

ASN 113 HN — GLY 109 O 24 2.4 110

SER 193 HG1 — WG 220 OH2 23 9.2 28
SER 134 HG1 — LEU 130 O 23 4.8 55

TYR 35 HH — W1 232 OH2 22 15.4 16
ASN 131 OD1 — WG 540 H1 20 3.0 76

TABLE 6 Hydrogen bonds between internal water molecules

and amino acids in the heme a3/CuB region during 1125 ps of

molecular dynamics production for the W12 set of water

molecules binding sites (with occupancy $20%; please

note all listed protein residues belong to subunit I)

Hydrogen

bonds

Occup.

(%)

Average

lifetime Events

HEMA3 O1A — ASP 399 HD2 100 140.4 8

OH� OH2 — WS 69 H2 100 1125.0 1
OH� OH2 — WG 7 H1 100 1125.0 1
HIS 276 HE1 — WS 69 OH2 98 13.1 84
ARG 473 HE — WS 13 OH2 98 15.3 72
HEMA3 O1A — HSD 403 HD1 96 12.6 86

HIS 413 O — SER 417 HN 91 4.5 230

ASP 399 O — HSD 403 HN 89 5.3 189

ASP 399 HN — GLN 395 O 83 4.3 218

HEMA3 O2A — WG 5 H1 74 23.0 36
HEMA3 HO11 — WS 69 OH2 74 13.2 63
HIS 326 HE1 — WG 7 OH2 73 2.8 296
HIS 413 HN — VAL 409 O 70 2.9 271

HIS 276 O — TYR 280 HD2 70 2.4 327

HEMA3 O2D — ARG 473 HH12 69 17.9 43

HEMA3 O2A — HSD 403 HD1 65 2.8 261

HIS 94 O — MET 98 HN 64 3.0 243

HIS 94 HD1 — SER 46 O 61 2.7 252

HIS 411 HN — TYR 407 O 60 2.6 266

HIS 276 HE1 — WG 7 OH2 59 2.1 315
VAL 408 O — WG 214 H2 54 9.9 61
HEMA3 O1D — ARG 473 HH21 49 21.0 26

TYR 280 HH — WS 69 OH2 49 9.7 57
HIS 411 HE1 — W4 114 OH2 48 2.6 208
HIS 325 HE1 — WS 69 OH2 46 2.9 177
HIS 276 HN — TRP 272 O 44 2.9 171

TYR 328 HN — W4 172 OH2 43 3.9 124
GLY 319 O — W3 5248 H1 43 22.0 22
GLN 463 OE1 — WG 30 H2 43 3.1 159

TYR 280 HN — HIS 276 O 41 2.3 205

HIS 325 HD1 — VAL 322 O 41 8.2 57

HIS 276 O — TYR 280 HN 41 2.3 205

ARG 473 HH22 — WS 13 OH2 41 3.3 140
W0 2000 H1 — W3 5248 OH2 41 8.3 55
WG 5 OH2 — W4 214 H1 41 6.3 73
GLN 463 OE1 — WG 30 H1 40 3.0 151
VAL 408 O — W4 214 H1 39 10.5 42
THR 389 OG1 — HIS 411 HD1 35 2.5 159

HEMA3 O2A — W3 1204 H1 34 26.9 14
HEMA O2D — ARG 474 HE 34 6.9 56

HEMA3 O1D — ARG 473 HH12 32 7.8 46

HEMA OMA — GLN 463 HE21 32 2.0 184

TYR 475 HN — WG 173 OH2 31 3.7 95
ASP 399 OD1 — W4 172 H1 31 6.5 53
WG 130 OH2 — WG 114 H2 29 4.2 79
HEMA3 O1A — W4 172 H2 28 4.2 75
TYR 475 HN — WS 42 OH2 28 2.5 130
HEMA3 O1D — W3 1204 H2 27 20.0 15
HIS 94 HN — MET 90 O 27 2.2 135

ARG 54 HE — WG 31 OH2 26 11.2 26
HEMA3 O1A — W4 172 H1 25 4.8 60
PHE 383 O — WG 129 H2 23 4.0 65
GLY 387 O — WG 114 H1 23 4.0 64
ARG 54 HE — W4 220 OH2 23 14.9 17
WG 130 OH2 — WG 114 H1 23 3.7 69
THR 50 OG1 — W4 220 H2 22 2.6 97

(Continued)
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tions, the hydrogen-bonded network in cytochrome c
oxidase is not uniformly distributed, and the degree of water

arrangement is variable, inasmuch as side chains induce

variable level of the water ordering (Bret et al., 2002).

