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ABSTRACT As ubiquitous conduits for intercellular transport and communication, gap junctional pores have been the subject
of numerous investigations aimed at elucidating the molecular mechanisms underlying permeability and selectivity. Dye transfer
studies provide a broadly useful means of detecting coupling and assessing these properties. However, given evidence for
selective permeability of gap junctions and some anomalous correlations between junctional electrical conductance and dye
permeability by passive diffusion, the need exists to give such studies a more quantitative basis. This article develops a detailed
diffusion model describing experiments (reported separately) involving transport of fluorescent dye from a ‘‘donor’’ region to an
‘‘acceptor’’ region within a pair of Xenopus oocytes coupled by gap junctions. Analysis of transport within a single oocyte is used
to determine the diffusion and binding characteristics of the cellular cytoplasm. Subsequent double-cell calculations then yield
the intercellular junction permeability, which is translated into a single-channel permeability using concomitant measurements of
intercellular conductance, and known single-channel conductances of gap junctions made up of specific connexins, to count
channels. The preceding strategy, combined with use of a graded size series of Alexa dyes, permits a determination of absolute
values of gap junctional permeability as a function of dye size and connexin type. Interpretation of the results in terms of pore
theory suggests significant levels of dye-pore affinity consistent with the expected order of magnitude of typical (e.g., van der
Waals) intermolecular attractions.

Submitted March 26, 2003, and accepted for publication December 29, 2003.

Address reprint requests to Professor Johannes M. Nitsche, Dept. of

Chemical and Biological Engineering, Furnas Hall, University at Buffalo,

State University of New York, Buffalo, NY 14260-4200. Tel.: 716-645-

2911 ext. 2213; Fax: 716-645-3822; E-mail: nitsche@eng.buffalo.edu.

Bruce J. Nicholson’s present address is Dept. of Biochemistry, University

of Texas Health Science Center, San Antonio, TX.

� 2004 by the Biophysical Society

0006-3495/04/04/2058/20 $2.00

GLOSSARY

Primary symbols introduced in the text

Amem Area of intercellular membrane

Apore Cross-sectional area of gap junctional pore

(AP)pore Apore 3 Ppore

AHamaker Hamaker constant for permeant-pore van der Waals

interaction

a Stokes-Einstein equivalent radius of dye permeant

BG Optical correction accounting for background

fluorescence intensity

b Bound dye concentration

c Free dye concentration

Daq Bulk aqueous diffusion coefficient of dye permeant

Dcyt Cytoplasmic diffusion coefficient of dye permeant

Dpore In-pore diffusion coefficient of dye permeant

(DV)j Voltage drop actually occurring across gap junctions

(DV)total Total voltage drop occurring across oocyte pair

f̂ðu;fÞ Radial distance of any point on oocyte surface from

origin

Gobs Macroscopically observable intercellular

electrical conductance

he Dimensionless hydrodynamic coefficient giving

pore access resistance

Ij Current between coupled oocytes

Keq
cyt Equilibrium constant for dye binding to cytoplasm

kcyt Rate constant (s�1) for dye binding to cytoplasm

Kpore Pore partition coefficient of dye permeant

Kaffinity
pore Factor in Kpore accounting for permeant-pore affinity

kT Boltzmann’s constant multiplied by absolute

temperature

L Characteristic length ¼ 1 mm

‘pore Length of gap junctional pore

Npore Number of open gap junctions between oocytes

n Normal vector on cellular membrane

Pjunc Permeability (mm/s) of intercellular membrane

Ppore Unitary permeability (mm/s) of gap junction

Rpore Mean radius of gap junctional pore

r Radial distance from origin in spherical coordinates

t Elapsed time after dye injection

(x,y,z) Cartesian position coordinates within oocyte

x Position vector within oocyte

Greek symbols

a Normalization constant for assumed initial Gaussian

distribution of dye

b Sum of all nonmembrane electrical resistances

gpore Unitary channel conductance

l Ratio a/Rpore of permeant/pore radii

V Subset of space occupied by oocyte

s Standard deviation for assumed initial Gaussian

distribution of dye

u, f Polar and azimuthal angles in spherical coordinates

j Fractional distance from origin to oocyte surface

Subscripts and other affixes

double Refers to double-cell experiment

single Refers to single-cell experiment

spot Refers to epicenter of dye injection

1 Distinguishes acceptor oocyte above the plane z ¼ 0

– Distinguishes donor oocyte below the plane z ¼ 0

ˆ Distinguishes dimensionless variables
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INTRODUCTION

Gap junctions are intercellular pores, considerably larger

than ion-specific channels, that directly connect the interiors

of neighboring cells (Edelson, 1990; Kumar and Gilula,

1996; Simon and Goodenough, 1998; Yeager et al., 1998;

Harris, 2001). They are formed when two hemichannels

(half-pores, connexons), each comprising six connexin

subunits (of which [20 types are currently known; Harris,

2001; Eiberger et al., 2001), dock in the intercellular me-

dium. Such pores represent key features of multicellular or-

ganisms because they provide the only documented means

for the direct exchange of small metabolites between cells.

As such, they have been implicated in a multitude of normal

physiological and disease processes including electrical

synchronization of heart beat, homeostasis, tumor suppres-

sion, and direction of early developmental processes

(Edelson, 1990; Lo, 1996). Most cells express multiple

connexin types, which may associate to form hemichannels

that are either homomeric (comprising only one type) or

heteromeric (comprising multiple types). Complete gap

junctions may also be either homotypic (if the two

constituent hemichannels are identical) or heterotypic (if

they are not).

Although gap junctions were once often regarded simply

as indiscriminate aqueous conduits between cells, a grow-

ing body of evidence in the literature indicates that they ex-

hibit significant selectivity based on a complex interplay of

physicochemical factors (Flagg-Newton et al., 1979; Brink

and Dewey, 1980; Brink and Ramanan, 1985; Traub et al.,

1994; Elfgang et al., 1995; Veenstra et al., 1995; Veenstra,

1996; Cao et al., 1998; Nicholson et al., 2000; Gong and

Nicholson, 2001; Harris, 2001). Permselectivity features of

connexins are not restricted to simple size or charge

discrimination, and are likely to significantly influence their

function in biological systems. This fact is graphically

illustrated in recent studies of Goldberg et al. (1999, 2002),

where the rates of transmission of specific endogenous

metabolites through gap junctions composed of different

connexins expressed in C6 glioma cell monolayers were

compared. The surprising conclusion from this comparison

was that two connexins (i.e., Cx43 and Cx32), which form

channels with similar dye permeability, showed as much as

300-fold differences in permeability to ATP, and lower

levels of relative selectivity for other metabolites including

ADP, AMP, glutamate, and glutathione. Bevans and Harris

(1999) also observed a dramatic shift in selectivity between

cAMP and cGMP in reconstituted hemichannels when the

connexin composition (ratio of Cx32/Cx26 subunits) was

changed. Clearly, quantitative descriptions of gap junctional

selectivity for a variety of compounds varying in different

physical parameters will be needed if one is to ultimately

elucidate the underlying molecular mechanisms and develop

generalizable rules for the permeability features of a given

connexin.

An important avenue toward this end is provided by

experiments in which dye is introduced into one member of

a pair (Veenstra et al., 1995; Cao et al., 1998; Valiunas et al.,

2002), a chain (Simpson et al., 1977; Schwarzmann et al.,

1981; Brink and Ramanan, 1985; Zimmerman and Rose,

1985), or a monolayer (Flagg-Newton et al., 1979;

Schwarzmann et al., 1981; Safranyos and Caveney, 1985;

Steinberg et al., 1994; Traub et al., 1994; Elfgang et al.,

1995; Goldberg et al., 1995; Cao et al., 1998) of cells, and

observed to spread linearly or radially into the neighboring

cell(s) as a function of time. The ultimate goal of such

experiments is to deduce absolute, or at least relative, values

of unitary (single-pore) junctional permeabilities Ppore of

various channel types to probes of varying size, shape,

charge, and other physicochemical properties. This micro-

scopic parameter quantifies the diffusive flow F (moles/time)

of dye through a single channel according to the relation

F ¼ AporePporeðc� � c1 Þ; (1)

in which Apore denotes the cross-sectional area of the channel

opening and (c� � c1) denotes the concentration driving

force across the channel (Hille, 1992, pp. 296–298, 337–341;

Nitsche, 1999, p. 480). We refer to the product AporePpore,

representing the constant of proportionality between con-

centration difference and resulting molecular flow, simply as

(AP)pore, because the two factors usually appear together.

There generally exist two complications in the translation

of observed dye transfer rates into unitary junctional area-

times-permeability factors (AP)pore. The first is the fact that

the intercellular membrane permeability Pjunc is not directly

indicative of (AP)pore, because it represents the collective

outcome of many unitary channel transport processes

proceeding in parallel, as described by the equation

Pjunc ¼ NporeðAPÞpore=Amem; (2)

with Npore the number of open channels between coupled

cells and Amem the coupled membrane area. Thus, a given

membrane permeability may in principle derive from a large

number of channels of low permeability, or a small number

of channels of high permeability. This potential ambiguity is

obviated by studies (Steinberg et al., 1994; Traub et al.,

1994; Veenstra et al., 1995; Cao et al., 1998; Valiunas et al.,

2002) in which dye transfer measurements are accompanied

by intercellular electrical conductance measurements, so that

the total number of channels can be counted if their unitary

conductance is known.

A second, more serious complication arises from the fact

that observed dye transfer rates represent the net outcome of

the membrane resistance actually sought, and a mass transfer

resistance associated with diffusion through cellular cyto-

plasm to and from the membrane. If the cells employed are

sufficiently small, or if the membrane has sufficiently low
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permeability, then the cytoplasm is effectively well mixed

and the dye transfer rate is directly indicative of the (rate-

limiting) value of Pjunc. This parameter can then be deduced

from a data analysis scheme in which individual cells are

treated as coupled, well-mixed compartments (Zimmerman

and Rose, 1985; Cao et al., 1998; Valiunas et al., 2002).

Generally, however, a diffusion model is needed to analyze

data and deconvolute membrane from cytoplasmic transport

effects. Ample precedent for such diffusion models exists, as

has been reviewed recently (Nitsche, 1999). The study of

fluorescent dye transfer between septate giant axons of the

earthworm by Brink and Ramanan (1985) exemplifies

a rigorous analysis of this type. These authors determined

values of Pjunc and the cytoplasmic diffusivity Dcyt for three

dyes, and found that transfer of dichlorofluorescein (but not

carboxyfluorescein) was accompanied by a significant cyto-

plasmic diffusion resistance. A decrease of the apparent

transport coefficients for Lucifer Yellow with time was

indicative of significant dye binding to components of the

cytoplasm. Similar and more complex models of diffusion

within single cells (e.g., Horowitz et al., 1970; Kargacin and

Fay, 1991) and cell aggregates (e.g., Ramanan and Brink,

1990; Christ et al., 1994) exist.

