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ABSTRACT In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton
movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have
been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm
into the active site. In addition to the K and D proton pathways, a third proton pathway (Q) has been identified only in ba3-
cytochrome c oxidase from Thermus thermophilus, and consists of residues that are highly conserved in all structurally known
heme-copper oxidases. The Q pathway starts from the cytoplasmic side of the membrane and leads through the axial heme a3
ligand His-384 to the propionate of the heme a3 pyrrol ring A, and then via Asn-366 and Asp-372 to the water pool. We have
applied FTIR and time-resolved step-scan Fourier transform infrared (TRS2-FTIR) spectroscopies to investigate the protonation/
deprotonation events in the Q-proton pathway at ambient temperature. The photolysis of CO from heme a3 and its transient
binding to CuB is dynamically linked to structural changes that can be tentatively attributed to ring A propionate of heme a3 (1695/
1708 cm�1) and to deprotonation of Asp-372 (1726 cm�1). The implications of these results with respect to the role of the ring A
propionate of heme a3-Asp372-H2O site as a proton carrier to the exit/output proton channel (H2O pool) that is conserved among
all structurally known heme-copper oxidases, and is part of the Q-proton pathway in ba3-cytochrome c oxidase, are discussed.

INTRODUCTION

Hydrogen-bonded networks and regulated electron transfer

pathways play the dominant role in the dual function of heme-

copper oxidases to reduce O2 to H2O and pump protons

(Ostermeier et al., 1996; Kannt et al, 1998; Soulimane et al.,

2000; Than and Soulimane, 2001). Cytochrome ba3 is

a member of the large family of heme-copper oxidases, and

in addition to activating O2 and conserving the energy of the

O2 reduction for subsequent ATP synthesis, is able to catalyze

the reduction of nitric oxide (NO) to nitrous oxide (N2O)

under reducing anaerobic conditions (Giuffrè et al., 1999a;

Soulimane et al., 2000; Than and Soulimane, 2001). The

crystal structure of the protein indicates that the conserved to

all heme-copper oxidase subunit I consists of a low-spin heme

b, and a high-spin heme a3/CuB binuclear center, where the

dioxygen and nitric oxide reactions take place (Soulimane

et al., 2000; Than and Soulimane, 2001). Subunit II contains

a mixed valence homodinuclear copper complex (Soulimane

et al., 2000; Than and Soulimane, 2001). The a-type heme in

ba3 and its counterpart caa3 contain a hydroxyethylgeranyl-

geranyl side chain instead of a hydroxyethylfarnesyl side

chain as seen inmost eukaryotic and bacterial oxidases (Iwata

et al., 1995; Tsukihara et al., 1995; Ostermeier et al., 1997;

Yoshikawa et al., 1998; Soulimane et al., 2000; Than and

Soulimane, 2001). Three proton pathways were identified in

the crystal structure of ba3 (Soulimane et al., 2000; Than and

Soulimane, 2001). They originate at the cytoplasmic side of

themembrane and serve for the transfer of protons to either the

periplasmic side of the membrane or the active site. Two of

these pathways correspond, with respect to their location in

the enzyme, to the putative K and D pathways found in the

Paracoccus denitrificans (Iwata et al., 1995; Ostermeier et al.,

1997) and bovine oxidases (Tsukihara et al., 1995; Yoshi-

kawa et al., 1998), despite the fact that most of the residues

belonging to these pathways are not conserved. Importantly,

Glu-278 (residue numbering ofP. denitrificans) that is located

at the end of the D-channel, and is highly conserved in heme-

copper oxidases and has been implicated in redox-induced

proton transfer reactions, is replaced by Ile in ba3-cytochrome

c oxidase (Soulimane et al., 2000; Than and Soulimane,

2001). The third pathway, called Q, starts from the cyto-

plasmic side of the membrane and leads through the axial

heme a3 ligand His-384 to the propionate of the heme a3
pyrrol ring A, and then via Asn-366 and Asp-372 to an

accumulation of water molecules, called water pool (Souli-

mane et al., 2000; Than andSoulimane, 2001).Although there

are significant differences concerning the amino residues in

the K and D channels between cytochrome ba3 and heme-

copper oxidases, the water pool, His-383, Asn-366, and Asp-

372 are all highly conserved among all structurally known

heme-copper oxidases (Iwata et al., 1995; Tsukihara et al.,

1995; Ostermeier et al., 1997; Yoshikawa et al., 1998;

Soulimane et al., 2000). Along these lines, it has been

postulated that the water pool is part of the proton exit

channel, and the primary acceptor for both pumped protons

and H2O molecules that are formed at the binuclear center of

the enzyme (Soulimane et al., 2000; Than and Soulimane,
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2001). Therefore, it is essential to elucidate the protein

dynamics near the H2O-Asp-372-heme a3-CuB site.