The distribution of water in the K- and D-pathways

Detailed information about energetically favorable water

binding sites along the K- and D-pathways is essential for

understanding the mechanism of proton transfer in COX. By

examining the MD trajectories for water molecules and using

the definition of hydrogen-bonding by Tang and Nilsson

(1999), the number of water molecules can be obtained,

which are likely to form the hydrogen-bonded network. The

numbers of water molecules in the K- and D-pathways at

different times are given in Table 8. The GRID method

placed seven water molecules in the K-pathway for the

beginning of the simulations. It can be seen that the number

of solvents is not static, but ranges quite substantially from 8

to 3 with an average of 6.5 for the W12 set of coordinates,

and from 5 to 15 with an average of 9.5 for the W8 set. These

sites participate in the formation of a reasonable hydrogen-

bonded network in the K-pathway. This network is not

continuous (Fig. 7, A and B). Tables 2 and 3 list the hydrogen

bonds inside the K-pathway with occupancies [20%. A

hydrogen-bonded connection can be seen at the beginning of

the K-pathway and also at the end, leading up to heme a3, but

there is no direct or water-mediated connection between Lys-

354 and Thr-351 at the beginning of the W12 simulations.

After 500 ps of the MD run we observe a significant

reorientation of the side chain of neutral Lys-354 and

formation of a hydrogen bond between the O atom of water

WG149 and the HZ1 atom of Lys-354 with an occupancy of

6% (data not shown). Due to the low occupancy, we can

conclude that Lys-354 has little effect on water ordering,

perhaps because of its long flexible side chain. For the W8

simulations, the hydrogen-bonded network was continuous

after the placement of GRID water molecules. However,

after the first 45 ps of dynamics many water molecules had

left their positions and the hydrogen-bonded network did not

remain continuous.

For the D-pathway, the number of solvent molecules

ranged from 18 to 24 with an average of 21.5 for the W12

set, and from 24 to 29 with an average of 26.33 for the W8

set. Sixteen sites took part in the formation of a quite stable

continuous hydrogen-bonded chain leading from Asp-124 to

the region close to Glu-278, but only four waters in the

TABLE 7 Hydrogen bonds between internal water molecules

and amino acids in the heme a3/CuB region during 1125 ps of

molecular dynamics production for the W8 set of water

molecules binding sites (with occupancy $20%; please note

all listed protein residues belong to subunit I)

Hydrogen

bonds

Occup.

(%)

Average

lifetime Events

OH� OH2 — WS 69 H2 100 1125.0 1
HIS 413 HN — VAL 409 O 97 13.7 80

HIS 411 HD1 — VAL 408 O 92 9.3 111

ASP 399 HN — GLN 395 O 91 5.2 198

HIS 325 HE1 — OH� OH2 82 20.5 45
HIS 94 HN — MET 90 O 81 3.6 253

HIS 276 HN — TRP 272 O 75 3.5 243

HIS 325 HD1 — WG 158 OH2 74 13.7 61
HIS 413 O — SER 417 HN 67 2.3 327

HIS 326 HN — W0 1385 OH2 66 3.3 222
HEMA3 OMA — WG 158 H2 65 9.1 81
HEMA3 O1D — ARG 473 HH21 63 7.1 100

W0 1385 OH2 — WG 158 H1 60 5.9 115
HIS 94 O — MET 98 HN 55 2.3 269

SER 394 HG1 — WG 491 OH2 54 6.7 90
HIS 276 O — TYR 280 HD2 53 1.9 306

ARG 473 HE — WG 51 OH2 53 7.2 83
HIS 413 HD1 — WS 42 OH2 50 6.2 91
HEMA3 O2A — ASP 399 HD2 49 91.6 6

WS 69 OH2 — WG 453 H1 47 4.2 124
HIS 276 O — TYR 280 HN 43 2.1 225

ARG 473 HE — WS 13 OH2 42 8.7 55
HIS 326 HE1 — WG 453 OH2 39 3.0 146
HEMA3 O1D — ARG 473 HH12 37 8.9 47

OH� OH2 — WG 453 H2 34 385.8 1
TYR 280 HH — WG 188 OH2 33 6.9 54
ARG 473 HH12 — W4 178 OH2 29 11.5 28
WG 177 OH2 — WG 189 H2 29 6.6 49
TYR 406 HH — WG 46 OH2 26 9.7 30
SER 394 HG1 — WG 188 OH2 26 10.0 29
ARG 474 HH11 — WG 31 OH2 26 9.0 33
HEMA3 O2D — ARG 473 HH21 25 4.3 66