Apparently the only determination to date of absolute

values of junctional permeability on a per-channel basis has

been reported recently by Valiunas et al. (2002). Their

combined measurements of fluorescence intensity and con-

ductance yielded unitary transfer rates for Lucifer Yellow

(LY) in HeLa cells coupled by junctions comprising rat

Cx43 and Cx40 connexins. The smallness of their system

tends to minimize the physical factors discussed above.

This article addresses a new series of experiments (Weber

et al., 2004) based on a novel system in which passage of

fluorescent dye from a ‘‘donor’’ Xenopus oocyte to a coupled

‘‘acceptor’’ oocyte is quantified by digital video images

(Nicholson et al., 2000), with concurrent measurement of the

electrical conductance between the same cell pair. The

specific purpose is to develop the modeling infrastructure

needed to deduce unitary gap junctional permeabilities from

raw data in the form of the ratio of acceptor-cell/donor-cell

fluorescence intensities as a function of time. Equations

describing the transient, three-dimensional cytoplasmic and

transmembrane diffusion process are formulated and then

solved using a finite difference technique. A separate single-

cell version of the model, fitted to data for uncoupled

oocytes, is used to deduce values of the cytoplasmic dif-

fusivity Dcyt, as well as two parameters characterizing

binding to the cytoplasm, which figure in the full double-cell

model. The theory ultimately yields curves for the acceptor/

donor concentration ratio that fit the raw data well, and lead

to self-consistent values of (AP)pore. The efficacy of the

approach is demonstrated with reference to passage of three

Alexa-series dyes through gap junction channels composed

of a number of connexin types. The outcome is a set of

results for (AP)pore at a level of quantitation surpassing

previous more-qualitative analyses in the literature. These

results demonstrate both dye and connexin dependencies of

channel permeability. Derived unitary permeability data are

found to be consistent with a microscopic model embodying

an interplay between hindered diffusion and a permeant-pore

affinity factor, the latter making the pore energetically

favorable for the dye, thereby increasing in-pore concentra-

tion and flux levels. Valiunas et al. (2002) noted that the flux

values they measured for LY were below those one would

expect for efficient propagation of labile signals in mul-

ticellular networks. The values measured here for the Alexa-

series dyes, however, are more consistent with what one

might expect for propagation of such signals.

SUMMARY OF EXPERIMENTS ANALYZED

Fig. 1 gives a schematic representation of the experimental

setup considered here (Weber et al., 2004). Two Xenopus
oocytes are immersed in medium within a well created by

pushing the end of a plastic microfuge tube into a layer of

agar at the bottom of a petri dish. A relatively small (41.4 nl)

bolus of 10 mM fluorescent dye solution (Alexa 350, Alexa

488, or Alexa 594 in the experiments analyzed here,

Molecular Probes, eugene, OR) is introduced by micropi-

pette at a prescribed injection spot xspot within one of these

cells. Fluorescence intensity is averaged over two square

imaging boxes, respectively positioned to reflect dye con-

centrations within ‘‘donor’’ and ‘‘acceptor’’ regions, at a

number of discrete time points.

The experiments considered (Weber et al., 2004) are of

two types. For any particular dye, single-cell experiments

aim to quantify the cytoplasmic diffusivity Dcyt, and the

binding (forward) rate coefficient kcyt and equilibrium

constant Keq
cyt for any reversible binding to elements of the

cytoplasm, without the complication of intercellular transfer.

Although oocyte pairs are still employed to maintain

a geometry identical to that of subsequent double-cell

experiments, no connexins are expressed, making the

intercellular membrane between the coupled cells effectively

impermeable. The point of injection xspot ¼ xspot,single lies at

one side of one of the oocytes. The donor and acceptor

imaging windows (0.43 3 0.43 mm) are positioned at

opposite sides of this injected oocyte to quantify the

FIGURE 1 Experimental setup (Weber et al., 2004) as seen from the side.
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equilibration process as dye spreads across it by diffusion

and binds to the cytoplasm, in principle eventually settling

down to a spatially uniform distribution.

Double-cell experiments, in which given connexins are

expressed, address the junctional permeability of the inter-

cellular membrane. The point of injection xspot ¼ xspot,double

lies near the center of one oocyte, and dye diffuses to the

other oocyte through the intercellular membrane, whose

permeability is the only remaining unknown parameter to

be determined by data fitting. Donor and acceptor imaging

windows (0.86 3 0.86 mm) are centered on the injected cell

and its neighbor, respectively, to track this process.

Typical raw data recorded from the imaging system are

shown in Fig. 2 (Weber et al., 2004), which presents

snapshots of the dye distribution at selected times after

injection in cases of (A) single-cell and (B) double-cell

experiments. Fluorescence intensity is encoded in terms of

hue; it increases in the order of: black (zero) ! violet ! blue

! green ! yellow ! red ! white (highest). These images

show clearly the spreading of dye across the cellular

cytoplasm (A and B) and through the intercellular membrane

(B). They also give a feel for the inhomogeneity of the

cellular cytoplasm, and the possible variability from experi-

ment to experiment.

The data ultimately fitted with the model (see Figs. 5 and 6

below) comprise the ratio of average fluorescence intensities

measured in the acceptor and donor boxes as a function of

time, derived by automated image analysis of the preceding

type of raw data.

FORMULATION OF THE MODEL AND METHODS
OF CALCULATION

Quantitative analysis of the preceding experiments is carried out within the

framework of a comprehensive computational model of intra- and

intercellular dye diffusion, comprising a number of elements needed to

deconvolute intercellular membrane permeability from cytoplasmic diffu-

sion and binding. The analysis ultimately yields absolute values of

permeability on a per-channel basis.

Geometry

As shown in Fig. 3, the shapes of the two oocytes are idealized in terms of

identical truncated (intersecting) ellipsoidal surfaces with prescribed semi-

axes and positions chosen to match dimensions measured from a number of

images of the system. The two ellipsoids intersect along an ellipse

representing the perimeter of the planar intercellular membrane, comprising

the apposed, junctionally coupled portions of the two cellular membranes at

z ¼ 0. According to the coordinate system used here, the direction up in the

laboratory is equivalent to the �y direction. A view from the bottom (Fig.

2)—looking up at the oocytes through the petri dish—corresponds to the

view employed experimentally with the inverted microscope. This

represents a view from the positive y axis, and reveals the half-length

(1.06 mm) and width (1.33 mm) of the cell pair, as well as the width of the

intercellular membrane (0.78 mm). A side view (Fig. 1) corresponds to

a view along the x axis and reveals the thickness of the oocytes (1.14 mm).

The cell receiving the initial injection of dye (at a prescribed point xspot) is

taken to be the ‘‘�’’ cell below the plane z ¼ 0, so that diffusion occurs

primarily in the 1z direction. In a single-cell experiment (with xspot ¼
xspot,single) the dye stays inside this ‘‘�’’ cell, whereas in a double-cell

experiment (with xspot ¼ xspot,double) dye enters the ‘‘1’’ cell through the

intercellular membrane. According to the assumed truncated ellipsoidal

shape, the volume Vcell of each oocyte is ffi 0.90 mm3 and the area Amem of

the intercellular membrane is ffi 0.41 mm2. Also represented in Fig. 3, B–E,

are the imaging boxes and optical paths.

It is convenient later to work with position vectors, coordinates, and

length parameters made dimensionless using a characteristic length L ¼ 1

mm, which are distinguished by the ‘‘ˆ’’ affix. Thus, for instance, x̂ ¼ L�1x,

x̂ ¼ L�1x, etc. Required for subsequent analysis is a representation of the

‘‘1’’ and ‘‘�’’ oocyte surfaces in spherical coordinates based at the origin

(which coincides with the center of the elliptical intercellular membrane).

(Polar and azimuthal angles u and f are measured from the positive z and x

axes, respectively, as in the usual definition of spherical coordinates; see

Bird et al., 2002, p. 826.) On these surfaces, the (dimensionless) radial

distance r̂ ¼ ðx̂21ŷ21ẑ2Þ1=2
varies with u and f as given by a function

f̂surf;6ðu;fÞ defined in Appendix A. The regions of space occupied by these

respective oocytes are denoted by

V̂1 ¼ fx̂: 0# r̂# f̂surf;1 ðu;fÞ;
0# u#p=2; �p=2#f\3p=2g; (3)

V̂� ¼ fx̂: 0# r̂# f̂surf;�ðu;fÞ;
p=2# u#p; �p=2#f\3p=2g: (4)

The intercellular membrane at ẑ ¼ 0 is denoted by ð@V̂�Þcoupled ¼
ð@V̂1Þcoupled and corresponds to the coordinate value u ¼ p/2. The

uncoupled cellular membranes are the surfaces given by r̂ ¼ f̂surf;�ðu;fÞ for

p/2 # u# p and r̂ ¼ f̂surf;1ðu;fÞ for 0 # u# p/2, respectively denoted by

ð@V̂�Þuncoupled and ð@V̂1Þuncoupled.

Governing transport equations

Theoretical analysis focuses on the concentrations c� and c1 of freely

diffusing dye within the ‘‘�’’ and ‘‘1’’ oocytes, which are functions of

position x ¼ (x, y, z) and time t, and are defined over the respective spatial

FIGURE 2 Representative images of intracellular diffusion (A) and

intercellular transfer (B) of Alexa488, viewed from the oocyte vegetal pole

(Weber et al., 2004). Fluorescence intensity (indicating concentration) is

encoded in terms of hue, increasing in the order of: black (zero) ! violet !
blue ! green ! yellow ! red ! white (highest). Specific times are as

marked beside each snapshot. (A) Single-cell case. Dye diffuses from left to

right (with lateral spreading) within one oocyte in the absence of junctional

permeability. (B) Double-cell case. Dye diffuses from left to right within and

between oocytes coupled by Cx32/Cx32 channels.
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domains V� and V1 for all t $ 0. Also considered are populations of dye

molecules bound to the cytoplasm, for which the corresponding concentra-

tion fields are denoted by the symbols b� and b1.

