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ABSTRACT Transcriptional regulation is a fundamental mechanism of living cells, which allows them to determine their
actions and properties, by selectively choosing which proteins to express and by dynamically controlling the amounts of those
proteins. In this article, we revisit the problem of mathematically modeling transcriptional regulation. First, we adopt a biologically
motivated continuous model for gene transcription and mRNA translation, based on first-order rate equations, coupled with a set
of nonlinear equations that model cis-regulation. Then, we view the processes of transcription and translation as being discrete,
which, together with the need to use computational techniques for large-scale analysis and simulation, motivates us to model
transcriptional regulation by means of a nonlinear discrete dynamical system. Classical arguments from chemical kinetics allow
us to specify the nonlinearities underlying cis-regulation and to include both activators and repressors as well as the notion of
regulatory modules in our formulation. We show that the steady-state behavior of the proposed discrete dynamical system is
identical to that of the continuous model. We discuss several aspects of our model, related to homeostatic and epigenetic
regulation as well as to Boolean networks, and elaborate on their significance. Simulations of transcriptional regulation of
a hypothetical metabolic pathway illustrate several properties of our model, and demonstrate that a nonlinear discrete
dynamical system may be effectively used to model transcriptional regulation in a biologically relevant way.

INTRODUCTION

An emerging theme in modern biology is the development of

accurate experimental techniques for monitoring cellular

behavior (e.g., see Schena et al., 1996; Brown and Botstein,

1999; Turner and Varshavsky, 2000; Zhu et al., 2001; Baldi

and Hatfield, 2002). Although current techniques are mostly

used to identify molecular markers for certain types of disease

(e.g., cancer; see Golub et al., 1999; Bittner et al., 2000;

Kobayashi et al., 2003b), it is the monitoring and modeling of

cellular behavior that could mostly benefit from them.

An important cellular process under investigation is tran-
scriptional regulation. Understanding the biological mecha-

nisms underlying transcriptional regulation may lead to

significant advances in cell biology, drug development, and

medicine. It is becoming increasingly clear that, to enrich our

knowledge about transcriptional regulation and understand

the role it plays in cellular function, we need to construct

a sufficiently predictive mathematical model for such a pro-

cess, derived from basic biological principles. Moreover,

experimental and computational techniques should be de-

veloped to estimate the underlying structure of the model and

its parameters. Model simplicity, via reasonable biological

assumptions and approximations, is important, due to limited

biological knowledge of the mechanisms underlying tran-

scriptional regulation, and difficulties of current technologies

in measuring underlying parameters. If the model is suf-

ficiently predictive, we may use it as a computational tool

(even in the absence of exact parameter values) to simulate

biological scenarios (e.g., steady-state analysis, mutation

effects, knock-out studies, perturbation effects, homeostatic

and epigenetic regulation, etc.), and generate hypotheses

pertaining to the mechanisms underlying transcriptional

regulation and control. This plan seems to be easier, faster,

and cheaper to implement in silice (i.e., on a digital computer

by simulation) than in vivo or in vitro.

There have been considerable efforts to build models for

transcriptional regulation (e.g., see Thomas and D’Ari, 1990;

Kauffman, 1993; Smolen et al., 2000; Gibson and Mjolsness,

2001; Hasty et al., 2001a; Savageau, 2001; de Jong, 2002;

Shmulevich et al., 2002; for reviews of such models and

several references). Most models can be categorized as being

‘‘qualitative’’ or ‘‘quantitative.’’ The former models empha-

size structural information sharing among genes and lack

detailed quantitative description of transcriptional regula-

tion. The later models focus on a quantitative description of

transcriptional regulation and are often more biologically

oriented than qualitative models. The Boolean network

(Kauffman, 1993) is a good example of a qualitative model,

whereas, transcriptional regulation models based on ordi-
nary differential equations (ODEs) (Chen et al., 1999) are

typical examples of quantitative models.

Typically, a qualitative model (like a Boolean network) is

a ‘‘coarse’’ approximation of transcriptional regulation. It

may provide some insights into the underlying mechanisms

of transcriptional regulation, but it may also lead to bio-

logically erroneous conclusions (e.g., see Hatzimanikatis and

Lee, 1999). However, qualitative models may be used to

predict steady-state behavior of transcriptional regulation.

This is a useful property, because cells are often observed at

steady state.

Cells may often transition to different states, due to envi-

ronmental perturbations or genetic instability, which may
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result in differentiation during development, irreversible

adjustments, or disease. Therefore, it is important to design

transcriptional regulation models that sufficiently predict

transient as well as steady-state behavior. It is believed

that ODE-based models can accomplish this goal (e.g., see

Hammond, 1993; Elowitz and Leibler, 2000; Gardner et al.,

2000; Yildirim and Mackey, 2003). Models based on ODEs

are considered to be more detailed than qualitative models,

but require structural knowledge of the transcriptional machi-

nery and of several biological parameters (e.g., identifica-

tion of promoters, regulatory regions, transcription factors,

mRNA decay rates, etc.). This knowledge is not currently

available for most organisms, and it is thought to be the main

disadvantage of ODE-based models. However, several cur-

rent efforts are geared toward determining the structure of the

transcriptional machinery and estimating its parameters (e.g.,

see Hammond, 1993; Endy et al., 1997; Arkin et al., 1998;

Tavazoie et al., 1999; Akutsu et al., 2000b; Gardner et al.,

2000; Turner and Varshavsky, 2000; Lee et al., 2002; Ronen

et al., 2002;Wang et al., 2002). For these reasons, ODE-based

models are becoming increasingly attractive as models for

transcriptional regulation.

An attractive feature of a Boolean network is that it

dynamically relates the state of transcriptional regulation at

time t to its state at time t� Dt, for some Dt[0. The state of

transcriptional regulation is summarized by binary-valued

variables, which are dynamically related from t � Dt to t by
means of Boolean functions. In this formulation, the analysis

and simulation of transcriptional regulation employs theo-

retical and computational tools from discrete dynamical

systems theory (e.g., see Sandefur, 1993), specialized to the

Boolean case.

On the other hand, ODE-based models represent tran-

scriptional regulation by a (usually large) system of

nonlinear ODEs. According to this formulation, the state of

the system is summarized by real-valued variables, with

regulatory interactions taking the form of differential and

nonlinear functional relationships. Due to the size and non-

linear structure of the system, it is not in general possible

to develop mathematical techniques for its analysis. In this

case, analysis is done by means of numerical techniques and

computer simulations. In particular, the system may be

solved by a numerical technique, like a Runge-Kutta or

a predictor-corrector method (e.g., see Meir et al., 2002).

Although these methods lead to general analysis and simu-

lation techniques for transcriptional regulation, they may not

be efficient, and direct biological interpretation of the various

terms in the resulting equations may not be possible.

As noted in Meir et al. (2002), instead of using general

techniques, it may be more preferable to derive a numerical

approach to transcriptional regulation by exploiting the

specific nature of the problem at hand. In this article, we

investigate the possibility of doing so, by replacing an ODE-

based model for transcriptional regulation with a nonlinear

discrete dynamical system that is ‘‘biologically transparent,’’

in the sense that the resulting equations preserve the

biological relevance and structure of the original model.

This allows us to construct a biologically relevant quanti-

tative model for transcriptional regulation that, like the

Boolean network, enjoys attractive dynamical properties and

is amenable to efficient simulation and analysis.

The system proposed in this article is directly obtained

from a well-known model of transcriptional regulation based

on ODEs. The ODE-based model is derived for a large

population of cells by applying simple arguments of chemi-

cal kinetics on the processes of transcription and translation.

It is required that the cell population is large, because the

derivation of the ODE-based model relies on the Boltzmann

distribution of statistical mechanics, which specifies how

energy is distributed in a large population of identical

molecules at statistical equilibrium. Because the ODE-based

model is central to our work, we show in the next section

how this model is derived from first principles. The purpose

of our discussion is to clarify the limitations of modeling

transcriptional regulation by means of ODEs, and to estab-

lish terminology and notation.

In the third section, we show how to model transcriptional

regulation by means of a discrete dynamical system. We

view the processes of transcription and translation as being

discrete, and replace the actual transcriptional machinery

with one for which the speeds of transcription and transla-

tion, as well as the delays in cis-regulation, are constant and
equal to their mean values. We refer to this as an ‘‘average’’

transcriptional machinery. Therefore, the discrete dynamical

system derived in this section models an ‘‘average’’ behavior

of transcriptional regulation. The system is obtained by dis-

cretizing the ODE-based model discussed in the previous

section. The discretization step is taken to be the time dt that
it takes the RNA polymerase II to read one nucleotide.

Moreover, we assume that, for each t ¼ dt, 2dt, . . . , both the

fraction of DNA templates committed to the transcription of

a given gene and the mRNA concentration associated with

that gene, remain constant within the time interval [t � dt, t).
The resulting dynamical system is referred to as a discrete

transcriptional regulatory system. It is specified by means of

parameters that characterize transcription, translation, and

degradation, by functionals that characterize cis-regulation,
and by time delays.

In the fourth section, we discuss the steady-state behavior

of the discrete model under consideration. Our discussion is

motivated by the fact that the steady-state behavior of a model

for transcriptional regulation may be used to characterize the

cell’s phenotype, and focuses on three results. The first result

shows that, at steady state, the mRNA concentration vector of

the discrete model ‘‘decouples’’ from the steady-state protein

concentration vector, in the sense that one vector can be

derived as a solution of a system of (nonlinear in general)

equations without knowledge of the other vector. The second

result shows that there is a one-to-one correspondence be-

tween the steady-state mRNA concentration vector and the
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steady-state protein concentration vector. This suggests that,

at steady state, mRNA expression data may be used to char-

acterize protein activity, provided that a sufficiently good

estimate of the steady-state mRNA concentration vector can

be inferred from such data (this also requires that the model

parameters associated with translation are known). The final

result shows that the discrete model has the same steady-state

behavior as the associated ODE-based model. This result,

together with several computational advantages underlying

the discrete model, indicates that it may be more preferable

to use the proposed discrete dynamical system as a model

for transcriptional regulation, than the original ODE-based

model.

In the next section, and by using classical arguments from

chemical kinetics, we specify the nonlinearities underlying

cis-regulation and include both activators and repressors as

well as the notion of regulatory modules in our formulation.

The derivation is based on the assumption that regulatory

proteins are free to bind at several distinct sites in a promoter’s

regulatory region, and on the assumption that different pro-

teins do not interact with each other or affect each other’s

binding affinity.Moreover, the inclusion of repressor proteins

in the formulation focuses on a specific repressionmechanism

by which, when a repressor protein binds on a DNA template,

it either blocks the recruitment of the transcription initiation

complex on the promoter or prevents the release of RNA

polymerase II. Finally, we show how to model cis-regulation
organized in a modular fashion. According to this organiza-

tion, transcriptional activity of a given genemay be controlled

by a set of distinct modules, with each module asserting its

own transcriptional control, independently of other modules.

In the sixth section, we discuss several properties of the

proposed discrete model, related to homeostatic and epige-

netic regulation as well as to Boolean networks, and elaborate

on their significance. In particular, the structure of the discrete

model under consideration predicts a specific response of

transcriptional regulation to changes in the cellular environ-

ment, and suggests that mRNA and protein degradation,

together with the rates of mRNA and protein synthesis, may

play an important role in homeostatic regulation. We show

that the functional form of cis-regulation is scale-invariant.

This property implies that an increase (decrease) in the rates

of translation, accompanied by a proportional decrease (in-

crease) in the affinity constants underlying the binding of

proteins on a promoter’s regulatory region, does not change

the steady-state mRNA concentration but proportionally in-

creases (decreases) the steady-state protein concentration. It

also implies that an increase (decrease) in the rates of trans-

cription, accompanied by a proportional decrease (increase)

in the affinity constants, proportionally increases (decreases)

both the steady-state mRNA and protein concentrations.