Fourier transform infrared difference spectroscopy (FTIR)

is a powerful structure-specific technique for exploring chan-

ges that occur to individual amino acid residues in a protein as

a result of changes to redox and ligation states. The FTIR

difference approach has also been used to investigate the CO-

photoproduct and the electrochemical oxidized-minus-re-
duced difference spectra of heme-copper oxidases (Hellwig

et al., 1998, 1999, 2002; Iwase et al., 1999; Rich and Breton,

2001; Bailey et al., 2002; Heitbrink et al., 2002; Koutsoupakis

et al., 2002, 2003a,b,c; Pinakoulaki et al., 2002a; Stavrakis

et al., 2002; Tomson et al., 2002). In the latter case, the

perturbation is the change in the redox state of the metal

centers, whereas in the former it is the photodissociation

of CO from the heme. Recently, it was demonstrated that

although the exogenous ligand vibrations (CO) were essen-

tially identical between the room- and low-temperature FTIR

spectra of photodissociated CO-cytochromes aa3 and bo3,
significant differences exist in the protein bands between

these temperatures (Bailey et al., 2002). It was suggested

that these differences originate from the fact that at room

temperature, CO has dissociated from CuB, whereas at low

temperature (80 K) the final state has CO coordinated to CuB.

Moreover, with the ligand dissociation approach the highly

conserved Glu-278 (P. denitrificans numbering) in the

bovine, P. denitrificans, Rhodobacter sphaeroides, and bo3-
cytochrome oxidases, has been proposed to be involved in

protonation/deprotonation reactions, and most recently in the

protonation reactions during the catalytic cycle of cytochrome

c oxidase from bovine (Iwaki et al., 2003), P. denitrificans
(Iwaki et al., 2003), and R. sphaeroides (Nyquist et al., 2003).
Due to the unusual ligand-binding kinetic properties of its

binuclear center, cytochrome ba3 oxidase is unique among

the heme-copper oxidases in being susceptible to a detailed

analysis of its ligation dynamics in the heme a3-CuB site

(Goldbeck et al., 1992; Surerus et al., 1992; Woodruff, 1993;

Giuffrè et al., 1999b; Koutsoupakis et al., 2002, 2003a,b,c).

Resonance Raman (RR), electron nuclear double resonance

(ENDOR), electron paramagnetic resonance (EPR) spectros-

copies, in conjunction with permutations of 13C- and 15N-

labeled cyanide have indicated that the reaction of oxidized

ba3 with cyanide yields heme a3-CN-CuB(II)-CN complex

(Surerus et al., 1992). The comparative kinetics data on CO

photodissociation and rebinding of various heme-copper

oxidases and the derived activation parameters have indi-

cated that the CO-ligation/release mechanism in cytochrome

ba3 follows that found in other heme-copper oxidases

(Woodruff, 1993; Koutsoupakis et al., 2002, 2003a,b,c), and

proceeds according to the following scheme:

In contrast to the bovine aa3 oxidase, CuB of cytochrome

ba3 has a relative high affinity for CO (K1[ 104), whereas

the transfer of CO to heme a3
21 is characterized by a small k2

¼ 8 s�1, and by a k�2 ¼ 0.8 s�1 that is 30-fold greater than

that of the bovine aa3 (Giuffrè et al., 1999b; Koutsoupakis

et al., 2002).

In our previous cytochrome ba3 work, we identified

the equilibrium CuB
11-CO complex, and concluded that

the environment of the binuclear center is not altered in the

pD-5.5–9.7 range. (Koutsoupakis et al., 2002). The time-

resolved step-scan FTIR (TRS2) difference spectra revealed

the dynamics of the binuclear center and showed protein

conformational changes near the heme a3 propionates

(Koutsoupakis et al., 2002). In subsequent work we have

demonstrated, that the ligand delivery channel is located at

the CuB site, and the presence of a docking site near the heme

a3 propionates (Koutsoupakis et al., 2003a,b,c). In recent

FTIR studies it has been noted that functional groups,

including carboxyl groups of amino acids residues, are

difficult to deuterate (Okuno et al., 2003). Therefore, we

have investigated the CO-bound ba3 complex in the pH 5.5–

9.5 range, aiming to finalize the pH/pD sensitivity of the

binuclear center by FTIR. We have also investigated the

protein response subsequent to CO photolysis from heme a3
by TRS2 FTIR spectroscopy. On the basis of the tentative