A number of physicochemical parameters enter the model and determine

the predicted outcome of a dye transfer experiment. Individual cells are

characterized by a diffusivity Dcyt (mm2/s) of dye within the cytoplasm, as

well as a forward rate constant kcyt (s�1) and equilibrium constant Kcyt
eq

(dimensionless) for reversible binding of dye to the cytoplasm. The latter

two parameters appear in rate expressions of the form

binding rate ¼�@c6=@t ¼ @b6=@t ¼ kcytðc6 � b6=Keq

cytÞ:
ð5Þ

The intercellular membrane is characterized by a permeability Pjunc having

the dimensions of a velocity (mm/s). This parameter represents the

proportionality between the concentration difference across the membrane

and the resulting flux through it, as expressed by a relation of the form

intercellular membrane flux ¼ Pjuncðc� � c1 Þ: ð6Þ

Values of the preceding parameters are presented later (see Table 1 and Figs.

5 and 6 below).

In the transport equations that follow, time is made dimensionless using

the characteristic length L ¼ 1 mm and the diffusivity Dcyt of dye in the

cytoplasm (yet to be determined) as t̂ ¼ tDcyt=L2. All dye concentrations are

made dimensionless using a characteristic value c0 (defined in the next

subsection), and are regarded as functions of dimensionless position and

time. Thus, we deal with ĉ�ðx̂; t̂Þ ¼ c�ðx; tÞ=c0, ĉ1ðx̂; t̂Þ ¼ c1ðx; tÞ=c0, etc.

The time-dependent intracellular diffusion and binding process is

governed by the dimensionless equations (compare to Bird et al., 2002,

Chap. 19; Cussler, 1997, pp. 319–320; Deen, 1998, pp. 54–56)

FIGURE 3 Quantitative perspective views of the model geometry. (A) Cutaway view of oocytes contained in the agar well. (B and C) Cutaway

representations of (B) single-cell and (C) double-cell cases, including imaging boxes and epicenters of dye injection. (D and E) Representations of optical paths

defined by the imaging boxes for (D) single-cell and (E) double-cell cases.
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@ĉ�=@ t̂ ¼ =̂
2
ĉ� � k̂cytðĉ� � b̂�=K

eq

cytÞ; x̂ 2 V̂�; (7)

@b̂�=@ t̂ ¼ k̂cytðĉ� � b̂�=K
eq

cytÞ; x̂ 2 V̂�; (8)

@ĉ1 =@ t̂ ¼ =̂
2
ĉ1 � k̂cytðĉ1 � b̂1 =K

eq

cytÞ; x̂ 2 V̂1 ; (9)

@b̂1 =@ t̂ ¼ k̂cytðĉ1 � b̂1 =K
eq

cytÞ; x̂ 2 V̂1 ; (10)

in which k̂cyt ¼ kcytL
2=Dcyt is a dimensionless binding rate coefficient. Dye

transfer through the intercellular membrane is described by the equation

� n � =̂ĉ� ¼ �n � =̂ĉ1 ¼ P̂juncðĉ� � ĉ1 Þ;
x̂ 2 ð@V̂�Þcoupled ¼ ð@V̂1 Þcoupled; (11)

in which the unit normal vector n points in the 1z direction (from the

‘‘�’’ cell to the ‘‘1’’ cell), and P̂junc ¼ PjuncL=Dcyt denotes a dimension-

less membrane permeability.

The images recorded from the experimental system show essentially no

leakage for the dyes Alexa 488 and Alexa 594. Although some such leakage

into the external solution is evident for Alexa 350, the concentrations

involved are small compared with the observed intracellular concentrations.

Therefore, although our model allows for an arbitrary permeability of the

uncoupled portions of the two cellular membranes, actual calculations are

performed with this permeability set to zero. The additional boundary

conditions effectively imposed are thus

n � =̂ĉ� ¼ 0; x̂ 2 ð@V̂�Þuncoupled; (12)

n � =̂ĉ1 ¼ 0; x̂ 2 ð@V̂1 Þuncoupled: (13)

Characterization of dye injections and
initial conditions

For all dye diffusion studies, injections by micropipette introduced 41.4 nl

(0.0414 mm3) of a 10 mM dye solution into one oocyte, amounting to

4.14 3 10�10 mol of dye (Weber et al., 2004). The characteristic

concentration c0 is specifically defined in terms of this mole number as

c0 ¼ (4.14 3 10�10 mol of injected dye)/L3 ¼ 4.14 3 10�10 mol/mm3 ¼
0.414 mM.

The injected volume is small but finite (roughly one-twentieth of the

cell volume), and the insertion and removal of the pipette undoubtedly

causes some mixing of the cellular contents. Therefore, the injection

process produces an initial dye distribution within the ‘‘�’’ cell that is

highly concentrated around the point of injection, but is not a perfectly

sharp Dirac delta distribution. We model it using a multivariate Gaussian

(normal) distribution,

ĉ�ðx̂; 0Þ ¼ aspot;expt

ð
ffiffiffiffiffiffi
2p

p
ŝspotÞ3 exp

�kx̂� x̂spot;exptk2

2ŝ
2

spot

 !
;

x̂ 2 V̂�; (14)

in which the standard deviation ŝspot (ffi 0.21) is set by the reasonable order-

of-magnitude criterion that the volume of injected dye equal the volume of

a sphere with radius equal to the standard deviation, 4pŝ3
spot=3 ¼ 0:0414.

The position vector x̂spot;expt represents the epicenter of the injection, which

differs between single- and double-cell experiments, distinguished by the

subscript expt (either single or double). The coordinates assumed in the

model are x̂spot;single ffi ð0; 0;�0:93Þ and x̂spot;double ffi ð0; 0:16;�0:50Þ,
based on a separate series of injections (mimicking those in the actual dye

transfer experiments) specifically aimed at locating the epicenters (Weber,

2003). These points are marked by tiny spheres in Fig. 3. The factor aspot,

expt is a normalization factor computed such that the Gaussian distribution is

normalized (has unit volume integral) over the injected (‘‘�’’) cell. Its

numerical values turn out to be aspot, single ffi 1.68 and aspot, double ffi 1.11 for

single- and double-cell cases, respectively. (The Gaussian distribution

without the factor aspot, expt is normalized over all space.)

The remaining initial conditions reflect the facts that, at the instant of

injection, no dye has diffused into the ‘‘1’’ cell, and binding has not had

a chance to occur:

ĉ1 ðx̂; 0Þ[ 0; x̂ 2 V̂1 ; (15)

TABLE 1 Dye properties, and model parameters characterizing the cellular cytoplasm in terms of a reasonable fit to the

single-cell data (Fig. 5), for each dye

Symbol (if assigned) Definition of parameter Value for Alexa 350 Value for Alexa 488 Value for Alexa 594

Molecular weight (excl. Na1 counterion) 326.31 547.50 735.81

Daq Diffusivity in bulk water at 258C 5.7 3 10�4 mm2/s 4.3 3 10�4 mm2/s 3.7 3 10�4 mm2/s

a Stokes-Einstein equivalent radius 4.3 Å 5.7 Å 6.6 Å

Net charge �1 �2 �2

Dcyt Diffusivity in cytoplasm 1.85 3 10�4 mm2/s 3.8 3 10�4 mm2/s 2.4 3 10�4 mm2/s

k̂cyt ¼ kcytL
2=Dcyt Dimensionless forward rate coefficient

for binding to cytoplasm

6.6 3.5 2.97

kcyt Dimensional forward rate coefficient for

binding to cytoplasm

1.22 3 10�3 s–1 1.33 3 10�3 s–1 7.12 3 10�4 s–1

Keq
cyt Equilibrium constant for binding to

cytoplasm

5.75 10 6.1

In the cases of Alexa 350 and Alexa 594, for which two experimental curves were measured and fitted, the model parameters listed represent average values

derived as described in the text.
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b̂�ðx̂; 0Þ[ 0; x̂ 2 V̂�; (16)

b̂1 ðx̂; 0Þ[ 0; x̂ 2 V̂1 : (17)

Finite difference solution

Equations 7–17 collectively constitute a coupled set of initial boundary value

problems to be solved for the position and time dependencies of the intracellular

concentrations ĉ�, b̂�, ĉ1, and b̂1. Given the location of the injection spot on

the yz plane, the solution of these equations must be symmetric around this

plane, so that attention can be restricted to the interval �p/2 # f # p/2. Our

approach to their solution involves a new radial coordinate representing the

fractional distance from the origin to the cell surface in each direction defined

by the polar and azimuthal angles u and f, namely

j ¼ r̂=f̂surf;6ðu;fÞ; (18)

within the ‘‘1’’ and ‘‘–’’ oocytes, respectively. Thus, the (uncoupled

membrane) surfaces of the oocytes correspond to the coordinate value j ¼ 1.

Within each, the triple of coordinates (j, u, f) defines a coordinate system

which is nonorthogonal, but has the attractive feature that the oocyte domain

is given by one of the simple expressions

V̂1 ¼ fx̂: 0# j# 1; 0# u#p=2;

� p=2#f\3p=2g; (19)

V̂� ¼ fx̂: 0# j# 1; p=2# u#p;

� p=2#f\3p=2g; (20)

making it directly amenable to finite difference discretization without any

complexity in the generation of a spatial mesh. The standard formula for the

Laplacian operator =̂
2

in spherical coordinates (Bird et al., 2002, p. 836)

adopts a rather lengthy form in terms of first and second derivatives with

respect to j, u, and f, given in Appendix A, which also provides explicit

expressions for the normal derivatives n � =̂ appearing in the boundary

conditions (Eqs. 11–13), as well as other requisite properties of our

coordinate system.

The intervals 0 # j # 1, 0 # u # p, and �p/2 # f # p/2 are

respectively divided into Nr, 2Nu, and 2Nf subdivisions. Fig. 4 shows the

resulting spatial discretization (at the cross section y ¼ 0) for (Fig. 4 A)

a coarse mesh with Nr ¼ Nu ¼ Nf ¼ 6 and (Fig. 4 B) a more refined mesh

with Nr ¼ Nu ¼ Nf ¼ 12. Discrete values of the dye concentrations ðĉ�Þijk ,

ðb̂�Þijk , ðĉ1Þijk , and ðb̂1Þijk are defined on either of these meshes at each time

(i, j, and k, respectively, indexing the values of j, u, and f).

To start, all concentration values at the nodes of the computational

mesh are assigned initial values according to Eqs. 14–17. The normal-

ization constant aspot,expt for the Gaussian initial distribution ĉ�ðx̂; 0Þ is

computed by approximating the required volume integral using

Simpson’s rule. For interior nodes (nodes for which u 6¼ p/2 and

j \ 1), the right-hand side of Eq. 7 or 9 is computed using second-order

(three-point) central difference approximations for all derivatives

appearing in =̂
2

(Appendix A, Eq. 36), and Euler’s method with a

prescribed time step Dt̂ is used to advance the nodal concentration values

in time. Symmetry conditions are incorporated into the process of

imposing the differential equation at nodes for which f ¼ �p/2 or p/2.