These properties suggest that the rates of transcription and

translation, together with the affinity constants, may play an

important role in epigenetic regulation. We also discuss the

problem of specifying the underlying parameters, we briefly

remark on the appropriateness of the Hill function as a model

for cis-regulation, and introduce a parameter that provides

a trade-off between model accuracy and computational effi-

ciency. Finally, we provide a mathematical argument that

indicates a limitation of using a Boolean network as a model

for transcriptional regulation.

In the seventh section, we present simulations, based on

transcriptional regulation of a hypothetical metabolic path-

way, that illustrate several aspects of the proposed discrete

model. By varying the parameters of themodel, and observing

how these changes affect mRNA and protein activity, we

demonstrate that the nonlinear discrete dynamical system

proposed in this article may effectively be used to model

transcriptional regulation in a biologically relevant way.

Finally, in the last section, we summarize our conclusions.

We believe that the main contribution of this work is to

show that, by using available biological information pertain-

ing to the processes of transcription, translation, and cis-
regulation, we can derive a nonlinear discrete dynamical

system that may serve as a promising and testable model for

transcriptional regulation. Our theoretical discussions and

simulations indicate that the proposed model is capable of

sufficiently predicting basic biological function and pro-

ducing biologically relevant responses. Finally, the discrete

dynamical nature of the proposed model makes it very

attractive for large-scale computational analysis and simula-

tion studies of transcriptional regulation.

REVIEW OF A CONTINUOUS MODEL

To model transcriptional regulation, we consider a large
population C of genetically identical cells that express the

same set of G (distinct) genes, and denote those genes by

G ¼ f1; 2; . . . ;Gg: We take the population to be large

because the derivation of the continuous model discussed

here (as well as the model for cis-regulation discussed later in
this article) uses the Boltzmann distribution of statistical

mechanics. The Boltzmann distribution specifies how energy

is distributed in a large population of identical molecules

(DNA templates, mRNAs, and regulatory proteins in our

case) at statistical equilibrium. We view transcriptional regu-

lation as a complex system of interacting genes and regu-

latory proteins (transcription factors), whose state at time t is
summarized by the G 3 1 vectors r(t) and p(t), given by

rðtÞ ¼

r1ðtÞ
r2ðtÞ
..
.

rGðtÞ

2
6664

3
7775 and pðtÞ ¼

p1ðtÞ
p2ðtÞ
..
.

pGðtÞ

2
6664

3
7775;

where ri(t) and pi(t) are the concentrations in C, at time t, of
the mRNAs and regulatory proteins produced by the ith gene
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(measured in mol/L or molarity M; the concentrations con-

sidered in this article are with respect to the total cellular

volume in C). We consider systems that are ‘‘complete,’’ in

the sense that p consists of all proteins that regulate trans-

cription of the mRNAs in r. For ease of presentation, we

focus on a transcriptional machinery that is ‘‘isolated,’’ in the

sense that it is not subject to external inputs. If necessary, our

formulation can be modified to consider those cases as well

(see the example depicted in Fig. 5).

Given a target gene, we need to mathematically describe

how its expression level (i.e., the mRNA concentration

produced by this gene) is regulated by the expression levels

of other genes. Fig. 1 depicts a block diagram of a model for

transcriptional regulation, in which a target gene 3 is directly

regulated by two other genes, 1 and 2. By ‘‘direct regu-

lation’’ we mean that changes in the expression levels of

genes 1 and 2 may produce a change in the expression level

of gene 3 with no mediation from other genes. According to

this model, the mRNAs transcribed from genes 1 and 2, with

respective concentrations r1(t) and r2(t), at time t, are trans-
lated into two regulatory proteins whose concentrations are

p1(t) and p2(t). These proteins bind to the control region of

gene 3 and regulate the recruitment of general transcription

factors and RNA polymerase II (for eukaryotic cells) to the

gene’s promoter. This step is referred to as cis-regulation.
After the general transcription factors and RNA polymer-

ase II have been assembled and positioned on the promoter,

the RNA polymerase II initiates transcription of gene 3,

whose mRNA concentration at time t is r3(t).
In the diagram depicted in Fig. 1, we have assumed that

mRNAs and proteins do not decay, and that the tasks of

translation, cis-regulation, and transcription are completed

instantaneously. It is a well-known fact however that

mRNAs and proteins are subject to degradation and that

the time required to complete transcription and translation is

not negligible. Transcription is subject to a time delay for

completing RNA chain elongation, whereas, translation is

subject to a time delay for completing the elongation phase

of protein synthesis. Moreover, and for controlling the as-

sembly of the transcription initiation complex (i.e., the gene-

ral transcription factors and RNA polymerase II) at the

promoter, appreciable time is required for the transport of

proteins to the nucleus, for the binding of these proteins to

the appropriate DNA regulatory sequences, and for recruit-

ing the general transcription factors at the promoter. These

effects can be accounted for, by assuming that translation,

cis-regulation, and transcription are subject to time delays

tp,i, tc,i, and tr,i, respectively, for i 2 G. In general, these

delays depend on the particular genes under consideration.

To obtain a model for transcriptional regulation, we need

to mathematically describe the three steps of translation,

transcription, and cis-regulation. To derive a mathematical

model for translation, we adopt the following notation: T,
absolute temperature (in degrees Kelvin, K); R, gas constant
(1.9872 cal mol�1 K�1); Utr,i, activation energy of trans-

lation of the ith mRNA (in cal/mol); Udg,i, activation energy

of degradation of the ith regulatory protein (in cal/mol);

ri(t j U [ Utr,i), concentration, at time t, of ith mRNA

molecules in C with energy greater than the activation energy
Utr,i; pi(t jU[Udg,i), concentration, at time t, of ith regulatory
protein molecules in Cwith energy greater than the activation
energy Udg,i.

The activation energy depends on the specific aspects of

the underlying chemical reaction. By using standard argu-

ments from chemical kinetics (e.g., see Moore and Pearson,

1981; Chapter 5 and Espenson, 1995; Chapter 7), we take the

rate of protein synthesis (per second) during translation to be

proportional to the concentration of mRNAs with energy

[Utr, with proportionality constant atr. Similarly, we take

the rate of protein degradation (per second) to be pro-

portional to the concentration of proteins with energy[Udg,

with proportionality constant adg.

By focusing on the macroscopic behavior of translation

during the time interval [t, t 1 Dt], for some Dt[ 0, we can

write:

piðt1DtÞ ¼ piðtÞ1 concentration of the i
th
regulatory protein produced by translation during ðt; t1Dt�

� concentration of the ith regulatory protein degraded during ðt; t1Dt�

¼ piðtÞ1atr;i

ðt1Dt

t

riðt � tp;ijU[Utr;iÞdt � adg;i

ðt1Dt

t

piðtjU[Udg;iÞdt

¼ piðtÞ1atr;i e
�Utr;i=RT

ðt1Dt

t

riðt � tp;iÞdt � adg;i e
�Udg;i=RT

ðt1Dt

t

piðtÞdt; ð1Þ

FIGURE 1 Block diagram of a model for transcriptional regulation. The

target gene 3 is directly regulated by two genes 1 and 2. Transcriptional

regulation involves three steps: translation, cis-regulation, and transcription.
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for i 2 G; where atr,i and adg,i are the proportionality con-

stants (measured in s�1) associated with the two reactions of

mRNA translation and protein degradation, respectively. To

obtain Eq. 1, we use a fundamental result of statistical

mechanics, which states that, in a large population of iden-

tical molecules at statistical equilibrium with concentration

h, the concentration h(U) of molecules with kinetic energyU
is given by the Boltzmann distribution

hðUÞ ¼ h

RT
e
�U=RT

:

This leads to

hðU[U0Þ ¼
ð‘
U0

hðUÞdU ¼ he�U0=RT; (2)

where h(U[U0) denotes the concentration of molecules in

the population with kinetic energy greater than some thresh-

old U0. From Eq. 1, we obtain

piðt1DtÞ � piðtÞ
Dt

¼ atr;i e
�Utr;i=RT 1

Dt

ðt1Dt

t

riðt � tp;iÞdt

� adg;i e
�Udg;i=RT 1

Dt

ðt1Dt

t

piðtÞdt: ð3Þ

By taking limits, as Dt! 0; on both sides of Eq. 3, and by
setting

li ¼ atr;i e
�Utr;i=RT and gi ¼ adg;i e

�Udg;i=RT; (4)

we obtain the following system of rate equations:

dpiðtÞ
dt
¼ liriðt � tp;iÞ � gipiðtÞ; i 2 G: (5)

These first-order ODEs imply that the rate of change in the

concentration of the ith regulatory protein at time t is pro-

portional to the expression level ri(t � tp,i) of gene i at time

t � tp,i. Moreover, it implies that this protein degrades at a

rate 0 \ gi \ ‘ (in s�1), which is proportional to its

concentration. In Eq. 5, 0 \ li \ ‘ (in s�1) is the rate of

translation; i.e., the proteins synthesized per second from

a mol of mRNA.

By following similar arguments, we can show that trans-

cription can be modeled by the following system of rate

equations:

driðtÞ
dt
¼ kiciðt � tr;iÞ � biriðtÞ; i 2 G; (6)

where 0 # ci(t) # 1 is the fraction, at time t, of DNA

templates in C that are committed to the transcription of

gene i, and 0\ki\‘ is the transcription rate of gene i; i.e.,
the concentration of mRNAs synthesized per second when

all DNA templates in C are committed to the transcription of

gene i (in M s�1). We say that a DNA template is

‘‘committed’’ to the transcription of a gene, if it has suc-

cessfully recruited the transcription initiation complex and

has anchored it at the promoter of that gene. Note that a DNA

template that is committed to transcription may not neces-

sarily lead to transcription initiation. For this to happen, the

energy of the committed DNA template should be greater

than the activation energy of transcription initiation. The

first-order ODEs in Eq. 6 imply that the rate of change in

mRNA concentration produced from gene i at time t is

proportional to the fraction ci(t � tr,i) of DNA templates

committed to the transcription of gene i at time t � tr,i.

Moreover, they imply that these molecules degrade at a

rate 0 \ bi \ ‘ (in s�1), which is proportional to their

concentration.

In general, the cis-regulation of a target gene i may be

modeled by the following equations:

ciðtÞ ¼ fi½pjðt � tc;jÞ; j 2 Ri�; i 2 G; (7)

where fi[�] is a (nonlinear) function, which is specific to the

target gene under consideration, andRi is the set of all genes

in G that produce proteins, which regulate the transcription of
the ith gene. We refer to fi[�] as the cis-regulatory function of
gene i. Moreover, we refer to Ri as the regulatory set of

gene i and to the genes inRi as the regulating genes of gene i.
We call the collection R ¼ fRi; i 2 Gg of all regulatory

sets a transcriptional regulatory network (tRN). In Eq. 7, we

assume that transcription is controlled by the protein pro-

ducts, at times t � tc,j, j 2 Ri; obtained by translating the

regulating genes of the target gene i.
We note here that several variations of the model governed

by Eqs. 5–7 have been proposed in the literature (e.g., see

Hargrove and Schmidt, 1989; Mjolsness et al., 1991; Mestl

et al., 1995; Endy et al., 1997; Wolf and Eeckman, 1998;

Chen et al., 1999; Hatzimanikatis and Lee, 1999; Akutsu

et al., 2000b; Cherry and Adler, 2000; von Dassow et al.,

2000; Elowitz and Leibler, 2000; Gardner et al. 2000; Hasty

et al., 2000; Voit, 2000; Smolen et al., 2000; Gibson and

Mjolsness, 2001; Mjolsness, 2001, Vohradský, 2001;

Wahde and Hertz, 2001; de Jong, 2002; Yildirim and

Mackey, 2003, and the references therein). A limitation of

Eqs. 5–7 is that they only apply to a large population cells.