HEMA3 O2D — W4 182 H2 25 11.3 25
HIS 413 HD1 — W4 219 OH2 23 7.8 34
HIS 325 HN — WG 326 OH2 23 3.0 87
TYR 406 HH — W4 224 OH2 22 3.8 65
TYR 406 HH — W1 3872 OH2 22 8.1 30
HIS 276 HE1 — WS 69 OH2 22 2.7 90
GLY 390 HN — WG 395 OH2 22 2.5 101
GLY 352 HN — W2 6384 OH2 22 2.4 106
WG 515 OH2 — WG 178 H1 22 6.0 41
HIS 411 HN — TYR 407 O 21 1.9 125

HIS 236 O — W3 799 H2 21 14.2 17
ARG 473 HH11 — WG 51 OH2 21 2.3 106
HEMA3 OMA — WG 158 H1 20 5.3 43
HEMA3 O1D — W4 191 H1 20 6.4 35
HEMA O11 — WG 48 H1 20 2.7 83
WS 81 H2 — W2 7182 OH2 20 9.7 23

TABLE 6 (Continued)

Hydrogen

bonds

Occup.

(%)

Average

lifetime Events

WS 13 OH2 — WG 31 H1 22 2.6 94
WG 130 H1 — WG 129 OH2 22 6.7 37
TRP 164 HE1 — WG 4 OH2 21 2.4 98
GLY 319 O — WS 81 H2 21 79.2 3
WG 99 H1 — WG 28 OH2 21 2.9 82
WG 5 OH2 — W4 214 H2 21 6.5 37
THR 50 OG1 — W4 220 H1 20 2.5 91
WS 81 OH2 — W3 5248 H2 20 10.2 22
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hydrophobic pore between Ser-193 and Glu-278 were found

to be required to form a hydrogen-bonded chain, which

could be used for proton transfer (Fig. 8, A and B). The

average lifetime of the hydrogen-bonded chain formed by

these four water molecules is much shorter than the lifetime

of hydrogen bonds formed by each individual pair of water

molecules. Some of these waters have a high mobility during

the MD simulations. The change in the number of water

molecules arises either from water exchanging with W0

water or with the interior of protein (Henchman and

McCammon, 2002). As an example, we examined the

trajectory of water W4172 from the W12 set and found that

this water molecule was able to traverse a distance of ;3.5 Å

during ;0.3 ns. Although the placement of water molecules

identifies an efficient pathway for protons up to Glu-278, the

connection of the D-pathway with other protonatable sites

beyond Glu-278 is not clear. One possibility is that the

protonated glutamic acid side chain could flip upward and

deliver its proton either to the binuclear center or to a heme a3

propionate group as proposed (Iwata et al., 1995). The space

between Glu-278 and the binuclear center/heme a3 pro-

pionate group is proposed to be a part of the oxygen

diffusion channel (Svensson-Ek et al., 2002), which is

hydrophobic and does not contain any crystallographically

identifiable water molecules. This area may be filled with

mobile water molecules as has been suggested by Riistama

et al. (1997). Within the time of 1.125 ns of MD simulations,

such a conformational change of the protonated Glu-278 was

not observed. Our data do not show that there is a connection

between the protonated Glu-278 and the O1A propionate

group of heme a3 for the COX in a fully oxidized state.