For nodes at the physical boundaries (intercellular membrane, u ¼ p/2,

and uncoupled cellular membranes, j ¼ 1), the boundary conditions

(Eqs. 11–13) are applied to compute concentration values consistent with

the updated interior values, using asymmetric (one-sided) formulas for

normal derivatives. All nodal values of the bound dye concentrations are

updated according to Eqs. 8 and 10 by Euler’s method using the

complete set of current values ðĉ�Þijk and ðĉ1Þijk . Further details of the

procedure are given by Chang (2003).

The preceding calculation (including optical computations discussed

in the next subsection) was coded in Fortran and run on several PCs.

For reference, timing data for runs on a PC are included in the captions

of Figs. 5 and 6 below. Execution time increases very rapidly with

increasing degree of mesh refinement, because of the increasing number

of nodes, and—further—a concomitantly decreasing time step Dt̂ needed

to maintain numerical stability (determined empirically, and surprisingly

small). Fitting of cytoplasmic properties to single-cell data (Fig. 5 below)

was carried out using the refined mesh (Nr ¼ Nu ¼ Nf ¼ 12, see

Fig. 4 B; Dt̂ ¼ 13 10�6), because here it is especially important to

resolve intracellular concentration gradients accurately as dye diffuses

from one side of the oocyte to the other. Fitting of the intercellular

membrane permeability to double-cell data (Fig. 6 below) was performed

using the coarse mesh (Nr ¼ Nu ¼ Nf ¼ 6, see Fig. 4 A;

Dt̂ ¼ 53 10�5), because here the intracellular diffusion process is less

critical, especially when the intercellular membrane controls the rate of

dye transfer.

Optical analysis of the model

Consider a given donor or acceptor imaging box marked, say, in the xz

plane (Fig. 3, B and C). Of special relevance is the subset of the

cytoplasm comprising all points whose projections in the 1y or �y

directions (which are respectively downwards or upwards in the

laboratory) onto the x,z plane fall inside the box (see optical paths

marked in Fig. 3, D and E). We assume that the average fluorescence

intensity measured from such a box is proportional to the total amount of

dye (mobile and bound) contained in this subset, i.e., visible through the

window defined by the imaging box. At any time, this quantity (divided

by the box area, and made dimensionless with c0L) is given by an

integral of the form

ðavg:moles per areaÞbox ¼ ðarea of boxÞ�1

3

ð ð
box

ð ŷcell;botðx̂;ẑÞ

ŷcell;topðx̂;ẑÞ
ðĉ6 1 b̂6Þdŷ dx̂ dẑ; (21)

where box stands for either the (dimensionless) donor or acceptor box. The

symbols ŷcell;topðx̂; ẑÞ and ŷcell;botðx̂; ẑÞ denote functions, defined in Appendix

A, giving the ŷ coordinates of the upper and lower oocyte surfaces,

respectively, in terms of x̂ and ẑ. Numerical approximation of the nested

integrals in Eq. 21 is effected using Simpson’s rule. Required values of the

intracellular concentrations are interpolated from the nodal values ðĉ6Þijk

and ðb̂6Þijk defined on the finite difference mesh using a three-dimensional

extension of two-dimensional bilinear interpolation.

At any time, the calculated quantity directly comparable with the

measured acceptor-box/donor-box fluorescence intensity ratio is

ratio ¼
ðavg:moles per areaÞacceptor 1BG

ðavg:moles per areaÞdonor 1BG
: (22)

The adjustable parameter BG represents an additive correction accounting

for the fact that the cellular cytoplasm, agar, and/or petri dish can contribute

a background signal additional to the fluorescence intensity deriving from

injected dye. This phenomenon may be due to autofluorescence and/or light

refraction. The parameter BG also serves to account approximately for

any spatially uniform contribution to the initial distribution of dye in the
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single-cell experiments, caused by possible mixing of the cellular contents

during the injection process.

Counting of channels

Equation 2 makes it possible to determine the unitary channel area-times-

permeability factor, (AP)pore, from the membrane permeability Pjunc,

provided one has the ability to count open channels between oocytes.

Toward this end, dye transfer measurements were accompanied by

measurements of the macroscopically observable intercellular electrical

conductance Gobs (Weber et al., 2004), defined as

Gobs ¼ Ij=ðDVÞtotal; (23)

where Ij denotes the current passing between cells as measured by the dual

cell voltage-clamp, and (DV)total denotes the total cell-to-cell voltage drop.

The conductance Gobs yields the number of open channels Npore with

knowledge of the unitary channel conductance gpore. However, Gobs is not

simply equal to Nporegpore owing to sources of electrical resistance other than

the membrane channels (e.g., cytoplasmic resistance), which cause (DV)total

to exceed the voltage drop (DV)j actually occurring across the intercellular

membrane.

Sophisticated models exist for dual voltage-clamp measurement of

electrical conductance between cells, addressing junctional access resistance

and other factors (e.g., Wilders and Jongsma, 1992; Van Rijen et al., 1998).

For present purposes, an estimate was obtained experimentally for the

relation between the fraction (DV)j/(DV)total of the total voltage drop

occurring across the intercellular membrane, and Gobs, as described by

Weber et al. (2004) and presented in their Fig. 5 E. A simple cell-pair

conductance model was then developed to support an empirical correlation

of these data (Appendix B). It leads to the equations

ðDVÞj=ðDVÞtotal ¼ 1 � bGobs; (24)

FIGURE 4 Spatial discretization at

the cross section y ¼ 0 corresponding

to two meshes used in the finite

difference calculations. (A) Coarse mesh

with Nr ¼ Nu ¼ Nf ¼ 6. (B) Refined

mesh with Nr ¼ Nu ¼ Nf ¼ 12.
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Nporegpore ¼ Gobs=ð1 � bGobsÞ; (25)

where b is a parameter representing the sum of all nonmembrane resistances,

which act in series with the channel-derived membrane resistance. Using the

value bffi 12,800 S�1 in units of reciprocal siemens or ohms (S�1 ¼V), this

type of relation provides a reasonable description of the data (Weber et al.,

2004, their Fig. 5 E). With this fitted value of b, Eq. 25 allows the number of

open channels Npore to be estimated from the measured intercellular

conductance Gobs. Further discussion of the parameter b is provided in

Appendix B.

RESULTS

The ultimate outcome of the diffusion model is a prediction

of the observable acceptor-box/donor-box ratio given by Eq.

22 as a function of time. Parameter values are determined by

trial-and-error adjustment to obtain reasonable fits of the

computed curves to the experimental data.

Analysis of single-cell experiments—
characterization of cytoplasmic diffusion
and binding

Our first step is to ascertain values of the model parameters

characterizing the cellular cytoplasm (Table 1). This de-

termination is made by fitting of the measured curves

showing acceptor-box/donor-box fluorescence intensity ratio

as a function of time in the single-cell experiments (Weber et

al., 2004), in which dye diffuses across the cytoplasm of only

one (the ‘‘–’’) oocyte. The apparent starting point of each

data set is matched by adjusting BG. The initial rapid rise of

a calculated curve is controlled by the cytoplasmic

diffusivity Dcyt. With a given value of Dcyt, the shape of

the ‘‘shoulder’’ (i.e., the region of high curvature between

the initial rapid rise and the later leveling off) depends

mainly upon kcyt. Given Dcyt and kcyt, the choice of Kcyt
eq then

determines the calculated acceptor/donor level at longer

times. Judicious use of these facts expedites the fitting

process. As a general philosophy we use the minimum Kcyt
eq

consistent with the data. Fig. 5 compares the computed and

measured curves. In cases where two experimental curves

were measured and fitted (for Alexa 350 and Alexa 594,

represented in parts A and C), the values of Dcyt, kcyt, and

Kcyt
eq listed in Table 1 represent averages of the respective

values belonging to the individual curves. The dimensionless

binding rate coefficient k̂cyt is computed by making the

average kcyt dimensionless using the average Dcyt. Alexa 488

differs from the other two dyes in the respect that all three

FIGURE 5 Fits of the computed single-cell acceptor-box/donor-box ratio

(Eq. 22) as a function of time (solid curves) to corresponding fluorescence

intensity data (points) for (A) Alexa 350, (B) Alexa 488, and (C) Alexa 594.

Calculations are based on the refined mesh. Parameter values are marked

beside each computed curve. Dcyt is the cytoplasmic diffusivity; kcyt and Kcyt
eq

are the forward rate constant and equilibrium constant, respectively, for dye

binding to the cytoplasm; and BG accounts for background signal resulting

from any initially uniformly distributed dye, as well as autofluorescence

and/or light refraction. For each dye, the parameter values listed in Table 1

represent averages of the values belonging to the individual curves (see text).

The dashed curve in B represents a calculation in which binding of dye to the

cytoplasm has been artificially suppressed by setting kcyt ¼ 0 (the value of

Kcyt
eq is then immaterial). Its divergence from the experimental data

demonstrates the importance of including binding in the model. Similar

no-binding curves yield the same conclusion for the other dyes, but they are

omitted in A and C to avoid clutter. Execution times required to generate

these curves with one of our two Fortran codes, compiled with an Absoft Pro

Fortran 7.0 F77 compiler (Absoft, Rochester Hills, MI) and run on an 850-

MHz Pentium III notebook PC, range from ;6 h (upper curve in A) to 16 h

(solid curve in B).
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data sets exhibit a steeper initial rise and a more abrupt

leveling off, indicative of a higher Dcyt for this dye. They are

fitted collectively by the single theoretical curve shown in

part B. The model parameter showing the greatest variability

among fits to different data sets for a given dye (and therefore

the greatest uncertainty) is Kcyt
eq . For Alexa 594 the two fitted

values of Kcyt
eq differ by a factor of ;5, owing to significant

differences between the measured acceptor/donor levels at

longer times (see Fig. 5 C).

Included for reference in Table 1 are values of the bulk

aqueous diffusivity Daq of each dye at 258C, estimated from

the molecular structure using the Wilke-Chang correlation,

together with Schroeder’s rule as a predictor of the molar

volume (Poling et al., 2001, pp. 4.33–4.35, 11.21–11.23).

The Stokes-Einstein equivalent radius a follows from Daq

according to the formula a ¼ kT/(6pmDaq) (Deen, 1987;

Poling et al., 2001, p. 11.21).