assignments of the 1695/1708 and 1726 cm�1 modes, the

TRS2 data may reflect that Asp-372 undergoes deprotonation

upon photodissociation of CO from heme a3, and that there is
a H-bonded connectivity between the ring A propionate of

heme a3-Asp-372-H2O. By combining our results with those

from a variety of other experiments, we postulate that the

ring A propionate of heme a3-Asp-372-H2O site, which is

conserved among all structurally known heme-copper

oxidases, and is part of the Q-proton pathway in cytochrome

ba3, forms an output proton channel. This way, the ring A

propionate of heme a3-Asp-372-H2O group may accept

a proton, which in turn causes release of a proton to the exit

channel, the so-called water pool.

MATERIALS AND METHODS

Cytochrome ba3 was isolated from Thermus thermophilus HB8 cells

according to previously published procedures (Soulimane et al., 2000; Than

and Soulimane, 2001). The samples used for the FTIR measurements had an
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enzyme concentration of ;1 mM and were placed in a desired buffer (pH

5.25–6.5, MES; pH 7.5, HEPES; pH 8.5–9.8, CHES). The pD solutions

prepared in D2O buffers were measured by using a pH meter and assuming

pD ¼ pH (observed) 10.4. Dithionite reduced samples were exposed to 1

atm CO (1 mM) in an anaerobic cell to prepare the carbonmonoxy adduct

and transferred to a tightly sealed FTIR cell with CaF2 windows, under

anaerobic conditions. CO gas (99.9%) was obtained fromMesser (Frankfurt,

Germany) and isotopic CO (91.6% 13C16O and 8.4% 13C18O) was purchased

from Isotec (Miamisburg, OH). FTIR measurements were performed on

a Bruker (Newark, DE) Equinox IFS 55 spectrometer equipped with

a mercury cadmium telluride (MCT) detector (Graseby Infrared D316,

response limit 600 cm�1). The experimental techniques used for generating

and timing the green photolysis pulse (532 nm and 10 ns) and the IR probe

beam to obtain time-resolved step-scan FTIR difference spectra have been

reported (10, 17–19). Optical absorption spectra were recorded with

a Perkin-Elmer (Fremont, CA) Lamda 20 ultraviolet-visible spectrometer

before and after the FTIRmeasurements to ensure the formation and stability

of the CO adducts.

RESULTS

Fig. 1 shows the FTIR spectra of CO-bound cytochrome ba3
in the pH 5.25–9.8 range. The spectra exhibit peaks at 1967,

1973, and 1982 cm�1 that have been assigned (Koutsoupakis

et al., 2002) to the C-O stretching modes of heme a3-CO
(complex B in Scheme 1) originating from three different

conformers, and the C-O stretching mode of CuB-CO

(complex A) located at 2053 cm�1. These modes are

downshifted to 1923, 1928, 1937, and 2007 cm�1, re-

spectively, when 12CO is replaced by 13CO. The intensity

and bandwidth of all three heme a3-CO modes remains

unchanged in the pH 5.25–9.8 range. Similar observations

have been reported for the bovine enzyme (Einarsdóttir et al.,

1988; Iwase et al., 1999; Rich and Breton, 2001). The

insensitivity of heme a3-CO to pH demonstrates that the

properties of the proximal to heme a3 His-384, that is part of
the Q-proton pathway, and known to affect the frequencies

of the heme a3 bound CO, remain unchanged in the pH 5.25–

9.8 range (Pinakoulaki et al., 2002b). The insensitivity of

complex A to pH changes indicates that the environment of

the CuB-N(His) ligands that is distal to the bound heme

a3-CO also remains unchanged in the pH range 5.25–9.8.

In the oxidized-minus-reduced (electrochemical) FTIR

difference spectra of aa3 oxidase from P. denitrificans the

observation of a trough/peak pattern in the 1700 cm�1 region

has been interpreted as an environmental change induced by

the change in the redox state of the metal centers (Hellwig

et al., 1998). In the FTIR difference spectra obtained upon

CO-photolysis from the heme Fe, the appearance of

a negative peak in the 1700 cm�1 region (protonated

carboxylic acids) has been interpreted as deprotonation of

a carboxyl group (Rich and Breton, 2001; Heitbrink et al.,

2002; Nyquist et al., 2003; Okuno et al., 2003). With these

approaches the properties of the highly conserved Glu-278

in heme-copper oxidases have been investigated. In ba3-
cytochrome c oxidase Glu is replaced by Ile, and no

trough/peaks patterns were observed in the oxidized-minus-
reduced FTIR difference spectra in the 1700 cm�1 region

(Hellwig et al., 1999). This observation indicates that

a change in the redox state of the metal centers is not ob-

served as a change in the protonation/deprotonation of Glu

and/or Asp residues in the enzyme.