However, an additional short simulation of COX in a fully

oxidized state with deprotonated Glu-278 shows a significant

reorientation of the side chain of Glu-278 and the formation

of a hydrogen-bond chain between Glu-278 via water

molecules up to the O1A atom of the heme a3 propionate

(these data we had presented at the 12th European

Bioenergetics Conference in 2002; referenced by Zheng

et al., 2003). This difference may be of interest for routing

protons in different parts of the catalytic cycle. Locally, the

TABLE 8 The average number of water molecules at

instantaneous snapshots in the K- and D-pathways of

cytochrome c oxidase from Paracoccus denitrificans

Average number of water molecules

Time, ps K-path W12 K-path W8 D-path W12 D-path W8

0

45 8 15 23 29

225 8 5 20 25

450 6 10 18 27

675 9 5 22 24

900 4 9 22 27

1125 3 13 24 26

FIGURE 7 Multiple configurations of selected residues and water molecules in the K-pathway for the W12 (A) and W8 (B) set of coordinates observed from

MD trajectories. Initial coordinates are shown with the thick licorice. Positions of the selected residues after 1125 ps are shown with the thin licorice. Snapshots

for selected water molecules are taken after 225, 450, 675, 900, and 1125 ps of simulations. For the W12 set of coordinates water molecule WS6 (structural

water) is represented in blue, WS9 in yellow, WS69 in red, WS81 in rose, WG7 (internal GRID water) in light green, WG149 in pink, and WG161 in magenta.

For the W8 set of coordinates water molecule WS6 is represented in blue, WS69 in red, WS88 in yellow, WG13 in rose, WG188 in light green, WG194 in gold,

WG379 in pink, WG491 in magenta, and W26484 in orange.
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hydration network follows the reorientation of particular

residues that change their conformation. Examples are

shown in Fig. 7, A and B; Fig. 8, A and B; and Fig. 9, A
and B.

A large number of water molecules was observed in the

gap between subunit I and II and in the hydrophilic cavity

above heme a and heme a3. This result is in agreement

with previous studies (Hofacker and Schulten, 1998; Zheng

et al., 2003). These water molecules form a network of

hydrogen bonds and connect the propionate groups of

heme a and heme a3 to the external aqueous phase in many

ways. Since it has been suggested that the propionate

groups are involved in proton pumping (Michel, 1998;

Puustinen and Wikström, 1999), this network could be

a possible pathway for proton exit. In Fig. 9, A and B, we

show that the cavities above heme a and heme a3 contain

a number of positionally stable, but also highly mobile

water molecules with hydrogen-bond occupancies of

\30%. For example, the modeled internal water WG5 is

present and essentially always hydrogen-bonded to the

O2A atom of the heme a3 propionate for 828 ps in the

W12 set. Noteworthy are the hydrogen bonds between

some water molecules and the propionate groups of the

hemes, which may be of structural and energetic

importance. In agreement with previous electrostatics

calculations (Kannt et al., 1998), it was found that Asp-

399 forms a hydrogen bond with the O1A heme a3

propionate with an occupancy of 100% and a residence

time of 1123.2 ps, and also forms a hydrogen bond with

water W4172 with an occupancy of 31% and a residence

time of 344.5 ps (Fig. 9, A and B) for the W12 set.

Another interesting observation is that Arg-473 and Arg-

474 seem to play an important role in directing the water

network orientation in the region above heme a/heme a3.

Their highly mobile side chains significantly influence the

reorientations of water molecules in both the electron

transfer and proton exit pathways (Puustinen and Wikström,

1999). The HH21 atom of Arg-473 forms a hydrogen bond

with the O1D atom of the heme a3 propionate with an

occupancy of 63% and a residence time of 710 ps. The

HH21 atom of Arg-474 forms a hydrogen bond with the

O2D atom of the heme a propionate with an occupancy of

87% and a residence time of 990.6 ps. These results show

that the D-propionate of the heme a is more strongly

stabilized by charge interactions with this arginine, in

agreement with previous electrostatics calculations (Kannt

et al., 1998). The simulation with the W8 set shows

a significant reorientation of Tyr-167 in the direction away

from the hemes. Although there is no experimental evi-

dence concerning the role of this residue, it is very likely

that Tyr-167, which is located close to Arg-474, plays a role

in the formation of a hydrogen-bonded connection to Arg-

474 via mobile water molecules, and to the proton exit or

electron transfer pathways.

FIGURE 8 Multiple configurations of selected residues and water molecules in the D-pathway for the W12 (A) and W8 (B) set of coordinates observed from

MD trajectories. Initial coordinates are shown with the thick licorice. Positions of the selected residues after 1125 ps of MD run are shown with the thin licorice.