Analysis of double-cell experiments—
determination of intercellular membrane and
unitary channel permeability

For a double-cell experiment the parameter to be de-

termined is the apparent macroscopic permeability of the

intercellular membrane (P̂junc in dimensionless form),

which depends upon the unitary channel permeability

and the degree of intercellular coupling (i.e., number of

functional channels); see Eq. 2. For all combinations of

dye and type of connexin expressed in the oocytes, this

parameter was fitted by trial and error to each of a number

of measured curves giving the acceptor-box/donor-box

fluorescence intensity ratio as a function of time (Weber et

al., 2004), producing values in the range 0:01# P̂junc # 8.

Data sets were screened to ensure that they conformed to

pre-established criteria. Initial junctional conductance had

to be between 5 and 50 mS to obtain sufficient signal while

avoiding artifacts from cytoplasmic bridges, and was not

allowed to increase more than twofold over the 6-h

duration of the experiment. Fig. 6 shows examples of fits

of the model to the data. Some data sets contained more

scatter or other nonidealities, as detailed by Chang (2003),

but the model could offer a reasonable representation of all

the data. In all, 189 double-cell data sets were analyzed.

Aside from P̂junc, one (and sometimes two) parameters

varied between double-cell experiments. The estimated

starting point of each curve was matched approximately by

adjusting the background parameter BG appearing in Eq. 22.

For a minority (approximately one-quarter) of data sets, Kcyt
eq

was reduced (usually by a factor of 2 or 4) because the

observed high rate of cell-to-cell dye transfer (P̂junc[;8)

was consistent with a lower degree of cytoplasmic binding.

The implied variability in Keq
cyt agreed with that already

observed in fitting the single-cell data (which showed

variations in Keq
cyt by a factor of ;5).

In double-cell control experiments, the preparatory step of

injection with connexin RNA and antisense oligonucleotide

to endogenous Xenopus Cx38 was replaced by an injection

of antisense oligonucleotide alone (so that no channels

would be expressed in the cellular membrane). A small

fluorescence intensity sometimes observed in the acceptor

imaging box represents a background likely to arise from

refraction or optical imperfections in the system, or some

residual endogenous channel formation. As an order-of-

magnitude check on the possible effects of such imperfec-

FIGURE 6 Examples of fits of the computed double-cell acceptor-box/

donor-box ratio (Eq. 22) as a function of time (solid curves) to cor-

responding fluorescence intensity data (points). Calculations are based on

the coarse mesh. The key adjustable parameter is the (dimensionless)

intercellular membrane permeability P̂junc ¼ PjuncL=Dcyt, marked for each

curve. BG accounts for background signal resulting from autofluorescence

and/or light refraction. (A) Alexa 350 in Cx37/Cx43 heterotypic channels.

(B) Alexa 488 in Cx26/Cx26 homotypic channels. The execution time

required to generate each calculated curve is ;7 min for A and 12 min for B

(see computer specifications given in Fig. 5 legend).

Intercellular Junctional Diffusion Model 2067

Biophysical Journal 86(4) 2058–2077



tions, they may be characterized in terms of an ‘‘equivalent’’

degree of intercellular membrane permeability that would

give rise to the same rate of change of the acceptor/donor.

The conclusion of this analysis (Chang, 2003) is that values

of P̂junc\;0:1 (which arise for data sets showing low dye

transfer rates) might not be significant as they fall under the

possible level of optical noise in the system. This threshold

value of P̂junc applies to Alexa350; the average noise level

seems to be lower for the other two dyes.

For each experimental curve to which a value of P̂junc was

fitted, Npore was estimated from the measured intercellular

conductance using Eq. 25 together with the known unitary

channel conductance. Table 2 lists unitary conductances for

the channel types considered. It agrees well with a recent

approximate tabulation of unitary conductances ‘‘in 120–150

mM salt’’ (Harris, 2001, p. 383), and is roughly applicable to

currents carried by the natural cytoplasmic medium. The

final result of our analysis is the quantity AmemPjunc/Npore ¼
(AP)pore (compare to Eq. 2). It represents the effective con-

stant of proportionality between a macroscopic dye con-

centration difference across the intercellular membrane, and

the resulting molecular flow (moles/time), reckoned on

a per-channel basis. Fig. 7 shows the variation of (AP)pore

with unitary channel conductance for each dye. Because of

variations over more than an order of magnitude, we report

mean values (with error bars indicating mean 6 SE) of the

logarithm of (AP)pore. For each combination of dye and

channel type, the logarithm of the ratio of membrane

permeability to channel number was averaged over all data

sets analyzed.

TABLE 2 Unitary conductances gpore of channels

Type of channel

Unitary conductance

gpore (pS)

Reference for unitary

conductance

mCx45/mCx45 32* Moreno et al. (1995),

Veenstra et al. (1994)

rCx32/rCx32 55 Bukauskas et al. (1995a),

Suchyna et al. (1999)

rCx26/rCx32 90y Suchyna et al. (1999)

rCx43/rCx43 90z Veenstra et al. (1995)

rCx26/rCx26 135 Bukauskas et al. (1995a),

Suchyna et al. (1999)

mCx37/rCx43 140§

mCx40/mCx40 198 Bukauskas et al. (1995b)

mCx37/mCx37 315 Traub et al. (1998)

Species designations are m for mouse and r for rat. Although the internal

pipette solutions used to measure the reported conductance values vary,

their correspondence with the natural cytoplasmic medium is a reasonable

approximation.

*Data exist for channels comprising chick, rat, and human connexin

protein; the measured unitary conductance is 32 pS for all three species.

Given the apparent consistency among species, we use this value as an

estimate for the mouse Cx45/Cx45 channels actually studied.
yHeterotypic Cx26/Cx32 channels exhibit current-rectifying behavior, i.e.,

a nonlinear current-voltage characteristic. Value listed is approximate

conductance at zero voltage.
zValue listed is for nonphosphorylated channel.
§Value listed is not a measured value, but rather an estimate based on the

assumption that the constituent hemichannels act as resistances in series,

each resistance being one-half the resistance of the corresponding complete

homotypic channel. Evidence for the efficacy of this estimate is furnished

by the case of heterotypic Cx26/Cx32 channels (for which conductance

data are available as listed), in which case the same calculation yields an

error of only �13%.

FIGURE 7 Correlations of (AP)pore with gpore for (A) Alexa 350, (B)

Alexa 488, and (C) Alexa 594. The points with error bars represent the mean

6 SE of log10[(AP)pore].
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The approximate practical upper and lower limits on P̂junc

(8 and 0.1, respectively) discussed above indicate that the

oocyte system is capable of determining intercellular mem-

brane permeabilities over a range spanning roughly two

orders of magnitude. They are translated approximately into

corresponding limits on (AP)pore in Appendix C. The con-

clusion is that values of (AP)pore exceeding the order of 1.4 3

10�9 mm3/s (log10[(AP)pore/(mm3/s)] � 8.9) are probably not

reliably indicated. In this regime the dye transfer rate is

limited by intracellular diffusion and does not reflect the

(high) membrane permeability. Noise in the system may be

characterized in terms of an equivalent permeability, and

renders possibly insignificant values of (AP)pore below the

order of 1.8 3 10�11 mm3/s (log10[(AP)pore/(mm3/s)]

� 10.7).

DISCUSSION

The final derived data (Fig. 7) are discussed in detail in

Weber et al. (2004) in terms of functional comparisons

between different gap junctions. Here we focus on what our

analysis and the results say about the physics of the

intercellular transfer process.

Factors affecting the macroscopically observable
rate of dye transfer

Xenopus oocytes furnish a good system for the quantification

of dye transfer rates (Nicholson et al., 2000; Weber et al.,

2004). However, they present the challenge that the desired

junctional permeability is convoluted with a number of other

obscuring physical factors. It is worthwhile to recap the

effects these factors have on our derived values of (AP)pore.

The most important nonjunctional phenomenon influenc-

ing intercellular transfer seems to be binding of dye to

components of the cytoplasm. We assume reversible binding

because all attempts at describing the data with an

irreversible binding model failed. The fitted values of Keq
cyt,

ranging from ;6 to 10 (Table 1), indicate that the bound

state is strongly preferred for all three dyes (because they

significantly exceed unity). The characteristic binding times

k�1
cyt are on the order of 10–20 min. Although the precise

microscopic origin of the binding process remains to be

clearly defined, this type of gradual phenomenon has been

indicated in other dye transfer studies (Brink and Ramanan,

1985). It is worth noting that the levels of the acceptor/donor

curves in Fig. 5 (significantly below unity) after one-half

hour represent a transient phenomenon. Because of the

reversibility of binding, these curves would ultimately reach

values around unity after a much longer elapsed time, i.e., the

final equilibrium state is a spatially uniform distribution of

dye.

An analysis not explicitly accounting for binding would

erroneously ascribe the consequent slowness of dye transfer

to lower apparent values of intercellular membrane (and

unitary channel) permeability. The double-cell experiments

alone provide no means of deconvoluting the effects of

intercellular membrane (and ultimately junctional) diffu-

sional resistance, and binding. The single-cell data (Fig. 5)

provide the independent information needed to characterize

the latter, and hence achieve the deconvolution. Two

illustrative calculations performed to test the effects of

binding indicate that, for cases of moderate and high

membrane permeability, ignoring binding would decrease

the derived values of (AP)pore by factors of ;10 and 60, re-

spectively. We could fit the double-cell data in this way, but to

do so would be to ignore the very strong and consistent evi-

dence for a significant degree of binding embodied in Fig. 5.

Because of the O(1 mm) path length across an oocyte, the

role played by cytoplasmic diffusional resistance is also

significant. Its quantitative importance is made clear by

values of the dimensionless parameter P̂junc ¼ PjuncL=Dcyt,

representing the ratio of intercellular membrane to cytoplas-

mic permeabilities, found to be around unity or greater in

many cases (see, e.g., labels on curves in Fig. 6). Mobilities

of dye molecules are noticeably lower in cytoplasm than in

bulk water. Values of Dcyt range from ;30 to 90% of the

corresponding values of Daq (Table 1), reflecting hindered

mobility in the cytoplasmic milieu. They describe the initial

rise of the curves in Fig. 5, before onset of the gradual

binding process. At longer times, binding further (and

dramatically) slows intracellular movement of dye. Theoret-

ically, once sufficient time has passed for binding equilib-

rium to be achieved (t � 10–20 min), free and bound

molecules would move collectively in a hypothetical infinite

cytoplasmic medium with an apparent diffusivity

Dcyt=ðKeq
cyt11Þ (Cussler, 1997, pp. 32–34). Altogether, the

reduction in mobility within cytoplasm relative to bulk water

observed here is consistent with the reduction seen for

a variety of molecular permeants and cell types—typically

by a factor of roughly 2–5, with further retardation if binding

occurs (Mastro and Keith, 1984, p.185s; Nitsche, 1999, pp.