Signals in the amide I region (1620–1690 cm�1) can be

attributed to changes of the C¼O modes caused by per-

turbation in the polypeptide backbone and, to the C¼Omodes

of Asn and Gln (Hellwig et al., 1998). Coupled CN stretching

and NH bending modes and, the asymmetric COO� modes

from deprotonated heme propionates and Glu and Asp side

chains are expected in the 1530–1590 cm�1 region (Hellwig

et al., 1998). It has been established that the deprotonated

symmetric COO� vibrations of heme-propionates and Asp

residues are expected at 1350 and 1450 cm�1, respectively,

whereas the C¼O bonds of the protonated forms are at 1730

cm�1 (Hellwig et al., 1998, 1999, 2002).Also, the asymmetric

vibrations of heme-propionates and Asp are located at 1530

and 1590 cm�1, respectively (Hellwig et al., 1998, 1999,

2002). Fig. 2 collects TRS2 FTIR difference spectra

(coaveraged first 100 ms after photodissociation of CO) in

the pH 6.5–9.35 and pD7.5–10.1 range. The spectra represent

FIGURE 1 FTIR spectra of the cytochrome ba3-CO complex at the

indicated pH values, 293 K. The spectra at pH 5.25 and 9.60 correspond to

the ba3-
13CO complex. Enzyme concentration was 1 mM and the pathlength

15 mm. The spectral resolution was 2 cm�1 except for the spectra at pH 9.10

and 9.80, where it was 4 cm�1.
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the difference between the heme a3-CO and the CuB-CO

species because at 5–100ms subsequent to CO photolysis, the

ligand is bound toCuB (Koutsoupakis et al., 2002, 2003a,b,c).

The TRS2 FTIR difference spectra in the 1690–1780 cm�1

region (Fig. 2 E) present an excellent ‘‘W’’ shape character-

istic of substantial perturbation of carboxyl groups upon light-

induced dissociation of CO from heme a3 and subsequent

ligation to CuB. The C¼O stretching band that we tentatively

assign to the ring A of heme a3 propionate is seen as

a derivative-shaped feature in the TR-FTIR difference

spectrum with the trough/peak at 1708/1695 cm�1 that is

2–3 cm�1 higher than that observed in D2O (Fig. 2 E).
The frequency at 1695 cm�1 in the transient spectra means

weaker C¼O bond and therefore stronger H-bonding to sur-

rounding groups. The other half of the ‘‘W’’ shape difference

spectrum consists of a negative band at 1726 cm�1. We also

tentatively assign the 1726 cm�1 negative band to the C¼O
stretch of Asp-372 (T. Thermophilus sequencing number) be-

cause neither Glu nor other Asp residues are near the binu-

clear center, where the induced perturbation is expected to

affect the structures of nearby residues. TheTRS2FTIRdiffer-

ence spectra in the pH 6.47–9.35 range show little change.

The insensitivity of the 1726 cm�1 mode to external pH indi-

cates that the pKa of Asp-372 must be higher than 9.4. The

spectra obtained in the pD 7.5–10.1 range show that the 1726

cm�1 mode is absent (see below). The peak/trough of the

propionate C¼O stretching band observed at 1693/1705

cm�1 at pD 7.5 and 8.5 is similar to that obtained at pD 10.1

but with a noticeable intensity increase of the 1705 cm�1

trough in all the pD experiments. The rate of decay of the

transient 1694(1)/1706(�) signals attributed to perturbation

of the heme a3 propionates (COOH) displays similar time

constant as the transient CuB
11-CO complex (Koutsoupakis

et al., 2002). Although we have not been able to monitor the

kinetics of the 1726 cm�1 species accurately, due to

interference from H2O in this frequency range, the TRS2-

FTIR spectra at times longer than 2ms (data not shown) show

a substantial decrease of the 1726 cm�1mode, suggesting that

there is a coupling between ligation dynamics in the binuclear

center and the environment sensed by both the Asp-372 and

the heme a3 propionates (Koutsoupakis et al., 2002). Based on
13C labeling experiments in aa3 oxidase from P. denitrificans
(Behr et al., 2000) the modes at 1570 and 1538 have been