Snapshots for selected water molecules are taken after 225, 450, 675, 900, and 1125 ps of simulations. For the W12 set of coordinates water molecule WS38 is

represented in blue, WS40 in yellow, WS80 in red, WG8 in light green, WG12 in gold, WG80 in light blue, WG131 in magenta, and WG144 in pink. For the W8

set of coordinates water molecule WS3 is represented in rose, WS38 in blue, WG9 in light blue, WG11 in orange, WG180 in light green, WG198 in magenta,

WG220 in green, WG238 in red, WG540 in gray, and W1232 in black.
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CONCLUSION

The main results of the GRID calculations and dynamic

simulations can be summarized as follows:

A much higher average number of internal water mole-

cules than observed in crystal structures (Iwata et al.,

1995; Ostermeier et al., 1997; Tshukihara et al., 1996;

Svensson-Ek et al., 2002) was found in our simu-

lations.

The dynamic model leads to a stable system. The MD

simulation requires ;1 ns to reach a dynamic equili-

brium, due to the effect of protein-membrane and pro-

tein-water interactions. Also, water-protein interactions

take a long time to reach equilibrium. Similar obser-

vations were reported for other systems (Garcia and

Hummer, 2000; Bret et al., 2002).

The hydrogen-bonded network in cytochrome c oxidase

is not uniformly distributed, and the degree of water

arrangement is variable. The protein-membrane-water

model provides a detailed description of the structure

and dynamics of a hydrogen-bonded network and iden-

tifies a number of permanent water molecules sites in

the K- and D-pathways. Networks of hydrogen-bonded

water molecules are found that extend in many

directions above the heme a and heme a3. Some of

the water molecules in the vicinity of the binuclear

center have lifetimes ;1 ns, but in general the majority

of internal water molecules are mobile. The presence of

mobile water is indicated in regions of the protein

where no water has been found by x-ray crystallogra-

phy. The explanation for the large discrepancy of the

number of internal water molecules as found during

simulation and as compared to the crystallographically

identified internal water molecules is the high mobility

and exchange rate of water molecules between internal

and external locations.

Although our simulations agree with previous theoretical

studies in general (Riistama et al., 1997; Hofacker and

Schulten, 1998; Backgren et al., 2000; Zheng et al., 2003),

there are some differences. The main one concerns the sig-

nificant diffusion of individual water molecules in the D- and

K-pathways as well as in the region connecting to the

binuclear center. Proton transfer along these pathways may

be different in character than that along narrow water files as

described in gramicidin A (Pomès and Roux, 1996) and

carbon nanotubes (Hummer et al., 2001). We initially plan-

ned to identify a small number of unique hydrogen-bond

networks in the D- and K-pathways as described, for

example, for crystals of vitamin B12 (Savage, 1986). How-

ever, the hydrogen-bonded network in cytochrome c oxidase

is so dynamic and of such a high dimensionality that it

cannot be characterized by pictures and tables. Each hydro-

gen-bonded pathway is transient and exists only for a certain

FIGURE 9 Multiple configurations of selected residues and water molecules close to the heme a/heme a3–CuB region for the W12 (A) and W8 (B) set of

coordinates observed from MD trajectories. Initial coordinates are shown with the thick licorice. Positions of the selected residues after 1125 ps of MD run are

shown with the thin licorice. Snapshots for selected water molecules are taken after 225, 450, 675, 900, and 1125 ps of simulations. For the W12 set of

coordinates water molecule WS13 is represented in blue, WS69 in red, WG5 in yellow, WG7 in green, WG30 in pink, WG144 in magenta, WG173 in orange,

W4172 in gold, and W4214 in rose. For the W8 set of coordinates water molecule WS13 is represented in blue, WS14 in yellow, WS69 in red, WG31 in light

green, WG42 in orange, WG46 in magenta, WG51 in pink, WG157 in green, WG188 in rose, WG189 in black, and WG453 in gold.
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period of time. Proton flow should likely be thought of as

a superimposition of many fluctuating alternative transport

pathways, which are the result of a reorientation and ex-

change of the participating water molecules. The challenge

for the future is to investigate how water permeation and

diffusion in the proton transfer pathways are quantitatively

related to the geometry, charge distribution, and oxidation

state of the protein.
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