Moreover, these equations are derived by employing a

macroscopic view of the chemical reactions underlying

translation, cis-regulation, and transcription. The resulting

ODE-based model oversimplifies the complex structure of

a cell’s transcriptional activity, by ignoring several factors

affecting such activity. For example, Eq. 5 ignores the effects

of mRNA transport from the nucleus to the cytoplasm and
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mRNA localization in the cytoplasm, whereas Eq. 6 does not

take into account the mechanisms of RNA processing. Eq. 7

oversimplifies transcriptional control by ignoring, for exam-

ple, complex interactions, inside the cis-regulatory mecha-

nisms, among regulatory proteins, general transcription

factors, RNA polymerase II, chromatin remodeling com-

plexes and DNA, and by ignoring the role that protein-DNA

complexes play in transcriptional regulation. Finally, the

model does not consider how protein folding affects trans-

criptional regulation and ignores several biochemical inter-

actions among proteins and interactions between different

biological and signaling pathways. Nevertheless, the ODE-

based model governed by Eqs. 5–7 provides a ‘‘first-order’’

approximation of transcriptional activity that leads to a

mathematically tractable model for transcriptional regula-

tion.

To conclude this section, note that, by solving Eqs. 5 and 6

with respect to pi(t) and ri(t), we obtain

riðtÞ ¼ kie
�bi t

ð t

tr;i

e
bitciðt � tr;iÞdt1 e

�biðt�tr;iÞriðtr;iÞ;

t $ tr;i; i 2 G;

piðtÞ ¼ lie
�gi t

ðt
tp;i

e
gitriðt � tp;iÞdt1 e

�giðt�tp;iÞpiðtp;iÞ;

t $ tp;i; i 2 G;

which in turn result in

riðtÞ ¼ e
�biDtriðt � DtÞ1 kie

�bi t

ðt
t�Dt

e
bitciðt � tr;iÞdt;

t $ tr;i 1Dt; i 2 G; ð8Þ

piðtÞ ¼ e
�giDtpiðt � DtÞ1 lie

�gi t
ðt
t�Dt

e
gitriðt � tp;iÞdt;

t $ tp;i 1Dt; i 2 G; ð9Þ

for some Dt[ 0. According to Eq. 8, the concentration ri(t)
of the ith mRNA present in the cytoplasm at time t equals the
concentration e�biDtriðt � DtÞ of the mRNA that survives

degradation during the time interval [t � Dt, t), plus the con-
centration kie

�bit
R t

t�Dt e
bitciðt � tr;iÞdt; of the new mRNA

that is synthesized by transcription and survives degrada-

tion during the same interval. According to Eq. 9, the con-

centration pi(t) of the i
th protein present in the cytoplasm at

time t equals the concentration e�giDtpiðt � DtÞ of the protein
that survives degradation during the time interval [t � Dt, t),
plus the concentration lie

�gi t
R t

t�Dt e
gitriðt � tp;iÞdt of the

new protein that is synthesized by translation and survives

degradation during the same interval.

A DISCRETE MODEL

The previous ODE-based model provides a continuous

description of transcriptional regulation. However, the pro-

cesses of transcription and translation may be thought as

being discrete. During transcription, the RNA polymerase II

moves along the DNA in a stepwise fashion and extends the

growing RNA chain by adding one nucleotide at a time (see

Alberts et al., 2002, pp. 302–304). Similarly, during trans-

lation, a ribosome moves along an mRNA transcript by

sequentially processing groups of three nucleotides (codons),

and extends the growing polypeptide chain by adding one

amino acid at a time (see Alberts et al., 2002, pp. 342–344).

These observations, together with the need for solving Eqs.

5–7 using computational techniques, motivates us to derive

a discrete model for transcriptional regulation.

The motion of RNA polymerase II along a DNA molecule

may not be smooth (see Alberts et al., 2002, p. 313); its speed

may depend on time, the particular gene transcribed, and

other factors. Moreover, ribosomes may translate with dif-

ferent speeds at individual codons (e.g., see Sørensen and

Pedersen, 1991), whereas, for each i 2 G; the cis-regulation
delay tc,i may fluctuate. To avoid complications, we replace

the actual transcriptional machinery with one for which the

speeds of transcription and translation, vr and vp, and the cis-
regulation delays tc;i; i 2 G; are all constants, taken to be

equal to their mean values. We refer to this machinery as an

‘‘average’’ transcriptional machinery. This implies that the

discrete dynamical system to be derived in this section will

model an ‘‘average’’ transcriptional activity. Because the

transcription speed is constant, the transcription delay, tr,i,

will be an integer multiple of the time dt that takes the RNA
polymerase II to read one nucleotide. For eukaryotic cells,

we may take the average transcription speed vr ffi 20

nucleotides/s (see Alberts et al., 2002, p. 304), in which case

dt ffi 0.05 s, whereas, we may take the average translation

speed vp ffi 2 codons/s (see Alberts et al., 2002, p. 343). For

this value of vp, the translation delay, tp,i, is also an integer

multiple of dt. Finally, we assume that the ‘‘average’’

transcriptional machinery is also characterized by cis-
regulation delays tc,i, i 2 G, which are integer multiples of

dt as well.
For each i 2 G; we make the following two assumptions:

1) for each t ¼ dt, 2dt, . . . , the fraction ci of DNA fragments

committed to the transcription of gene i remains constant in

the time interval [t � dt, t); and 2) for each t ¼ dt, 2dt, . . . ,
the mRNA concentration ri remains constant in the time

interval [t � dt, t).
In view of the small value of dt, as compared to the large

timescale of transcription (recall that dt ffi 0.05 s in eukar-

yotic cells, as compared to the duration of a typical trans-

cription reaction, which ranges from minutes to hours), we

may shift all transcription commitments within the interval

(t� dt, t), for t¼ dt, 2dt, . . . , to time t, with negligible effects
on transcription. Therefore, we may approximately assume

A Model for Transcriptional Regulation 1927

Biophysical Journal 86(4) 1922–1945



that no new DNA templates commit to transcription within

the time interval (t � dt, t), which explains assumption 1. On

the other hand, and due to the fact that the transcription delay

tr,i is an integer multiple of dt, new mRNAs are synthesized

only at integer multiples of dt. This, together with the

previous observation, implies that new mRNAs are synthe-

sized only at times t ¼ dt, 2dt, . . . . Moreover, experimental

evidence suggests that mRNA half-lives are much larger

than dt (e.g., see Wang et al., 2002, and compare the value dt
ffi 0.05 s for eukaryotic cells with the mRNA half-lives in

yeast, which range from ;3 min to [90 min). In view of

these observations, and assumption 1, we may conclude that

assumption 2 is a reasonable assumption as well.

We can now employ the previous two assumptions to

show that, by using dt as a basic discretization step and

by replacing the actual transcriptional machinery with an

‘‘average’’ one, Eqs. 5–7 can be transformed into a discrete

dynamical system that can effectively simulate transcrip-

tional regulation in an iterative fashion. From assumptions 1

and 2, we have that

ðt
t�dt

e
bit ciðt � tr;iÞdt ¼

ðt
t�dt

e
bitdt

� �
ciðt � tr;i � dtÞ

¼ e
bi t
1� e

�bidt

bi

ciðt � tr;i � dtÞ;

and

ðt
t�dt

e
gitriðt � tp;iÞdt ¼

ð t

t�dt
e
gitdt

� �
riðt � tp;i � dtÞ

¼ e
gi t
1� e

�gidt

gi

riðt � tp;i � dtÞ;

for i 2 G, which, together with Eqs. 8 and 9, with Dt ¼ dt,
result in

riðnÞ ¼ e
�bidtriðn� 1Þ1 kisðbi; dtÞciðn� nr;i � 1Þ;

n ¼ nr;i 1 1; nr;i 1 2; . . . ; ð10Þ

piðnÞ ¼ e
�gidtpiðn� 1Þ1 lisðgi; dtÞriðn� np;i � 1Þ;

n ¼ np;i 1 1; np;i 1 2; . . . ; ð11Þ

where one iteration corresponds to the time step dt, nr,i ¼
tr,i/dt, np,i ¼ tp,i/dt, and

sðx; yÞ ¼ 1� e
�xy

x
: (12)

Moreover, from Eq. 7, we have that

ciðnÞ ¼ fi½pjðn� nc;jÞ; j 2 Ri�; i 2 G; (13)

where nc,j ¼ tc,j/dt.
According to Eq. 10, the concentration ri(n) of the ith

mRNA present in the cytoplasm at step n equals the con-

centration e�bidtriðn� 1Þ of the mRNA that survives degra-

dation from step n � 1 to step n, plus the concentration

kis(bi, dt)ci(n � nr,i � 1) of the new mRNA that is syn-

thesized by transcription and survives degradation between

these two steps. According to Eq. 11, the concentration pi(n)
of the ith protein present in the cytoplasm at step n equals the
concentration e�gidtpiðn� 1Þ of the protein that survives

degradation from step n � 1 to step n plus the concentration

lis(gi, dt)ri(n � np,i � 1) of the new protein that is syn-

thesized by translation and survives degradation between

these two steps.

In the following, and to ease notation, we take the time

delays tp,i, tc,i, and tr,i to be independent of i. In this case,

Eqs. 10, 11, and 13 can be written in the following compact

form:

rðnÞ ¼ Dbrðn� 1Þ1KSbðn� 1ÞF½pðn� nnp � 1Þ�;
(14)

pðnÞ ¼ Dcpðn� 1Þ1 LScðn� 1Þrðn� np � 1Þ;
n ¼ 1; 2; . . . ;

(15)

where n ¼ (tr 1 tc)/tp. In Eqs. 14 and 15, Db, Dc, K, and L

are G 3 G diagonal matrices, given by

Db ¼ diag½e�b1dt; e
�b2dt; . . . ; e

�bGdt�;

Dc ¼ diag e
�g1dt; e

�g2dt; . . . ; e
�gGdt

� �
;

K ¼ diag½k1; k2; . . . ; kG�;

L ¼ diag l1; l2; . . . ; lG½ �:

Moreover, Sb(n) and Sc(n) are G 3 G diagonal matrices,

given by

SbðnÞ ¼ uðn� nnpÞSb; ScðnÞ ¼ uðn� npÞSc;

where

Sb ¼ diag½sðb1; dtÞ; sðb2; dtÞ; . . . ; sðbG; dtÞ�;

Sc ¼ diag½sðg1; dtÞ; sðg2; dtÞ; . . . ; sðgG; dtÞ�;

and

uðnÞ ¼ 1; for n $ 0

0; otherwise
:

�
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Finally, F[p(n � nnp � 1)] is an G 3 1 vector-valued

functional whose ith element is fi½pjðn� nnp � 1Þ; j 2 Ri�:
We refer to F[�] as the cis-regulatory functional.