484–485).

The measurement of intercellular conductance concomi-

tantly with dye transfer is key to counting channels, thereby

enabling the deduction of unitary permeabilities from

intercellular membrane permeabilities. Our procedure spe-

cifically accounts for the phenomenon that the voltage drop

(DV)j actually occurring across the membrane is generally

only a fraction of the total observed intercellular voltage drop

(DV)total, owing to apparently significant nonmembrane (e.g.,

cytoplasmic) electrical resistances. This phenomenon is

addressed quantitatively by our conductance model (see

Eqs. 24 and 25, and Appendix B). If we would ignore it (i.e.,

assume that the observed intercellular conductance Gobs is

simply proportional to Npore), then we would underestimate

the number of channels. Derived values of (AP)pore would

come out higher than the correct values, typically by a factor

of ;2.
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Magnitude and dye/channel size-dependence of
unitary permeability

Examination of Fig. 7, A–C, indicates that the derived

unitary area-times-permeability factors lie between ;10�11

and 10�9 mm3/s, and, broadly speaking, exhibit an overall

decrease with increasing dye molecular weight progressing

from Alexa 350 (MW ¼ 326.31, excluding sodium ion) to

Alexa 594 (MW ¼ 735.81), a trend which accords with

intuition. Examination of each individual part (A, B, or C) of

this figure indicates that significant variations exist among

channels (distinguished by their unitary conductances on

the abscissa), and that—if any broad trend were to be

identified—it would be an overall decrease in permeability

with increasing channel conductance. Insofar as channel

conductance is an indicator of average pore radius, this trend

seems anomalous, because bigger pores might be expected

to be easier to traverse by diffusion. Anomalies in the

correlation of dye permeability with channel conductance are

well known, and speak for physics more complex than

simply hindered diffusion through a featureless aqueous pore

(e.g., Veenstra et al., 1995; see Harris, 2001, p. 396).

To assess the magnitudes and trends of the derived unitary

permeabilities, it is instructive to apply pore diffusion theory

to these data. Following ample precedent (Levitt, 1975, 1985,

1991; Dwyer et al., 1980; Zimmerman and Rose, 1985; Hille,

1992; Beblo and Veenstra, 1997; Wang and Veenstra, 1997;

Valiunas et al., 2002), for order-of-magnitude purposes we

idealize channels as circular cylindrical pores and dye

permeants as hard spheres. A reasonable estimate of the pore

length ‘pore is 160 Å (Veenstra et al., 1995; compare to

Wilders and Jongsma, 1992). Dye molecules are character-

ized in terms of their Stokes-Einstein equivalent radii (Table

1). The unitary pore area-times-permeability factor is given by

ðAPÞpore ¼ Apore

‘pore

KporeDpore

1
Rpore

Dcythe

� ��1

; (26)

in which Apore ¼ pR2
pore is the pore cross-sectional area. The

partition coefficient comes from a well-known formula

(Pappenheimer et al., 1951; Renkin, 1954; Dwyer et al.,

1980; Levitt, 1985; Deen, 1987) expressing the fact that only

a fraction of the pore cross section is accessible to the

permeant center owing to its finite size (steric exclusion),

KporeðlÞ ¼ ð1 � lÞ2
; (27)

where l ¼ a/Rpore is the ratio of permeant (a) to pore (Rpore)

radii. The mean in-pore diffusivity is approximated using the

equation

DporeðlÞ
Daq

¼1�2:1050l12:0865l
3�1:7068l

5
10:72603l

6

1�0:75857l
5 ;

(28)

derived by Haberman and Sayre (1958), which is very

commonly used to describe hindered diffusion in biological

pores and channels generally (Levitt, 1975, 1985, 1991;

Dwyer et al., 1980) and gap junctions in particular (Beblo

and Veenstra, 1997; Wang and Veenstra, 1997; Valiunas

et al., 2002; compare to Zimmerman and Rose, 1985). It

is based on continuum hydrodynamic theory, which may

be applied only approximately to small pores. Technically,

Dpore is the axial diffusivity averaged over all radial

positions, whereas this equation gives the diffusivity for

translation along the pore axis. As reviewed by Deen (1987),

the centerline diffusivity is in fact a good approximation to

the radial average. Equation 26 includes a term for the pore

access resistance at both ends of the pore, quantified by

a dimensionless hydrodynamic function, he, calculated

rigorously by Keh (1986). His numerical values of he,

calculated in the range 0 # l # 0.6, are well approximated

by a simple formula that we have fitted for use here, namely

he ¼
2

1:0449p
10:74ð1� e

�lÞ�1:23ð1� e
�2lÞ: (29)

The first term, an exact result due to Kelman (1965)

expressed in Keh’s (1986) notation, is usually approximated

as 2/p (Hall, 1975; Hille, 1992, p. 296; Veenstra, 1996). We

use the cytoplasmic diffusivity Dcyt in conjunction with he in

Eq. 26 because the access process is dominated by diffusion

to and from the pore mouth through the cytoplasmic medium

(as opposed to water in the pore).

Fig. 8 A shows the dependence of (AP)pore upon pore

radius Rpore predicted by Eqs. 26–29 for Alexa 350 (Stokes-

Einstein radius a ¼ 4.3 Å). The levels of permeability

corresponding to the data points in Fig. 7 A are represented as

horizontal dotted lines for each connexin tested. It is seen

that, to match the data, classical pore diffusion theory

requires pore radii ranging from ;18 to 40 Å. Such radii are

much larger than all published estimates of channel size made

on the basis of unitary channel conductance (e.g., Veenstra,

1996; Beblo and Veenstra, 1997; Wang and Veenstra, 1997)

and passive diffusion of molecular size probes (e.g., Flagg-

Newton et al., 1979; Schwarzmann et al., 1981; Gong and

Nicholson, 2001; see Harris, 2001, pp. 391–396), as well as

direct structural determinations (e.g., Yeager et al., 1998;

Unger et al., 1999; see Harris, 2001, pp. 335–338), all of

which suggest diameters\ 20 Å (i.e., radii\ 10 Å).

Energetic interactions between the dye permeant and pore,

not included in the above formulation, are likely to exist, and

constitute potentially important factors affecting pore

permeability. Any attractive interactions would make the

pore environment energetically favorable, thereby elevating

in-pore concentrations relative to cytoplasm, and concom-

itantly increasing the permeant flux for a given pore radius.

Equivalently, relative to the no-interaction case, a given level

of flux would occur with a smaller pore size. Thus, attractive
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interactions might explain the general trend for permeability

to increase with decreasing conductance indicated by Fig. 7,

and also high absolute values of permeability.

As an illustrative step toward considering the possible

effects of permeant-pore attraction, we present here a cal-

culation of (AP)pore allowing for van der Waals interaction.

Our reasons for selecting this example are that the van der

Waals interaction is ubiquitous, and can also be estimated

rigorously from the assumed pore model. In this regard it is

worth noting that recent work elucidating the pore-lining

amino acid residues in Cx32 channels has shown them to be

largely hydrophobic (Skerrett et al., 2002), which suggests

that, at least within the membrane spanning region of the

pore, electrostatic interactions may play a reduced role.

Calculations could in principle be carried out for electrostatic

interactions (compare to Smith and Deen, 1980, 1983;

Jordan et al., 1989; Levitt, 1991). However, they would

require very specific assumptions about the distribution of

charges facing the pore interior as a function of axial

position. While they may exist at the pore mouth (see below)

or in the part of the pore spanning the extracellular gap

between cells, there are currently no structural data to

confirm this or map their positions.

The primary effect of van der Waals (or any other

attractive) interaction in Eq. 26 is to increase Kpore because of

the energetic favorability of the in-pore environment relative

to the cytoplasm outside. This effect may be represented in

the form of an extra affinity factor Kaffinity
pore appearing in

a modified form of Eq. 27, namely

Kpore ¼ ð1�lÞ2
3K

affinity

pore ðl;AHamakerÞ: (30)

The calculation of Kaffinity
pore is summarized in Appendix D,

which also indicates typical orders of magnitude of the

Hamaker constant AHamaker, the key parameter quantifying

the strength of the van der Waals attraction. Fig. 8 B shows

the predicted dependence of (AP)pore on Rpore for Alexa350

allowing for the additional effects of permeant-pore van der

Waals attraction, based on a reasonable choice of AHamaker

(6 3 10�20 J; see Appendix D), as well as short-range

repulsion. The lowest and highest (solid) curves are based on

Eq. 26 with and without the pore access resistance term,

respectively. Because the permeant-pore attraction would

tend to reduce the access resistance, the actual permeability

must be intermediate between the results for these two

limiting cases. Presented as a guide to the eye, the dashed

curve represents the geometric mean of the two calculated

values of (AP)pore at each pore radius. Notably, this curve

suggests that the measured permeabilities of most of the

channels studied here are consistent with a pore radius\ 10

Å (i.e., diameter \ 20 Å)—a value compatible with other

measured gap junction pore diameters mentioned above.

The introduction of permeant-pore affinity adds consider-

able intrigue to the microscopic picture. Although a given

level of permeability can be matched by an unrealistically

large value of Rpore, as in the no-interaction case (compare to

Fig. 8 A), it can also be matched by a much smaller value of

Rpore. The underlying physical reason is that, with a snug fit

in a small pore, the pore wall is close to the permeant surface

on all sides, and the resulting energetic interaction is very

strongly favorable. For instance, the energy of attraction in

a pore with Rpore ¼ 10 Å varies from �1.6 to �5.5 kT
progressing outward from the centerline to the maximum

FIGURE 8 Illustrative calculation showing the dependence of (AP)pore

upon Rpore for Alexa350 (Stokes-Einstein equivalent radius ¼ 4.3 Å) as

predicted by the pore theory embodied in Eqs. 26–30. Horizontal dotted lines

represent levels of permeability for each connexin tested, corresponding to

the data points in Fig. 7 A. (The highest, second highest, and lowest dotted

lines correspond to Cx45, Cx40, and Cx37 channels, respectively. The

remaining channels exhibit intermediate levels of permeability that differ

negligibly from each other.) (A) Theory without van der Waals affinity. Pore

access resistance is accounted for. (B) Theory with van der Waals affinity

factor calculated as described in Appendix D. The Hamaker constant has

been set to 6 3 10�20 J. The lowest and highest (solid) curves correspond to

calculations with and without the pore access resistance, respectively. The

intermediate (dashed) curve gives the geometric mean of these two results.
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allowable radius. This effect may be so strong that dye flux

actually increases with decreasing Rpore, over a certain range

of radii, despite the concomitant decrease in pore cross-

sectional area and solute mobility. This phenomenon is

clearly evident in Fig. 8 B, and also explains the general

trend of increasing permeability with decreasing gpore for

a given dye. A corollary of this statement is that one could

see elevated permeability as probe size increases for a given

channel, i.e., a tighter fit elevates in-pore concentration levels

(and hence flux) because of the more energetically favorable

environment (in the form of higher attraction of the probe to

the pore walls). This effect can be so strong that it dominates

over the increased level of hindrance. For example, Alexa

488 shows slightly higher flux through Cx43 channels than

Alexa 350. With Alexa 594 in Cx43 channels one reaches

a permeant size where mobility must be very strongly

impeded at a constriction somewhere along the pore. Thus

the permeability to this dye is again lower.