The iterations suggested by Eqs. 14 and 15 are depicted in

Fig. 2, when tp ¼ dt, tc¼ 3dt, and tr¼ 2dt. These iterations
are initialized with an mRNA concentration vector r(0) and
a protein concentration vector p(0). This implies that the fate

of gene expression is determined by the initial concentrations

of mRNAs and proteins. Matrices Db and Dc model mRNA

and protein degradation, respectively, whereas, matrices K

and L model the rate of transcription and translation,

respectively. For 0 # n # tp/dt ¼ np only degradation is

present. Translation of mRNAs to proteins takes place for

n $ tp/dt 1 1 ¼ np 1 1, whereas, transcription takes place

for n$ (tc 1 tr)/dt1 1 ¼ nnp 1 1. Note that the flow graph

depicted in Fig. 2 has a modular structure; it consists of

individual stages, with the nth stage being the (nonlinear in

general) multi-input/multi-output system depicted in Fig. 3

(for n $ nnp 1 1), where d denotes delay, such that d�mx(n)
¼ x(n � m).
The model suggested by Eqs. 10–13 requires knowledge

of the cis-regulatory functionals F ¼ ffi½��; i 2 Gg; the

degradation parameters B ¼ fbi; i 2 Gg; C ¼ fgi; i 2 Gg;
the transcription and translation rates K ¼ fki; i 2 Gg;
L ¼ fli; i 2 Gg; and the delays D ¼ fni; np;i; i 2 Gg;
where ni ¼ (tr,i 1 tc,i)/tp,i. We refer to the collection

S ¼ fF;B;C;K; L;Dg as a (discrete) transcriptional regu-
latory system (tRS).

STEADY-STATE BEHAVIOR

An important issue associated with a tRS is whether or not

the iterations suggested by Eqs. 10–13 converge to a steady

state and, if they do, to characterize that state. In most cases,

and in the absence of external control, for a tRS to be

biologically plausible, it is required that the mRNA and

protein concentration vectors r(n) and p(n) converge, as

n! ‘; to a steady-state mRNA concentration vector r and

a steady-state protein concentration vector p: In this case,

r ¼ Dbr1KSbF½p�

p ¼ Dcp1 LScr; ð16Þ

from which we have that

r ¼ BKF½CLr�; (17)

p ¼ CLBKF½p�; (18)

where

B ¼ diag b
�1
1 ;b

�1
2 ; . . . ;b

�1
G

� �
;

C ¼ diag g
�1
1 ; g

�1
2 ; . . . ; g

�1
G

� �
:

This shows that r is a fixed-point attractor of the functional
Cr[�], given by

Cr½r� ¼ BKF½CLr�; (19)

whereas, p is a fixed-point attractor of the functional Cp[�],
given by

FIGURE 2 Iterative implementation of transcriptional regulation governed by Eqs. 14 and 15, when tp ¼ dt, tc ¼ 3dt, and tr ¼ 2dt. The implementation is

initialized with an mRNA concentration vector r(0) and a protein concentration vector p(0). Matrices Db and Dc model mRNA and protein degradation,

respectively, whereas, matrices K and L model the rate of transcription and translation, respectively. For 0 # n # tp/dt ¼ 1 only degradation is present.

Translation of mRNAs to proteins takes place for n $ tp/dt 1 1 ¼ np 1 1 ¼ 2, whereas, transcription takes place for n $ (tc 1 tr)/dt 1 1 ¼ nnp 1 1 ¼ 6.

A Model for Transcriptional Regulation 1929

Biophysical Journal 86(4) 1922–1945



Cp½p� ¼ CLBKF½p�: (20)

We refer to Cr[�] as the ‘‘genomic regulatory functional’’

and to Cp[�] as the ‘‘proteomic regulatory functional’’ be-

cause the first functional can be used to determine the steady-

state mRNA concentration vector, whereas, the second

functional can be used to determine the steady-state protein

vector.

The fixed-point attractors r and p may be used to char-

acterize the cell’s phenotype. This is based on the assump-

tion that cells may be differentiated by the concentrations of

regulatory proteins synthesized at steady state (or, equiva-

lently, by the concentrations of the corresponding mRNAs),

which give each cell type its unique characteristics; e.g., see

Kauffman (1993) (Chapter 12) and Alberts et al. (2002) (pp.

375–376). It is believed that the transcriptional regulatory

machinery of a given organism is hardwired in its DNA. This

implies that regulation of transcription is controlled by the

samemechanisms, irrespective of cell type.Wemay however

view cell differentiation as being achieved by transcriptional

regulation, which guides the tRS to reach steady-state mRNA

and protein concentration values r and p that uniquely

characterize the cell type. In this case, the driving force of cell

differentiation is said to be ‘‘epigenetic’’ regulation.

An implication of Eqs. 17 and 18 is that, at steady state, the

mRNA concentration vector r ‘‘decouples’’ from the protein

concentration vector p; in the sense that r can be obtained as

a solution of the system of (nonlinear in general) Eq. 17,

without knowledge of p; whereas, p can be obtained as a

solution of the systemof (nonlinear in general) Eq. 18,without

knowledge of r: It is however important to keep in mind that,

despite this ‘‘decoupling,’’ computation of the steady-state

mRNA concentration vector r (and the steady-state protein

concentration vector p) requires knowledge of the transcrip-
tion parameters B, K, F and the translation parameters C, L,

because Eq. 17 (and Eq. 18) depends on those parameters.

Note also that there is a one-to-one correspondence between

the fixed-point attractors of the genomic and proteomic

regulatory functionals, because (recall Eq. 16)

r ¼ BKF½p� and p ¼ CLr: (21)

The second equation above implies that, at steady state, p
may be determined from r; provided that the underlying

translation parameters C, L are known. This observation

suggests that mRNA expression data, obtained by means of

microarray gene expression profiling, may be used to char-

acterize protein activity at steady state, provided that the

translation parameters C, L are known, and a sufficiently

good estimate of the steady state mRNA concentration vec-

tor r can be inferred from such data.

Because Eqs. 10–13 have been obtained by discretizing

Eqs. 5–7, it is of interest to investigate how the steady-state

behavior of the discrete tRS is related to the steady-state

behavior of the continuous tRS. From Eqs. 10–12, we can

show that

ri ¼
ki

bi

Fi½p� and pi ¼
li

gi

ri; for i 2 G: (22)

On the other hand, if rc and pc are the steady states of Eqs.
5 and 6, then (by setting the derivatives in Eqs. 5 and 6 equal

to zero), we obtain

rc;i ¼
ki

bi

Fi½pc� and pc;i ¼
li

gi

rc;i; for i 2 G: (23)

Eqs. 22 and 23 verify that the discrete tRS has the same

steady states as the continuous tRS, and show that the steady-

state behavior of the discrete tRS is identical to that of the

continuous tRS.

Besides fixed-point attractors, the tRS may be subject to

limit-cycle attractors, which lead to oscillatory behavior. A

tRS with limit-cycle attractors may be useful for modeling

periodic cellular behavior, such as cell cycle control or cir-

cadian rhythms; see Kauffman (1993) (Chapter 12), and

Elowitz and Leibler (2000); Smolen et al. (2000); Goldbeter

et al. (2001); Hasty et al. (2001a,b); Tyson et al. (2001). In

this article, we do not consider limit-cycle attractors (how-

ever, see Fig. 11 d ).

A MODEL FOR cis-REGULATION

The cis-regulatory functions fi[�] in Eq. 7 are at the core of

a tRS, because these functions specify how proteins regulate

transcription. In this section, we derive a form for these

functions by using simple arguments from chemical kinetics

(see also Hill, 1985; Wang et al., 1999). Keep in mind

however that the resulting model oversimplifies cis-regula-
tion, because cis-regulation is controlled by rather compli-

cated biochemical interactions (e.g., see Holstege et al.,

1998).

To model cis-regulation, we consider again a large

population C of cells, and assume at the moment that the

promoter of a given target gene is controlled by two regu-

latory proteins P1 and P2, with concentrations p1 and p2,

FIGURE 3 The nth stage (for n $ nnp 1 1) of the flow graph depicted in

Fig. 2.
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respectively. Moreover, we assume that protein P1 is free to

bind at anyone of S1 distinct sites of the promoter’s regu-

latory region, whereas, protein P2 is free to bind at anyone of

S2 distinct sites, with the binding sites of P1 being different

than that of P2. Let D[s1, s2] be a DNA template with s1 out
of the S1 sites being occupied by P1 and s2 out of the S2 sites
being occupied by P2. The binding of proteins P1 and P2 at

the promoter’s regulatory region can be described by means

of the following reversible reactions:

D½s1; s2�1P1 1P2 ! D½s1 1 1; s2 1 1�; (24)

for s1 ¼ 0; 1; . . . ; S1 � 1; s2 ¼ 0; 1; . . . ; S2 � 1: If we

assume that P1 and P2 do not interact with each other or

affect each other’s binding activity, then Eq. 24 can be

sequentially written as

D½s1; s2�1P1 ! D½s1 1 1; s2�; (25)

for s1 ¼ 0; 1; . . . ; S1 � 1; s2 ¼ 0; 1; . . . ; S2; and

D½s1 1 1; s2�1P2 ! D½s1 1 1; s2 1 1�; (26)

for s1 ¼ 0; 1; . . . ; S1 � 1; s2 ¼ 0; 1; . . . ; S2 � 1:

In the following, d[s1, s2] denotes the concentration of

DNA templates in Cwith s1 out of the S1 sites being occupied
by P1 and s2 out of the S2 sites being occupied by P2.

Moreover, Ubd,i denotes the activation energy (in cal/mol)

for a regulatory protein Pi to bind on a DNA template,

whereas, Uds,i denotes the activation energy (in cal/mol) for

Pi to dissociate itself from the template.

At equilibrium, the concentration of free regulatory

proteins P1 that bind (per second) on DNA templates D[s1,
s2] to produce DNA templates D[s1 1 1, s2] by means of the

forward reaction in Eq. 25 must equal the concentration of

regulatory proteins P1 freed (per second) by the backward

reaction. By using molecular collision theory (e.g., see

Moore and Pearson, 1981, Chapter 4), it can be shown that

the first concentration is proportional to the concentration

of those proteins P1 with kinetic energy [Ubd,1 times the

concentration of sites available for P1 to bind to, with pro-

portionality constant abd,1 (measured in M�1s�1). Because

each DNA template D[s1, s2] has S1 � s1 sites available for
P1 to bind to, the concentration of available binding sites for

P1 is (S1 � s1)d[s1, s2]. In this case, the concentration of free
regulatory proteins P1 that bind (per second) on DNA

templates D[s1, s2] to produce DNA templates D[s1 1 1, s2]
by means of the forward reaction in Eq. 25, is given by

abd;1 p1 e
�Ubd;1=RTðS1 � s1Þ d½s1; s2�;

where we have used Eq. 2.

On the other hand, the concentration of regulatory proteins

P1 freed (per second) by the backward reaction in Eq. 25 is

proportional to the concentration of bound P1 molecules on

the DNA template D[s1 1 1, s2] with kinetic energy[Uds,1,

with proportionality constant ads,1 (measured in s�1).

Because each DNA template D[s1 1 1, s2] contains s1 1 1

bound P1 molecules, this concentration is given by

ads;1ðs1 1 1Þ d½s1 1 1; s2� e�Uds;1=RT;

where we have used again Eq. 2. Therefore, at equilibrium,

we have that

u1 p1 ðS1 � s1Þ d½s1; s2� ¼ ðs1 1 1Þ d½s1 1 1; s2�; (27)

for s1 ¼ 0; 1; . . . ; S1 � 1; s2 ¼ 0; 1; . . . ; S2; where

u1 ¼ a1 e
�DU1=RT; (28)

with a1 ¼ abd,1/ads,1 and DU1 ¼ Ubd,1 � Uds,1 being the

binding free energy. The parameter u1 (measured in M�1) is

characteristic to the binding sites and is referred to as

‘‘affinity constant.’’ At equilibrium, and when Ubd,1 ¼ Uds,1,

the values of p1 (S1 � s1) d[s1, s2] and (s1 1 1) d[s1 1 1, s2]
must be equal; therefore, a1 ¼ 1 M�1. In addition, because

Ubd,1 # Uds,1, we have that 1 # u1 # ‘.

A similar argument applies to Eq. 26 and leads to

u2 p2 ðS2 � s2Þ d½s1 1 1; s2� ¼ ðs2 1 1Þ d½s1 1 1; s2 1 1�;
(29)

for s1 ¼ 0; 1; . . . ; S1 � 1; s2 ¼ 0; 1; . . . ; S2 � 1; where

u2 ¼ a2 e
�DU2=RT;

with DU2 ¼ Ubd,2 � Uds,2 and a2 ¼ 1 M�1.

From Eqs. 27 and 29, it can be shown that

dðs1; s2Þ ¼ wðS1; s1Þus11 p
s1
1 wðS2; s2Þu

s2
2 p

s2
2 dð0; 0Þ; (30)

for s1 ¼ 0; 1; . . . ; S1; s2 ¼ 0; 1; . . . ; S2; where

wðS; sÞ ¼ S
s

� �
;

are the so-called Binomial coefficients. If we ignore

additional processes underlying cis-regulation (see Wang

et al., 1999 for such processes) and assume that, for

transcription to be initiated, it is necessary (but not sufficient)

that a DNA template is bound by at least one P1 protein or

one P2 protein, then the fraction c of DNA templates in C
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committed to the transcription of the target gene will be

given by

c ¼
+S1

s1¼0 +
S2

s2¼0 d½s1; s2� � d½0; 0�
+

S1

s1¼0 +
S2

s2¼0 d½s1; s2�
: (31)

The previous assumption agrees with the fact that

transcription in eukaryotic cells can be initiated only in the

presence of activator proteins (e.g., see Alberts et al., 2002,

pp. 312–313). Eq. 31, together with Eq. 30, leads to

c ¼ f½p1; p2� ¼ 1� rðp1; S1; u1Þrðp2; S2; u2Þ;

where

rðp; S; uÞ ¼ 1

+S

s¼0 wðS; sÞ u
s
p
s
¼ 1

ð11 upÞS
: (32)

Our discussion so far has been based on the assumption

that regulatory proteins activate transcription; i.e., binding

of regulatory proteins on a DNA template recruits the

transcription initiation complex and initiates transcription.

However, cis-regulation may also be controlled by regulatory

proteins that repress transcription. Although eukaryotic genes

employ several mechanisms for repressing transcription, we

only consider here the mechanism by which a repressor

protein binds on the DNA template, and either blocks the

recruitment of the transcription initiation complex to the

promoter, or prevents the release of the RNA polymerase II

(see Alberts et al., 2002, pp. 405–406). This implies that, once

a repressor protein binds on a DNA template, transcription

cannot be initiated by that template, and leads to a simple

model for the repression of transcription. Keep in mind

however that, if necessary, it may be possible to derivemodels

for other repression mechanisms as well.

If we assume that the previous protein P2 is a repressor,

then the repression mechanism under consideration implies

that transcription may be initiated only if a DNA template is

free of protein P2 and there is at least one activator protein P1

bound to it. Then, the fraction c of DNA templates committed

to the transcription of the target gene will be given by

c ¼
+S1

s1¼0 +
S2

s2¼0d½s1; s2� �+S1

s1¼0 +
S2

s2¼1 d½s1; s2� � d½0; 0�
+S1

s1¼0 +
S2

s2¼0 d½s1; s2�

¼
+S1

s1¼0 d½s1; 0� � d½0; 0�
+

S1

s1¼0 +
S2

s2¼0 d½s1; s2�
;

which leads to

c ¼ f½p1; p2� ¼ ½1� rðp1; S1; u1Þ�rðp2; S2; u2Þ;

as opposed to Eq. 31. In general, if the promoter of a given

target gene is controlled by activators P1, P2, . . . , Pk and

repressors Pk11, Pk12, . . . , PJ, it can be shown that

c ¼ f½p1; . . . ; pk; pk1 1; . . . ; pJ�

¼ 1�
Yk
j¼1

rðpj; Sj; ujÞ
" # YJ

j¼k11

rðpj; Sj; ujÞ: (33)

It is believed that the organization of cis-regulation is

modular; see Davidson (2001) (Chapter 1), Alberts et al.

(2002) (pp. 408–413), Arnone and Davidson (1997), and

Bolouri and Davidson (2002). This means that the regulatory

region of a target gene may be partitioned into several entities

(modules), with each entity being associated with different

sets of regulatory proteins, which may assert a different type

of control on transcription. This modular structure allows

a gene to express itself under different conditions and

different contexts.

We now derive a model for modular cis-regulation. For
the purpose of our discussion below, we define a module as

being that section of the regulatory region of a target gene,

together with the associated regulatory proteins, which, at

a given time, controls the promoter of that gene. For simp-

licity, we assume at the moment that the promoter of a given

target gene is controlled by either one of two distinct

modules, mod 1 and mod 2. We assume that a regulatory

protein P1 may bind at anyone of S1 distinct sites of mod 1,

whereas, a regulatory protein P2 may bind at anyone of S2
distinct sites of mod 2. For i ¼ 1, 2, let di[si] be the con-

centration of all DNA templates in C, with si out of the Si sites
of mod i being occupied by protein Pi. If we assume that

transcription is initiated by mod i, and if ci is the fraction of

the DNA templates committed to the transcription of the

target gene due to the binding of Pi on mod i, then

ci ¼
+Si

si¼0 di½si� � di½0�
+

Si

si¼0 di½si�
; i ¼ 1; 2: (34)

If we now assume that, at a given time, transcription in the

cell population C may be initiated by either one of the two

modules being occupied by at least one regulatory protein,

then the fraction c of the DNA templates committed to the

transcription of the target gene will be given by

c ¼
+S1

s1¼0 d1½s1� � d1½0�1+S2

s2¼0 d2½s2� � d2½0�
+

S1

s1¼0 d1½s1�1+S2

s2¼0 d2½s2�
: (35)

From Eqs. 34 and 35, we obtain

c ¼ a1c1 1a2c2;

where
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ai ¼
+Si

si¼0 di½si�
+

S1

s1¼0 d1½s1�1+S2

s2¼0 d2½s2�
; i ¼ 1; 2:

Therefore, we can model modular cis-regulation as a

weighted summation of separately asserted cis-regulations
by each module. Note that a1 1 a2 ¼ 1.

The previous discussion can be generalized to include

several modules and regulatory proteins. If we assume that

the promoter of a target gene i is controlled by Mi modules,

we can model transcriptional regulation by means of the

following equation (recall Eq. 7):

ciðtÞ ¼ fi½pjðt � tc;jÞ; j 2 Ri� ¼ +
Mi

m¼1
aimðtÞcimðtÞ; i 2 G;

(36)

where

cimðtÞ ¼ fim½pjðt � tc;jÞ; j 2 Rim�; (37)

for m ¼ 1, 2, . . . ,Mi, i 2 G, and aim(t), m ¼ 1, 2, . . . ,Mi, are

nonnegative weights such that

+
Mi

m¼1
aimðtÞ ¼ 1; for every i 2 G:

In Eq. 36, 0# aim(t)# 1 quantifies the contribution of the

mth module to the transcriptional regulation of the ith gene at
time t, whereas, in Eq. 37,Rim is the set of all genes in G that
produce the regulatory proteins associated with this module.

Note that Ri ¼ [Mi

m¼1Rim:
According to Eq. 33, a general form for the cis-regulatory

function fim[�] is given by

fim½pj; j 2 Rim� ¼ 1�
Y
j2R1

im

rðpj; Simj; uimjÞ

2
4

3
5

3
Y
j2R�im

rðpj; Simj; uimjÞ; ð38Þ

for some R1
im and R�im such that R1

im \R�im ¼ B and

R1
im [R�im ¼ Rim: In Eq. 38, Simj and uimj are the number of

binding sites and the affinity constants, respectively, asso-

ciated with the jth protein that controls the mth module of the

ith promoter. Note that, when j 2 R1
im; the j

th protein acts as

an activator, whereas, when j 2 R�im; the jth protein acts as

a repressor. It is assumed here that, if R1
im ¼ B; then

fim½pj; j 2 Rim� ¼ 0; i.e., transcription is not initiated if the

associated regulatory region does not contain binding sites

for activator proteins, in accordance with the fact that

transcription in eukaryotic cells cannot be initiated in the

absence of activator proteins.

The choice in Eq. 38 is a simplified format for the cis-
regulatory function of eukaryotic genes and agrees with the

belief that activators and repressors work synergistically so

that their joint effect is multiplicative; e.g., see Alberts et al.

(2002) (p. 405); Herschlag and Johnson (1993); Savageau

(2001). The basic ingredient of this model is the function

r(p, S, u), p $ 0, given by Eq. 32. For given values of S and

u, the functions r(p, S, u) and rðp; S; uÞ ¼ 1� rðp; S; uÞ
model the fraction of DNA templates in C committed to the

transcription of a target gene, whose transcription is re-

spectively controlled by a repressor or an activator protein

that binds at S distinct sites of the control region with affinity
constant u. Fig. 4 depicts r(p, S, u) and rðp; S; uÞ as a function
of log10p, for several values of S and for u¼ 108 M�1. As the

protein concentration p increases, r monotonically de-

creases, whereas, r monotonically increases. This implies

that the rate of transcription monotonically decreases as a

function of repressor concentration, whereas, it monotoni-

cally increases as a function of activator concentration. For

a given protein concentration, r decreases as a function of

S (or remains constant at saturating points), whereas, r

increases as a function of S (or remains constant at saturating

points). This implies that the number of regulatory binding

sites influence transcription, with more sites resulting in

lower transcription rates for the case of repression, and

higher transcription rates for the case of activation. Note also

that the higher the number of regulatory binding sites, the

lower the protein concentration required to produce appre-

ciable repression or activation. Finally, if we interchange p
with u, Fig. 4 suggests that stronger binding affinity produces

lower transcription rates for a repressor and higher trans-

cription rates for an activator. These observations have been

shown to be consistent with experimental biological evi-

dence (e.g., see Wang et al., 1999 and the references therein),

and support the use of Eq. 38 as a plausible choice for cis-
regulation. Finally, note that rðp; 1; uÞ is the well-known

Michaelis-Menten function of enzyme kinetics.

Although we believe that the general trends we have

described in this section are true, they may oversimplify cis-
regulation. An explanatory model for cis-regulation may

need to be placed in a combinatorial setting. For example,

two proteins with weak individual DNA bindings at con-

tiguous sites, for example, may have a strong inter-protein

binding tendency, and thus remain bound on the DNA as

a complex, achieving locational accuracy by essentially

achieving more binding interactions with the DNA as a

complex than as singletons. This combinatorial structure

substantially complicates mathematical modeling of cis-
regulation. We have therefore chosen in this article not to

consider the role that protein-DNA complexes play in trans-

criptional regulation.
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REMARKS

Homeostatic regulation

The form of the genomic regulatory functional Cr[�] in Eq.

19 suggests a specific response of transcriptional regulation

to changes in the cellular environment. To retain the same

level of steady-state mRNA concentration, the tRS may

compensate for changes in the underlying parameters by

keeping Cr fixed. In this case, the tRS may compensate for

changes in the rates of transcription by appropriate changes

in mRNA degradation (and vice versa), so that the product

BK remains constant. Moreover, it may compensate for

changes in the rates of translation by appropriate changes in

protein degradation (and vice versa), so that the product CL

remains constant. On the other hand, to retain the same level

of steady-state protein concentration, the tRS may compen-

sate for changes in the underlying parameters by keepingCp

fixed. The form of the proteomic regulatory functional Cp[�]
in Eq. 20 suggests that, for the tRS to retain the same level of

steady-state protein concentration, it may adjust the rates of

transcription, the rates of translation, or mRNA and protein

degradations so that the product CLBK remains constant.