Calculations not shown suggest that electrostatic inter-

actions could give rise to energies of similar magnitudes

(compare to Harris, 2001, p. 384). They will be open to

similar quantitative assessment once sufficient definitive in-

formation becomes available about magnitudes and locations

of charges in the pore lining.

Overall, considering both their high absolute values and

correlation with unitary electrical conductance (Fig. 7), our

derived data on unitary channel permeability strongly

suggest the existence of permeant-pore affinity factors if

these data are to be explained in terms of reasonable pore

radii. Identification of these factors, which might con-

stitutes the net outcome of several intermolecular forces,

constitutes an important subject for future experimental

and theoretical investigation. It is worth emphasizing that

the term affinity as used here refers to an energetically

favorable environment in the pore, which elevates in-pore

concentrations relative to the bulk (cytoplasmic) solutions

outside, and thereby the permeant flux. It does not imply

the existence of binding sites that immobilize the dye

permeant, or an attraction to the wall so strong that ultra-

high friction preludes its axial diffusion. Permeabilities of

the pores themselves may be so high (possibly due to

affinity factors as suggested here) that the rate of dye

diffusion might be affected significantly or even limited by

the pore access resistance (see the three curves shown in

Fig. 8 B quantifying the effects of varying degrees of

access resistance).

Comparison with the results of Valiunas
et al. (2002)

It is worthwhile to compare our findings with the only other

reported determination of absolute values of dye passage

rates on a per-channel basis for gap junctions (Valiunas et al.,

2002). Their results can be cast in the form of the pore area-

times-permeability factor, because the concentration differ-

ence driving transjunctional diffusion is also reported.

Analysis of the specific typical 15-min experiment repre-

sented in their Fig. 2 yields the value log10[(AP)pore/(mm3/s)]

ffi �11.6 for rat Cx43 channels. This value for Lucifer

Yellow (LY) is significantly below those found for the series

of Alexa dyes considered here (log10[(AP)pore/(mm3/s)]

ranging from �9.37 to �9.95 in the same type of channel).

Valiunas et al.’s dye transfer rates for Cx40 channels are

even lower. These authors specifically comment that their

permeation rates imply a surprisingly ineffective gap

junctional pathway for intercellular transfer of messenger

and metabolite molecules, although our current results would

suggest a much greater level of effectiveness.

Any physical phenomena slowing dye transfer would be

lumped into the low apparent junctional permeability reported

by Valiunas et al. Cytoplasmic diffusional resistance is not

a factor given the small size of HeLa cells and, further,

perfusion of the donor cell in their experimental Method 1.

Brink and Ramanan (1985) reported very noticeable cytoplas-

mic binding of LY in earthworm septate median giant axons,

although it seemed to occur gradually (over the timescale of

hours). The extent to which binding might be responsible for

low transfer rates of LY in Valiunas et al.’s experiments is

unclear, as the passive perfusion afforded by a whole cell patch

is unlikely to displace dye bound near the membrane. However,

it probably would not change their conclusions by an order of

magnitude. Thus, differences between our results and theirs

may come down to the difference in dye permeants and

possible differences in the state of the channel.

Although LY has a smaller molecular weight than our

intermediate Alexa 488 dye, its conjugated three-ring system

is more rigid than that of the Alexa probes, so it is difficult

to compare their effective diameters. The distributions of sur-

face charge, although anionic for all of these dyes, also differ

significantly. Thus, structural differences between dye

probes could be responsible for the observed differences in

permeability. This possibility is supported by new pre-

liminary data (A. Verma, University at Buffalo, unpublished

observations), for which initial assessments suggest some-

what lower LY permeability through Cx43 channels relative

to Alexa 488 in the same oocyte system considered here.

In addition, it is worth noting that mammalian cells often

cause phosphorylation of Cx43 (Musil and Goodenough,

1991), whereas oocytes do not (Zhou et al., 1999). This

could clearly affect the access resistance to the pore.

Consistent with this, phosphorylation of Cx43 by PKC has

been associated with a 30% decrease in unitary conductance

from 90 to 60 pS (Moreno et al., 1994). Calculations not

shown suggest that if such changes occur as an electrostatic

effect of the ring of negative charges introduced by the

phosphate groups at the channel mouth, then these charges

would have to be positioned relatively close to the pore

mouth to affect conductance, given the salt shielding that

could occur in cytoplasm. The implied electrostatic barrier at

each end of the pore for an anionic dye permeant (larger than
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a small ion) could then dramatically reduce the rate of dye

transfer. The implication is that Valiunas et al.’s low per-

meability may also derive in part from a pore entrance effect

present in their system and absent in ours.

Resolution of absolute (as opposed to relative) values of

junctional permeability has the potential for revealing much

about the microscopic physical mechanisms of pore dif-

fusion and entrance effects. Valiunas et al.’s (2002) analysis

and our work underscore the importance of focusing on

absolute values.

APPENDIX A: MATHEMATICAL DETAILS
RELATING TO THE MODEL GEOMETRY AND
THE COORDINATE SYSTEM BASED ON EQ. 18

The semiaxes (‘x ffi 0.66 mm, ‘y ffi 0.57 mm, ‘z ffi 0.59 mm) and centers

(x0,6 ¼ (0, 0, 6 z0) with z0 ffi 0.47 mm) of the ellipsoids representing the

oocytes are computed to match four key dimensions measured from

a number of images of the system, namely the half-length, width, and

thickness of the oocyte pair, and the width of the intercellular (common,

coupled) portions of the cellular membranes seen from the bottom. The

major (x) and minor (y) semiaxes of the elliptical intercellular membrane at

z ¼ 0 formed by the intersection of these ellipsoids are ffi 0.39 mm and

ffi 0.33 mm, respectively.

With reference to Eqs. 3, 4, and 18, the function f̂surf;6ðu;fÞ specifying

the dimensionless radial distance r̂ ¼ ðx̂21ŷ21ẑ2Þ1=2
on the surface of the

‘‘1’’ or ‘‘–’’ oocyte in terms of u and f is given explicitly by the set of

formulas

r̂¼ f̂surf;6ðu;fÞ ¼ ð�B̂surf;61

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̂

2

surf;6 �4ÂsurfĈsurf

q
Þ=ð2ÂsurfÞ;

Âsurf ¼ ðsinucosf=‘̂xÞ2
1ðsinusinf=‘̂yÞ2

1ðcosu=‘̂zÞ2
;

B̂surf;6 ¼ 7 2ẑ0 cosu=‘̂
2

z ;

Ĉsurf ¼ ðẑ0=‘̂zÞ2 � 1:

(31)

The functions ŷcell;topðx̂; ẑÞ and ŷcell;botðx̂; ẑÞ appearing in Eq. 21 specify

the ŷ coordinates of the upper and lower oocyte surfaces, respectively, in

terms of x̂ and ẑ. They are given explicitly by

ŷcell;topðx̂; ẑÞ ¼�‘̂y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx̂=‘̂xÞ2 �½ðẑ 7 ẑ0Þ=‘̂z�2

q
; (32)

ŷcell;botðx̂; ẑÞ ¼ ‘̂y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx̂=‘̂xÞ2 �½ðẑ 7 ẑ0Þ=‘̂z�2

q
; (33)

in which the upper (–) signs apply to the ‘‘1’’ oocyte and the lower (1)

signs apply to the ‘‘�’’ oocyte. These formulas are equivalent to Eq. 31 (and

are more transparently indicative of the assumed ellipsoidal shapes).

The relations

j¼ r̂=f̂ðu;fÞ; u¼ u; f¼f (34)

(compare to Eq. 18) define the ðj; �uu; �ffÞ coordinate system employed in

our analysis, which is nonorthogonal (compare to Bird et al., 1987, pp.

597ff). Here and in subsequent equations the symbol f̂ is used as

shorthand for f̂surf;6. Application of the chain rule of differentiation (Bird

et al., 2002, p. 826) yields the following expressions for partial derivatives

with respect to r̂, u, and f in terms of partial derivatives with respect to j,
�uu, and �ff:

@=@r̂¼ ð1=f̂Þ@=@j;
@=@u¼ @=@u�ðj=f̂Þð@ f̂=@uÞ@=@j;
@=@f¼ @=@f�ðj=f̂Þð@ f̂=@fÞ@=@j: (35)

These expressions serve to rewrite the standard formula for the Laplacian

operator =̂
2

in spherical coordinates (Bird et al., 2002, p. 836) in terms of

first and second derivatives with respect to j, �uu, and �ff:

In this as in subsequent formulas, we make the notational change �uu ! u,
�ff ! f. In Eq. 11, the normal derivative n � =̂ on the intercellular membrane

ð@V̂�Þcoupled ¼ ð@V̂1Þcoupled (at ẑ ¼ 0 or u ¼ p/2) is

n � =̂¼�1

jf̂

@

@u
� j

f̂

@ f̂

@u

@

@j

 !
: (37)

In Eqs. 12 and 13, the corresponding derivative on the uncoupled membrane

surfaces ð@V̂6Þuncoupled (given by r̂ ¼ f̂surf;6ðu;fÞ or j ¼ 1) is

n � =̂¼ 1

f̂
11

1

f̂

@ f̂

@u

 !2

1
1

f̂ sinu

@ f̂

@f

 !2" #1=2

@

@j

� 1

f̂
2 11

1

f̂

@ f̂

@u

 !2

1
1

f̂ sinu

@ f̂

@f

 !2" #�1=2

3
@ f̂

@u

 !
@

@u
1

1

sin
2
u

@ f̂

@f

 !
@

@f

" #
: (38)

The differential element of volume, used in the computation of the

normalization factors aspot,single and aspot,double, is given by

dV̂¼ j
2
f̂

3
sinudjdudf: (39)