Equations 19 and 20 also suggest that changes in the rates of

transcription and translation (or in mRNA and protein de-

gradation) that leave the product LK (or the product CB)

invariant, have no effect on the steady-state protein concen-

tration (because such changes do not affect Cp), but may

affect the steady-state mRNA concentration (because such

changes may affect Cr). These remarks predict that mRNA

and protein degradation, together with the rates of mRNA

and protein synthesis, may play an important role in a trans-

criptional regulation that maintains the levels of mRNA and

protein concentrations at or near fixed values (known as

homeostatic regulation; see also Hargrove and Schmidt,

1989; Carrier and Keasling, 1997; Grunberg-Manago, 1999;

Wang et al., 2002).

Epigenetic regulation

The function fim[�] in Eq. 38 results in a cis-regulatory
functional F[�] that is scale-invariant, in the sense that its

value does not change if pj is multiplied by a constant a and

the associated affinity constant uimj is divided by a. This is
a direct consequence of the fact that (see Eq. 32) r(ap, S, u/a)
¼ r(p, S, u), for a constant a.
This scaling property has some specific implications on

regulation. It can be seen from Eqs. 17 and 18 that, if a tRS

with parameters {ki}, {li}, and {uimj} converges to ðr; pÞ at
steady state, then the same tRS with parameters {ki}, {aili},
and {uimj/aig may converge to ðr;ApÞ; where A ¼ diag[a1,
a2, . . ., aG]. This implies that an increase (decrease) in the

rates of translation, accompanied by a proportional decrease

(increase) in the affinity constants, does not change the

steady-state mRNA concentration but proportionally in-

creases (decreases) the steady-state protein concentration. It

can also be seen that the tRS with parameters {aiki}, {li},
and {uimj/ai} may converge to ðAr;ApÞ: This implies that an

increase (decrease) in the rates of transcription, accompanied

by a proportional decrease (increase) in the affinity

constants, proportionally increases (decreases) both the

steady-state mRNA and protein concentrations. These

remarks predict that the rates of transcription and translation,

together with the affinity constants, may play an important

role in a type of transcriptional regulation that changes the

state of the tRS from one level of steady-state mRNA and

protein concentrations to another (known as epigenetic regu-
lation; see also Hargrove and Schmidt, 1989).

Parameters

To employ a tRS as an accurate predictor of transcriptional

regulation, we need to specify the model parameters. Some

parameters may be determined directly from available a priori

FIGURE 4 The functions r(p, S, u) and rðp; S; uÞ; plotted in terms of log10 p, for S ¼ 1, 2, 4, 8, 16, 32 and u ¼ 108 M�1.
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biological knowledge. For example, if the sizes of the genes

composing a tRS and the sizes of the associated mRNA

products are known, then the discretization step dt and the

time delays tr,i and tp,i may be estimated. As we mentioned

before, during transcription, the RNA polymerase II may be

thought of moving stepwise along the DNA, so that the

growing RNA chain is extended one nucleotide at a time. Let

vr be the average transcription speed of the RNA polymerase,

measured in transcribed nucleotides per second (recall that,

for eukaryotic cells, vrffi 20 nucleotides/s), and let the size of

the regulatory gene i of a given genome be Gi nucleotides.

Then,

dt � 1

vr
and tr;i �

Gi

vr
:

On the other hand, during translation, ribosomes may be

thought of adding amino acids to a polypeptide chain in a

stepwise fashion, with an average speed vp, measured in

translated codons per second (recall that, for eukaryotic cells,

vp ffi 2 codons/s). If the size of the mRNA sequence required

to encode the ith protein is Ri nucleotides, then

tp;i �
Ri

3vp
;

because each amino acid is produced from a codon that

contains three nucleotides.

Most parameters of a tRS, like the degradation parameters

b, g, the rates of transcription and translation k, l, and, most

importantly, the cis-regulatory functional F[�], are not

known a priori. These parameters need to be estimated by

means of carefully designed in vivo or in vitro experiments

and computational analysis of genomic data (e.g., see

Hammond, 1993; Iyer and Struhl, 1996; Arkin et al., 1997,

1998; Endy et al., 1997; Liang et al., 1998; Lorsch and

Herschlag, 1999; Tavazoie et al., 1999; Akutsu et al.,

2000a,b; Gardner et al., 2000; Turner and Varshavsky, 2000;

Voit 2000; Wahde and Hertz, 2001; Caselle et al., 2002; Lee

et al., 2002; Ronen et al., 2002; Wang et al. 2002; Yeung

et al. 2002; Yildirim and Mackey, 2003, for emerging esti-

mation techniques). This problem is key to one of the most

exciting areas of modern biology, which is attracting col-

laborative efforts between biologists, statisticians, electrical

engineers, and computer scientists, and promises to revolu-

tionize biological research (e.g., see Hartwell et al., 1999;

VanBogelen et al., 1999; D’haeseleer et al., 2000; Smolen

et al., 2000; Endy and Brent, 2001; Hasty et al., 2001b;

Somogyi et al., 2001; de Jong, 2002; Michelson, 2002, and

the references therein). In the absence of quantitative

knowledge for model parameters, the tRS governed by

Eqs. 10–13 can be used as a qualitative tool that may provide

valuable insights on the behavior and properties of trans-

criptional regulation (e.g., by means of steady-state analysis,

perturbation analysis, computational knock-out studies, and

hypothesis testing, as well as by studying the effects that

parameters have on the system’s dynamic behavior and

steady state). Some insights, obtained by means of the tRS

proposed in this article, are discussed in the next section.

Implementation

The discrete dynamical system governed by Eqs. 10–13 has

been obtained by setting Dt ¼ dt in Eqs. 8 and 9, and by

considering assumptions 1 and 2. In view of the fact that the

timescales of transcription, translation, and mRNA and pro-

tein degradation may be large, assumptions 1 and 2 may be

still satisfied if we replace dtwith a larger time step Dt¼ sdt,
for some s[ 1, so that all time delays are integer multiples

of Dt. In this case, the discrete model will be still governed

by Eqs. 10–13, but with dt being replaced by Dt ¼ sdt. The
iterations required to simulate transcriptional regulation

within a given time interval when Dt ¼ sdt will be less

than the iterations required when Dt¼ dt, reduced by a factor
of s. Parameter s controls the ‘‘resolution’’ of the discrete

model under consideration, and provides a trade-off between

simulation accuracy and computational complexity. Clearly,

smaller values of s produce better accuracy but poor com-

putational efficiency, whereas, larger values of s may reduce

accuracy but improve computational efficiency. Note that the

steady-state behavior of the model does not depend on s.

Therefore, if the discrete dynamical system converges, it will

converge to the same steady-state mRNA and protein con-

centration vectors, regardless of the particular value of s.

The Hill function

Instead of r(p, S, u) and rðp; S; uÞ; repression and activation

are frequently modeled by means of functions

hðp; S; uÞ ¼ 1

11 u
S
p
S and hðp; S; uÞ ¼ u

S
p
S

11 u
S
p
S ; (39)

respectively, where hðp; S; uÞ is known as the Hill function

(e.g., see Cherry and Adler, 2000; Elowitz and Leibler, 2000;

Gardner et al., 2000; von Dassow et al., 2000; Ronen et al.,

2002; Yildirim and Mackey, 2003). Note that h(p, 1, u) ¼
r(p, 1, u) and hðp; 1; uÞ ¼ rðp; 1; uÞ; but these functions are
different for S[ 1. It can be shown (e.g., see Hill, 1985, pp.

64–66) that the functions in Eq. 39 are only appropriate in

the limiting case when the only possible binding configura-

tions at a gene’s control region are either all sites to be empty

or all to be occupied (a condition known as extreme coop-
erativity). In view of the fact that cis-regulation may not

be subject to extreme cooperativity, the use of Eq. 39 for

modeling cis-regulation may be limited.
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A note of caution

We want to point out here that there have been efforts to

build tRSs by means of a functional C[�] that relates the

mRNA concentration vector r(n) at step n to the mRNA

concentration vector r(n � 1) at step n � 1, by means of the

following iterative equation (e.g., see Kauffman, 1993;

Weaver et al., 1999; Wahde and Hertz, 2001; Baldi and

Hatfield, 2002; de Jong, 2002; Shmulevich et al., 2002;

Liebermeister, 2002):

rðnÞ ¼ C½rðn� 1Þ�; n $ 1: (40)

If we take C[�] to be the genomic regulatory functional

Cr[�] in Eq. 19, then the tRS governed by Eq. 40 will enjoy

the same mRNA steady-state behavior (in terms of fixed-

point attractors) as the tRS governed by Eqs. 14 and 15. In

general however the transient behavior of these two systems

will be different. As a matter of fact, the iterations suggested

by Eqs. 14 and 15 imply that the value of the mRNA

concentration vector r(n) cannot be inferred from knowing

only its value at step n � 1. This can be seen by considering

the case when np ¼ n ¼ 0 (no time delays). This implies that

rðnÞ ¼ Dbrðn� 1Þ1KSbF½pðn� 1Þ�;

pðnÞ ¼ Dcpðn� 1Þ1 LScrðn� 1Þ; n ¼ 1; 2; . . .:

From these equations, we have that

rðnÞ ¼ Dbrðn� 1Þ1KSbF½LScrðn� 2Þ1Dcpðn� 2Þ�;

which shows that r(n) depends on r(n � 1) and r(n � 2), as

well as on p(n � 2). Therefore, transient transcriptional

behavior is governed by a tRS whose state at step n requires

mRNA concentration at steps n � 1 and n � 2 as well as

protein concentration at step n � 2 (see also the related

discussion in Hargrove and Schmidt, 1989; Chen et al.,

1999; Hatzimanikatis and Lee, 1999). This is different from

what Eq. 40 suggests. We therefore conclude that the regu-

latory system governed by Eq. 40 may only be appropriate

for studying steady-state behavior (in terms of fixed-point

attractors) and should not be used to study transient trans-

criptional behavior.

Boolean networks

Boolean networks are attractive models for transcriptional

regulation for two main reasons: they are much simpler than

the model discussed in this article, and seem to be com-

patible with the limited nature of gene expression data

obtained by current microarray technologies. A Boolean

network is based on the premise that the status of a target

gene can be represented by a binary variable that takes value

1 if the target gene is active (ON) or 0 if the target gene is

inactive (OFF), and that this provides enough information for

the status of transcriptional regulation. A Boolean network

model relates a binary mRNA concentration vector rb(n) at
step n to a binary mRNA concentration vector rb(n � 1) at

step n � 1, by means of the following iteration

rbðnÞ ¼ C½rbðn� 1Þ�; n $ 1;

for some functionalC[�]. In view of our previous discussion,

this type of Boolean network may be useful for modeling

transcriptional regulation at steady state.

To derive a Boolean network model that qualitatively

reproduces the steady-state behavior of the discrete dynam-

ical system discussed in this article (and, therefore, the be-

havior of the corresponding ODE-based model), we need to

find a threshold operator H[�] and a functional C[�] so that

a binary mRNA concentration vector rb is a fixed-point

attractor of C[�] if and only if rb ¼ H½r�; for a fixed-point

attractor of the genomic regulatory functional Cr[�]. We

assume that the threshold operator H[�] is such that H[r] ¼
rb, where, for i 2 G, rb,i ¼ ‘, if ri is larger than a given

threshold value hi (in which case, gene i is thought to be

ON), and rb,i ¼ 0, if ri is smaller than the threshold value hi
(in which case, gene i is thought to be OFF), and takeC[�]¼
HCr[�]. Clearly, H[�] should be chosen such that:

HCrH½r� ¼ H½r�; for every fixed point r ofCr; (41)

in which case, every fixed-point attractor r of Cr[�] will lead
to a fixed-point attractor rb ¼ H½r� of C[�]. However, given
the genomic regulatory functional Cr[�], we may not be able

to find the threshold values fhi; i 2 Gg so that Eq. 41 is

satisfied. Moreover, it may not be true that every fixed-point

attractor of C[�] will correspond to a fixed-point attractor of

Cr[�]. Finally, limit-cycle attractors of the Boolean network

may not correspond to limit-cycle attractors of the discrete

tRS discussed in this article, and vice versa (see also the

discussion in Glass and Kauffman, 1973; Bagley and Glass,

1996). These problems should be seriously considered when

a Boolean network is used in place of a discrete tRS (for what

might happen if we carelessly do so, see Hatzimanikatis and

Lee, 1999).

AN EXAMPLE

We now present an example of a tRS that consists of four

genes, and use this example to illustrate several properties of

the proposed model. A graphical representation of the system

is depicted in Fig. 5, where 9 denotes an activator and a
denotes a repressor. We assume that the tRS regulates a

hypothetical pathway, which metabolizes an input substrate

to an output product. This is done by means of enzymes
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whose transcriptional control is regulated by the protein

produced from gene 3. Moreover, we assume that the effect

of higher input substrate concentration is to increase the

transcription rate k1, whereas, the effect of lower substrate

concentration is to reduce k1. Unless otherwise specified, the

parameters associated with this example are taken to be gene

independent. These parameters are summarized in Table 1.

We assume that each cis-regulator is controlled by one

module with four binding sites, and set S ¼ 4, u ¼ 108 M�1,

k2¼ k3¼ k4¼ 0.05 pM s�1, and l¼ 0.05 s�1. The value of

the affinity constant u corresponds to a binding free energy of

DU ¼ �11.35 kcal/mol at temperature T ¼ 310.15 K (or

378C). The values of the transcription rates k2, k3, and k4
correspond to a transcriptional machinery that, on the aver-

age, produces one mRNA molecule every 8 s. This value

turns out to be typical for yeast cells (Iyer and Struhl, 1996).

We also assume that, on the average, the volume of each

cell in C equals to 4 pL (Alberts et al., 2002; Table 2–4).

The translation rate l is taken to be 10-fold larger than the

rate of 0.3/min for translation initiation observed in vitro

using a semipurified rabbit reticulocyte system (Lorsch and

Herschlag, 1999).

The degradation parameters b and g are specified by

means of the mRNA and protein half-life parameters r and

p, respectively, which satisfy

e
�br ¼ 1

2
and e

�gp ¼ 1

2
:

In this case,

b ¼ ln 2

r
and g ¼ ln 2

p
:

We set r ¼ 1200 s (20 min) and p ¼ 3600 s (1 h). For

clarity of presentation, we set all time delays equal to zero, in

which case np ¼ n ¼ 0. Nonzero time delays complicate the

evolutions of mRNA and protein concentrations and make

simple descriptions of system behavior rather difficult.

Simulation results that include ‘‘realistic’’ nonzero time

delays are provided at the end of this section (see Figs. 11

FIGURE 5 An example of a tRS of a hypothetical metabolic pathway that

consists of four genes. In this figure, 9 denotes an activator, whereas, a
denotes a repressor.

TABLE 1 Parameter values used in simulations

Figure

Parameter Value 6 7 8 9 10 11 12

Initial mRNA concentration ri(0) ¼ 1.25 pM, i ¼ 1, 2, 3, 4 d d d d d d d

Initial protein concentration pi(0) ¼ 2.08 pM, i ¼ 1, 2, 3, 4 d d d d d d d

Affinity constant u ¼ 108 M�1 d d d (b) d d

u ¼ 5 3 107 M�1 d

106 M�1 # u # 1010 M�1 (a)
Number of binding sites S ¼ 1 d

S ¼ 2 d

S ¼ 4 d d d d d d

S ¼ 6 d

S ¼ 8 d d

mRNA half-life r ¼ 1200 s d d d d d d d

Protein half-life p ¼ 3600 s d d d d d d d

Transcription rate: gene 1 k1 ¼ 0.02 pM s�1 (b)

k1 ¼ 0.01 pM s�1 (a) (a) d d (a,c) d

k1 ¼ 0.001 pM s�1 (b) d (b,d )

0.001 pM s�1 # k1 # 1 pM s�1 d

Transcription rate: genes 2–4 k2 ¼ k3 ¼ k4 ¼ 0.10 pM s�1 (b)

k2 ¼ k3 ¼ k4 ¼ 0.05 pM s�1 d (a) d d d d d

Translation rate l ¼ 0.05 s�1 d (b) d d d (a,b)

l ¼ 0.10 s�1 (a)
l ¼ 0.20 s�1 (c,d ) d

Time delays tr ¼ tc ¼ tp ¼ 0 s d d d d d

tr ¼ 2000 s, tc ¼ 200 s, tp ¼ 2400 s d d
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and 12). Due to zero delays, mRNA and protein concen-

trations reach steady-state values faster than it is biologically

expected. The simulations are initialized with mRNA and

protein concentrations given by ri(0) ¼ 1.25 pM and pi(0) ¼
2.08 pM, for i¼ 1, 2, 3, 4. To obtain these values, we assume

that, initially, each gene contributes, on the average, three

mRNA and five protein molecules to a cell in C.
Fig. 6 a depicts typical evolutions of mRNA and protein

concentrations. We assume that the transcription rate of

gene 1 is given by k1 ¼ 0.01 pM s�1. The protein produced

by gene 1 enhances transcription of gene 2, which produces

enough protein to repress the transcription of gene 4. This

results in protein 4 eventually reaching a state of low con-

centration, which releases the repression of gene 3. Gene 3 is

now free to autoregulate, as well as to actively regulate

gene 2. The mRNA and protein concentrations of these

genes eventually reach appreciable steady-state values. The

overall tRS converges to a ‘‘high’’ steady-state rH ¼ ½10:95
53:72 65:52 2:58�9 and pH ¼ ½2843 13; 950 17; 014 670�9
(in pM). Computer simulations indicate that this state is

stable, in the sense that, eventually, the tRS drives any

perturbation to steady-state concentrations back to their

nominal values.

On the other hand, a 10-fold reduction in the transcription

rate of gene 1 results in the evolution depicted in Fig. 6 b. In
this case, gene 1 cannot sustain its own transcription by

autoregulation and eventually reaches a state of zero mRNA

and protein concentrations. In turn, the concentration of

protein 3 cannot sufficiently increase the expression level of

gene 2, to produce enough proteins to repress gene 4, which

also reaches a state of zero mRNA and protein concen-

trations. Because gene 3 is being repressed by gene 4, it

gradually produces low mRNA and protein concentrations.

The overall tRS converges to a ‘‘low’’ steady-state r
L
¼

½0:00 0:00 3:39 24:81�9 and pL ¼ ½0 0 882 6445�9 (in

pM). Computer simulations indicate that this state is stable

as well.

Fig. 7 a depicts the evolutions of mRNA and protein

concentrations when l ¼ 0.10 s�1 and u ¼ 5 3 107 M�1.

This amounts to a twofold increase in the rate of translation

and a twofold decrease in the affinity constant. In this case,

the steady state mRNA and protein concentration vec-

tors are given by r ¼ ½10:95 53:72 65:52 2:58�9 and p ¼
½5686 27; 900 34; 028 1340�9 (in pM), respectively. As we

have discussed earlier, this change does not affect the steady-

state mRNA concentration values, but produces steady-state

protein concentration values that are two times larger than

the ones depicted in Fig. 6 a. On the other hand, Fig. 7 b
depicts the evolutions of mRNA and protein concentrations

when k1¼ 0.02 pM s�1, k2¼ k3¼ k4¼ 0.10 pM s�1, and u

¼ 5 3 107 M�1. This amounts to a twofold increase in the

rate of transcription and a twofold decrease in the affinity

constant. In this case, the steady-state mRNA and protein

concentration vectors are given by r ¼ ½21:90 107:44
131:04 5:16�9 and p ¼ ½5686 27; 900 34; 028 1340�9 (in

pM), respectively. This change produces steady-state mRNA

and protein concentration values that are two times larger

than the ones depicted in Fig. 6 a.
The results depicted in Fig. 7 (and, more generally, our

discussion about the scaling properties of a tRS) indicate that

quantitative steady-state mRNA data alone, like data ob-

tained by DNA chip technologies, may not be sufficient for

predicting steady-state protein concentrations (see also

Hatzimanikatis and Lee, 1999). It is suggested by Figs. 6 a
and 7 a that the same steady-state mRNA concentrations

may be associated with substantially different steady-state

protein concentrations. Moreover, it is suggested by Fig. 7

that different steady-state mRNA concentrations may be

associated with the same steady-state protein concentrations.

These observations agree with biological evidence (e.g., see

FIGURE 6 Evolutions of mRNA and protein concentrations of the tRS depicted in Fig. 5. The transcription rate for gene 1 is: (a) k1 ¼ 0.01 pM s�1, and

(b) k1 ¼ 0.001 pM s�1.
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Gygi et al., 1999), and suggest that additional information is

needed to predict steady-state protein concentrations from

steady-state mRNA concentrations. As a matter of fact, Eq.

21 suggests a precise solution to this problem: to obtain p
from r we need to know the value of the product CL (see

Hargrove and Schmidt, 1989, for a similar observation).

Due to the fact that the protein concentration pi(n) at step n
is calculated from the protein concentration e�gidt piðn� 1Þ

at step n� 1 by adding the amount lis(gi, dt)ri(n� np,i� 1),

which is a linear function of the mRNA concentration ri(n �
np,i � 1) at step n � np,i � 1 (recall Eq. 11), the protein

evolutions depicted in Figs. 6 and 7 are very similar to the

corresponding mRNA evolutions. For this reason, and in the

rest of the article, we only depict mRNA evolutions.

Fig. 8 depicts steady-state (after 48 h) mRNA concen-

trations for genes 2, 3, and 4, as a function of the trans-

FIGURE 7 Evolutions of mRNA and protein concentrations of the tRS depicted in Fig. 5 for the case of: (a) a twofold increase in the rate of translation and

a twofold decrease in the affinity constant, and (b) a twofold increase in the rate of transcription and a twofold decrease in the affinity constant.

FIGURE 8 Steady-state mRNA concentrations of the tRS depicted in Fig. 5, as a function of the transcription rate k1 of gene 1, for S ¼ 1, 2, 4, 6, 8.
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cription rate k1 of gene 1, and for S ¼ 1, 2, 4, 6, 8. As

expected, for small values of k1 (i.e., for low input substrate

concentrations), the tRS reaches a ‘‘low’’ steady state (i.e.,

low mRNA and protein concentrations for gene 3), whereas,

for large values of k1, the tRS reaches a ‘‘high’’ steady state

(i.e., high mRNA and protein concentrations for gene 3). The

transition from the ‘‘low’’ to the ‘‘high’’ steady state is

sharper for larger values of S (i.e., when more binding sites

are available in the regulatory region). Moreover, larger

values of S result in smaller ‘‘low’’ steady-state mRNA and

protein concentrations for gene 3 and larger ‘‘high’’ steady-

state concentrations. When S ¼ 1 (i.e., when the Michaelis-

Menten function is used to model cis-regulation), the

transition between the ‘‘low’’ and ‘‘high’’ steady-state

concentrations is slow. Moreover, the difference between

the ‘‘low’’ and ‘‘high’’ mRNA and protein concentrations for

gene 3 is very small. This indicates that the Michaelis-

Menten function may not be appropriate for modeling cis-
regulation, when the input substrate is expected to trigger

gene expression in an all-or-none fashion (see also Cherry

and Adler, 2000, for a similar remark).