=̂
2
¼ 1

f̂
2 11

1

f̂
2

@ f̂

@u

 !2

1
1

f̂
2

sin
2
u

@ f̂

@f

 !2" #
@

2

@j
2

1
1

jf̂
2 2 � 1

f̂

@
2
f̂

@u
2 1

2

f̂
2

@ f̂

@u

 !2

� cot u

f̂

@ f̂

@u
� 1

f̂ sin
2
u

@
2
f̂

@f
2 1

2

f̂
2

sin
2
u

@ f̂

@f

 !2" #
@

@j

1
1

ðjf̂Þ2

@
2

@u
2 1 cot u

@

@u
1

1

sin
2
u

@
2

@f
2

� �
� 2

jf̂
3

@ f̂

@u

@
2

@j @u
1

1

sin
2
u

@ f̂

@f

@
2

@j @f

 !
: (36)
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APPENDIX B: SIMPLE CELL-PAIR
CONDUCTANCE MODEL UNDERLYING
EQS. 24 AND 25

Fig. 9 depicts a simple, effectively one-dimensional electrical model of the

cell pair, accounting for resistances in series across the intercellular

membrane junctions and the bulk cytoplasms, as well as a possible

additional resistance within each cell. These three types of electrical

resistances (Relec), and corresponding voltage drops (DV), are identified by

the descriptive subscripts j, cyt, and other, respectively. A likely important

contributor to Relec
other is the junctional access resistance, addressed in detail by

Wilders and Jongsma (1992). These authors found that the voltage drop

(DV)j/(DV)9 (in the notation of Fig. 9) equals 0.91 for an isolated channel,

and drops to 0.56 (i.e., is significantly less than unity) for a junctional plaque

comprising 1951 channels, owing to interactions between them.

Consideration of the resistivity of the cytoplasm (Wilders and Jongsma,

1992, p. 946; compare to Hille, 1992, p. 8), as well as the approximate length

and width of the electrical path, yields the estimate 2Relec
cyt � 4200V for the

total cytoplasmic electrical resistance. Insofar as the difference between this

estimate and the fitted value b ffi 12,800 V might be significant, it suggests

a substantial value of Relec
other, likely attributable to junctional access

resistance. Fig. 9 furnishes an approximate basis for addressing this factor.

According to it, the total intercellular voltage drop is given by

ðDVÞ
total

¼ ðDVÞ
j
12ðDVÞ

cyt
12ðDVÞ

other
: (40)

Conservation of charge at steady state dictates that three expressions for the

intercellular current be equal:

Ij ¼NporegporeðDVÞ
j
¼ ðDVÞ

cyt
=Relec

cyt ¼ ðDVÞ
other

=Relec

other: (41)

At least two analyses of these two equations are possible (Chang, 2003). If

the channel access resistances act independently, then Relec
other should vary

with the number of channels as Relec
other ¼ Relec

single�pore access=Npore. In the other

extreme of Npore-dependence, Relec
other might be regarded as a constant,

independent of Npore, representing an average parameter or else possibly

reflecting a kind of saturation effect. Among these two possible assumptions

we choose the latter, because the former denies interactions between

channels, which were clearly demonstrated by Wilders and Jongsma (1992).

With the latter assumption (Relec
other ¼ constant, independent of Npore),

straightforward manipulations of Eqs. 23, 40, and 41 then yield Eqs. 24 and

25 in the main text, together with the explicit expression

b¼ 2ðRelec

cyt 1Relec

otherÞ (42)

for the parameter b, representing the sum of all nonmembrane resistances,

which act in series with the channel-derived membrane resistance

Relec
j ¼ ðNporegporeÞ�1

.

Our tentative conclusion is as follows. If our estimate 2Relec
cyt � 4200 V is

too low, then bulk cytoplasmic resistance may actually exist at a level (of

order 12,800 V) sufficient to explain the substantial decrease in (DV)j/

(DV)total with increasing Gobs (Weber et al., 2004, their Fig. 5 E). On the

other hand, if bulk cytoplasmic resistance is insufficient to account for this

decrease (as we suspect), then the substantial value Relec
other ¼ ðb=2Þ�

Relec
cyt � 4300 V implies a substantial voltage drop (DV)other, qualitatively

consistent with an interaction between channel access resistances (Wilders

and Jongsma, 1992).

APPENDIX C: APPROXIMATE RELATION
BETWEEN DIMENSIONLESS MEMBRANE
PERMEABILITY AND DIMENSIONAL UNITARY
CHANNEL PERMEABILITY

The average of the three cytoplasmic diffusivities listed in Table 1 is 2.7 3

10�4 mm2/s. This average Dcyt may be used to convert P̂junc into its

dimensional equivalent Pjunc ¼ P̂juncDcyt=L (with L ¼ 1 mm). Typical values

of the intercellular conductance Gobs and unitary channel conductance gpore

are 40 mS and 135 pS, respectively, from which it follows that Npore typically

equals 6.1 3 105 pores in the intercellular membrane according to Eq. 25.

With these inputs, together with the intercellular membrane area Amem ¼
0.41 mm2, Eq. 2 yields the approximate relation

ðAPÞ
pore

� ð1:8310
�10

mm
3
=sÞP̂junc; (43)

which implies the values (AP)pore � 1.4 3 10�9 mm3/s and 1.8 3 10�11

mm3/s, corresponding to P̂junc ¼ 8 and 0.1, respectively.

APPENDIX D: CALCULATION OF INTERACTION
ENERGY AND PARTITION COEFFICIENT FOR
VAN DER WAALS INTERACTION BETWEEN
DYE PERMEANT AND PORE

The key parameter quantifying the strength of van der Waals attraction is the

Hamaker constant AHamaker. It is defined as p2npermeantnporeC, where C is the

parameter quantifying the �C(distance)�6 energy of the dispersion

interaction between any pair of atoms in the permeant and pore, and

npermeant and npore represent the number densities of atoms in these two

material bodies (Israelachvili, 1992, p. 176; see also Hiemenz, 1986, pp.

620, 647). Typical values of AHamaker for organic molecules interacting

across vacuum lie in the range from 4 to 7 in units of 10�20 J (van Oss, 1994,

p. 157; Israelachvili, 1992, pp. 178, 186–187). Interposition of water

between the interacting surfaces (instead of vacuum) typically reduces

AHamaker threefold to tenfold, and the presence of dissolved ions further

reduces its value (Hiemenz, 1986, pp. 653–655; Russel et al., 1989, pp. 146–

155; Israelachvili, 1992, 188–192). However, in the confined permeant-pore

gap, these effects may be only partially operative.

An estimate of the van der Waals energy CvdW can be obtained using the

well-established ‘‘microscopic theory,’’ involving pairwise addition (in-

tegration) of contributions from all elements of volume in the permeant

molecule and surrounding pore (Hiemenz, 1986, pp. 644–649; Russel

et al., 1989, pp. 130–135; Israelachvili, 1992, pp. 155–158, 176–178;

Papadopoulos and Kuo, 1990; Bhattacharjee and Sharma, 1995). The energy

depends upon the radial coordinate r of the permeant (distance of its center

from the pore axis), and may be regarded as a function of either r or its

dimensionless equivalent h [ r/Rpore. Following a derivation essentially

identical to that of Bhattacharjee and Sharma (1995), CvdW can be written in

the form

FIGURE 9 Schematic circuit diagram for simple resistances-in-series

model of cell-to-cell voltage drop.
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CvdW ¼�AHamakerðp=3Þl3

½ð1�hÞ2 �l
2�3=2

3 1� 1

p

ðp
0

1� ð1�hÞ2 �l
2

½rðuÞ�2 �l
2

� �3=2
 !

du

" #
; (44)

rðuÞ ¼�hcosu1ð1�h
2
sin

2
uÞ1=2

;

where l ¼ a/Rpore as defined in the main text. The integral is approximated

numerically using Simpson’s rule.

The energy CvdW diverges at configurations corresponding to dye-pore

contact (r ¼ Rpore � a or h¼ 1 � l). In reality, such contact is prevented by

an additional interaction, namely, the strong, short-range Born repulsion

(Israelachvili, 1992, p. 109; Bhattacharjee and Sharma, 1995). As do the

latter authors, we account approximately for this phenomenon without

modifying Eq. 44 by introducing an effective minimum separation distance

hrepul between the spherical dye and cylindrical pore surfaces, generally

accepted to be 1.57 6 0.09 Å (van Oss, 1994, pp. 14, 154–160;

Bhattacharjee and Sharma, 1995).

The single-pore partition coefficient is the radial average of a Boltzmann

factor based upon the permeant-pore interaction energy (Deen, 1987), here

CvdW(r):

Kpore ¼ ðpR
2
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This equation may be recast in the form
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As written, the first factor quantifies purely geometrical exclusion based on

the permeant radius a (compare to Eq. 27), and the second factor is precisely

the affinity factor Kaffinity
pore introduced in Eq. 30, for which the integral is

approximated numerically using Simpson’s rule.

Our best estimates of effective Hamaker constants, obtained by rough

fitting of the pore theory to the observed values of (AP)pore, are 6, 3, and 2 in

units of 10�20 J, respectively, for Alexa 350, Alexa 488, and Alexa 594.

These values are in line with the typical order of magnitude cited above. The

apparent decrease in effective AHamaker with increasing dye molecular weight

(MW) accords with intuition. Assuming roughly constant chemical

composition and density among dyes, AHamaker should be constant and the

mean molecular radius should follow a MW1/3 scaling law. Because of the

importance of diffusion, however, our analysis is based on Stokes-Einstein

equivalent radii, which increase more rapidly than MW1/3 in the progression

Alexa 350 ! Alexa 488 ! Alexa 594 (see Table 1). This fact implies

a concomitant decrease in effective material properties like density and

Hamaker constant.

In principle, the van der Waals (or any other) permeant-pore interaction

biases the average implicit in Dpore, giving greater relative weight to radial

positions nearer to the pore wall. However, it is very clear from experiments

(Ilic et al., 1992) and rigorous hydrodynamic calculations (Lewellen, 1982;

Ilic et al., 1992; Tullock et al., 1992) for the sphere-cylinder geometry that

variations in solute mobility with radial position exist but are not dramatic.

For instance, for the case l ¼ 0.5 the variation is \;20% (see Ilic et al.,

1992, their Fig. 3; Tullock et al., 1992, their Fig. 13) excepting very small

sphere-wall gaps, which would be precluded here by the phenomenon of

short-range permeant-pore repulsion. Lewellen (1982) has commented

specifically on the surprising weakness of this radial dependence. Therefore,

the centerline formula (Eq. 28) can still be applied as a good approximation

in the presence of permeant-pore energetic interactions.
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