For larger values of S, the transition from the ‘‘low’’ to the

‘‘high’’ steady state is sharper, whereas, the difference be-

tween these two states is larger. Moreover, the value of k1 at

which this transition occurs decreases as S increases. This is

a consequence of the fact that lower protein concentration is

required to produce appreciable repression or activation

when more binding sites are available in the regulatory

region. It is clear from Fig. 8 that, when S ¼ 8, small

variations in the value of k1 around the critical value k1,c ffi
10�2.5 pM s�1 (i.e., small variations in input substrate

concentrations around a critical value) may produce sharp

and fast changes in mRNA and protein concentrations for

gene 3 (i.e., may produce sharp changes in the transcriptional

control of the metabolic enzymes). In this case, the tRS under

consideration may abruptly switch from the ‘‘low’’ to the

‘‘high’’ steady state (and vice versa). Note however that the

tRS is robust for values of k1 that are not in the transition

region, in the sense that changes in k1 produce no changes in

steady-state values. Insensitivity of steady-state behavior on

certain parameter values is an essential biological property of

a tRS, which is related to its robustness (e.g., see the

discussion in Kitano, 2002).

Clearly, for large values of S, the tRS under consideration

acts as a switch, controlled by the particular value of k1: for

k1 \ k1,c, the tRS reaches the ‘‘low’’steady state, whereas,

for k1 [ k1,c, it reaches the ‘‘high’’ steady state. This is

illustrated in Fig. 9, which also indicates that the tRS under

consideration is robust, in the sense that the system can

effectively cope with environmental changes. This is another

essential biological property (e.g., see the discussion in

Kitano, 2002) illustrated by our example. Temporary

changes in external conditions may cause temporary changes

in mRNA or protein concentrations. As soon as the external

influences disappear, effective transcriptional regulation

causes mRNA and protein concentrations to return back to

their nominal steady-state values (see also Fig. 10 b).
Fig. 10 a depicts the steady state (after 48 h) mRNA

concentrations as a function of the affinity constant u. This

result indicates that, at large values of the affinity constant,

gene 3 promotes activation (or repression) of enzymatic

activity in the metabolic pathway under consideration,

whereas, at small values of the affinity constant, gene 3

inhibits activation (or repression) of such activity. From Eq.

28, and for a1 ¼ 1, DU1 # 0, it is clear that the affinity

constant monotonically increases as the temperature de-

creases. It is therefore expected that, at low temperatures,

gene 3 will promote activation (or repression) of enzymatic

activity in the metabolic pathway, whereas, at high temper-

atures, gene 3 will inhibit such activity. However, this may

not be true, because parameters b, g, k, and l depend on

temperature as well (e.g., recall Eq. 4). Fig. 10 b illustrates

how changes in temperature may affect transcriptional

regulation. At the normal temperature of 378C, the tRS

under consideration reaches the ‘‘high’’ steady state, where-

as, at a temperature of 408C, the tRS switches to a ‘‘higher’’

steady state. To obtain this result, we consider a 15%

decrease in the value of the affinity constant u, and assume

a 20% increase in the values of k and l, and no change in the

values of b and g (we assume zero activation energies for

mRNA and protein degradation). Fig. 10 b also indicates that
the metabolic pathway under consideration is robust to heat

induction: the underlying tRS can effectively cope with

a temporary increase in temperature, by reversing the mRNA

and protein concentrations back to their nominal steady-state

values after the temperature returns back to its previous

value.

In a real situation, nonzero time delays should be speci-

fied. It has been recently shown by Kobayashi et al. (2003a)

that, under certain conditions (which are satisfied by the

model presented in this article), the steady-state behavior of

a tRS with only positive feedback loops (i.e., loops that

contain activators and possibly an even number of repress-

ors) does not depend on time delays. However, this is not

FIGURE 9 Illustration of the switching behavior of the tRS depicted in

Fig. 5, for S ¼ 8. The tRS switches between the ‘‘high’’ and the ‘‘low’’

steady states as a function of the transcription rate k1 of gene 1.
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true when the tRS contains negative feedback loops, in

which case time delays may directly affect steady-state be-

havior. It turns out that the feedback loops of the tRS

depicted in Fig. 5 are all positive except one. The loop

gene 3! protein 3! gene 4! protein 4! gene 3

involves an activator and a repressor and, therefore, it is

a negative feedback loop. Hence, the steady-state behavior of

the tRS depicted in Fig. 5 may depend on the time delays.

Fig. 11 depicts typical evolutions of mRNA concen-

trations of the tRS under consideration, when the time delays

are taken to be nonzero and gene independent. We assume

that the size of an average gene is ;40,000 nucleotides,

which implies that tr ¼ 2000 s (we take vr ¼ 20 nucleotides/

s). We also assume that the same average gene is transcribed

to an mRNA of ;1200 nucleotides long, which is then

translated to a protein composed of 400 amino acids. This

implies that tp ¼ 200 s (we take vp ¼ 2 codons/s). Finally,

we assume that the cis-regulation delay tc is, on the average,
;20% larger than the transcription delay tr, in which case tc
¼ 2400 s. By comparing the first row of Fig. 11 with Fig. 6, it

is clear that it takes longer for the tRS to reach steady state in

the case of nonzero time delays. As a matter of fact, for the

evolution depicted in Fig. 11 a, it takes;72 h to reach steady

state, as compared to ;48 h for the evolution depicted in

Fig. 6 a, whereas, for the evolution depicted in Fig. 11 b, it
takes more than six days to reach steady state, as compared to

FIGURE 10 (a) Steady-state mRNA concentrations of the tRS depicted in Fig. 5, as a function of the affinity constant. (b) At the normal temperature of 378C,

the tRS approaches the ‘‘high’’ steady state. However, a heat induction at 408C during a 24-h period results in the tRS to switch to a ‘‘lower’’ steady state. When

the temperature reverses back to normal, the tRS stably switches back to the ‘‘high’’ steady state.

FIGURE 11 Evolutions of mRNA concentrations of the tRS depicted in Fig. 5, when tr¼ 2000 s, tp¼ 200 s, tc¼ 2400 s, and: (a) k1¼ 0.01 pM s�1 and l

¼ 0.05 s�1, (b) k1 ¼ 0.001 pM s�1 and l ¼ 0.05 s�1, (c) k1 ¼ 0.01 pM s�1 and l ¼ 0.2 s�1, (d) k1 ¼ 0.001 pM s�1 and l ¼ 0.2 s�1.
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;24 h for the evolution depicted in Fig. 6 b. Moreover,

the evolutions are more complicated in the case of nonzero

delays, although the same steady state is reached in both

cases, because time delays do not affect the steady-state

behavior of the tRS under consideration, as it is clear from

Eqs. 17 and 18.

The situation changes if the rate of translation is increased

to a value l ¼ 0.2 s�1. The second row of Fig. 11 depicts

typical evolutions of mRNA concentrations for this case.

When k1 ¼ 0.01 pM s�1, the tRS converges to a steady-state

mRNA and protein concentration vector after ;24 h.

However, a 10-fold reduction in the value of k1 results in

a tRS that converges to a stable limit-cycle attractor. This is

illustrated in Fig. 11 d. Although genes 1 and 2 shut off,

genes 3 and 4 initiate a self-sustained oscillation whose cycle

is completed in ;16 h at steady state. This corroborates the

fact that a tRS with at least one negative feedback loop may

effectively be used to model gene-expression ‘‘clocks’’ (e.g.,

see Smolen et al., 2000).

We conclude this section with a brief discussion on how

the time step Dt, used in the implementation of the discrete

dynamical system, affects simulation accuracy and compu-

tational efficiency. As we have discussed before, Dt ¼ sdt,
where dt ¼ 0.05 s and s[ 1 is a resolution parameter that

provides a trade-off between simulation accuracy and

computational efficiency. Larger values of s lead to a more

efficient implementation of the tRS at the expense of

simulation accuracy. However, due to the slow timescales

of transcription, translation, and degradation, as compared to

the value of dt, large values of s can be afforded, without

compromising simulation accuracy. This is illustrated in Fig.

12, which depicts four evolutions of mRNA concentrations,

obtained by using the same parameters as the ones used in

Fig. 11 c, when s ¼ 1, 300, 6000, 72,000. These values

FIGURE 12 Evolutions of mRNA concentrations of the tRS depicted in Fig. 5, when tr ¼ 2000 s, tp ¼ 200 s, tc ¼ 2400 s, k1 ¼ 0.01 pM s�1, l ¼ 0.2 s�1,

and for four values of s.

FIGURE 13 The mean value and the standard deviation of the relative error in approximating, at each time point, the evolutions of mRNA concentrations

obtained when s ¼ 1, with the evolutions obtained when 1 # s # 400, as a function of s.
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correspond to Dt ¼ 0.05 s, 15 s, 5 min, and 1 h, as well as to

1,728,000, 5760, 288, and 24 iterations, respectively. Note

that, as s increases, simulation accuracy decreases. The

results obtained with s ¼ 6000 or 72,000 are clearly not

acceptable, although they may provide a coarse approxima-

tion of mRNA evolution. Moreover, these results converge

to the desired steady state, because the steady-state behavior

of the tRS under consideration does not depend on s, as it is

clear from Eqs. 17 and 18. However, the evolutions obtained

with s ¼ 300 are very close to the ones obtained with s ¼ 1.

If we assume that the relative errors, of approximating, at

each time point, the evolutions of mRNA concentrations

obtained when s ¼ 1 with the evolutions obtained when

s [ 1, are statistically independent and identically distri-

buted random variables, then we can estimate their mean

value and standard deviation by standard empirical formulas.

Fig. 13 depicts such estimates for the example depicted in

Fig. 12, as a function of 1# s # 400. These results indicate

that the number of iterations required for simulating the

discrete dynamical model under consideration can be

dramatically reduced with only a small compromise in simu-

lation accuracy. For example, and according to Fig. 13, at

any time point, the relative error of approximating the

mRNA concentration depicted in Fig. 12 when s ¼ 1 with

the one obtained when s ¼ 300, will on the average be equal

to 5 3 10�4, with a standard deviation of ;10�3. However,

with s¼ 300, the iterations required for simulating transcrip-

tional regulation are 300 times fewer than the iterations re-

quired when s ¼ 1.

CONCLUSION

In this article, we have considered the problem of modeling

transcriptional regulation in a large population of cells. We

have adopted a standard model for transcriptional regulation,

based on ordinary differential equations that model tran-

scription and translation, coupled with nonlinear equations

that model cis-regulation. Simple arguments from chemical

kinetics have led us to derive a model for cis-regulation that

encompasses both activators and repressors, as well as the

notion of regulatory modules. The need to use computational

techniques for the analysis and simulation of transcriptional

regulation has motivated us to derive a discrete model.

Derivation of such a model is possible under certain

assumptions and leads to a nonlinear discrete dynamical

system, which is easy to implement and can be used to

simulate transcriptional regulation in an iterative fashion.

Moreover, the steady-state behavior of the proposed discrete

dynamical system is identical to that of the continuous

model.

We have discussed several mathematical properties of our

model and have elaborated on their biological significance.

Model implementation requires knowledge of several pa-

rameters, which are directly related to the biochemicalmecha-

nisms of transcription, translation, and cis-regulation. We

have briefly discussed the problem of determining such pa-

rameters.We have adopted a hypotheticalmetabolic pathway,

which we use to illustrate several properties of our model and

show that a nonlinear dynamical system may effectively be

used to quantitatively model transcriptional regulation in

a biologically relevant way.

We have derived the proposed model for the case of

transcriptional regulation in a large population of cells.

However, it is also desirable to describe transcriptional reg-

ulation in a single cell, to take into account uncertainties

about parameter values, and characterize modeling errors

introduced by exemplifying transcriptional regulation. This

entails development of a model by means of probabilistic

techniques that effectively deals with uncertainty, for which

the model presented in this article may serve as an

‘‘average’’ model. Construction of such a model for tran-

scriptional regulation is currently under investigation.
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