assigned to n(COO�)asym of heme propionates. Intensity

changes and/or frequency shifts of the symmetric and

asymmetric vibrations that could be attributed to both the

deprotonated forms of heme-propionates and Asp-372 in ba3
oxidase are observed (Hellwig et al., 1999). These include the

peaks/troughs at 1390/1370 cm�1 (n(COO�)sym) of ring A

propionate of heme a3 and at 1456/1444 cm
�1 (n(COO�)sym)

ofAsp-372. Furthermore, the negative band at 1529 cm�1 and

the peak/trough at 1592/1582 cm�1 can be tentatively

assigned to n(COO�)asym of the ring A propionate of heme

a3 and of Asp-372, respectively. Comparison of the pH/pD

spectra shows that there is noticeable downshift (3 cm�1) of

n(COO�)asym of propionates at 1526 cm�1 in the pD 7.5–10.1

range. In addition, the 1456/1444 cm�1 n(COO�)sym of Asp-

372 has lost most of its intensity at pD 10.1 indicating

alterations in the Asp-372 environment due to H/D exchange.

It should be noted, however, that the deprotonated forms of

both the heme-propionates n(COO�)sym and Asp-372 persist

up to pH 6.5. The appearance of COO(H) modes ascribed to

heme-propionates (Fig. 2, A, C, and E) and Asp (Fig. 2 B, D,
andE) in both the protonated (Fig. 2E) and deprotonated (Fig.
2, A–D) spectral region of the TRS2 FTIR-difference spectra
indicates the presence of both conformations. Interestingly, in

the oxidized-minus-reduced electrochemical FTIR difference

spectra of ba3 only the protonated forms of the propionates

FIGURE 2 Time-resolved step-scan FTIR difference

spectra of the CO-bound form of fully reduced cytochrome

ba3 oxidase, at the indicated pH and pD values, after CO

photolysis from heme a3. Each spectrum is the average of

20 individual spectra from 5 to 100 ms. The pathlength was

15 and 30 mm for the pH and pD samples, respectively, and

the spectral resolution 8 cm�1. The time resolution was

5 ms and 10 coadditions were collected and averaged per

data point. The excitation wavelength was 532 nm (4 mJ/

pulse) and three measurements were recorded and averaged

for each data set. The spectra are normalized to the intensity

of the 2053 cm�1 mode (CuB
11-CO transient species).
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were observed, and no modes ascribed to either protonated or

deprotonated Glu and/or Asp were observed (Hellwig et al.,

1999).

DISCUSSION

TRS2-FTIR spectroscopy has already proven to be a very

powerful technique in studying transient changes at the level

of individual amino acids during protein action. The intensity

changes and frequency shifts of side chains and backbone

structures observed in the TR-FTIR difference spectra is the

result of the perturbation induced by the photodissociation

of CO from heme a3 and its subsequent binding to CuB, to

structures near heme a3 andCuB. The following discussion for
the behavior of the ring A propionates and Asp-372 is based

on our tentative assignments. The observation of the 1695/

1708 cm�1 peak/trough and its subsequent shift to 1693/1705

cm�1 upon H/D exchange is similar to that observed in the

oxidized-minus-reduced spectra fromwhich it was concluded

that the heme-propionates in the ba3 oxidase from T.
thermophilus are essentially protonated (Hellwig et al.,

1999). The presence of deprotonated signals at 1390/1370

cm�1 indicates, however, that this is not the case. Obviously

there is an equilibrium of COO� $ COOH. The shift of the

1529 cm�1 mode to 1526 cm�1 upon H/D exchange indicates

a dependence on local environment and/or hydrogen bond-

ing interactions. Similar conclusion can be drawn from the

reduced intensity of the 1456/1444 cm�1 modes in the D2O

experiments. To account for the lack of an observable

negative peak at 1726 cm�1 in the D2O experiments we

suggest that the loss of theH-bonding connectivity in the local

environment of heme a3-Asp-372-H2O upon H/D exchanges

do not alter the deuterated Asp-372, and thus, we do not

observe a negative peak upon the induced perturbation (CO-

photolysis from heme a3). Consequently, the proton connec-
tivity between the three groups is disrupted in the presence of

D2O, allowing Asp-372 to adopt a conformation that is

significantly different from that observed in the pH experi-

ments. Therefore, the detection of the deprotonated Asp-372

is not only the result of the induced perturbation, but rather

a combination of the H-bonded connectivity of the three

groups that is lost in the presence of D2O. Taken together, the

detection of both protonated and deprotonated forms of the

ringAof heme a3 propionate and the deprotonatedAsp-372 in
conjunction with the dependence of their deprotonated forms

on the local environment suggests a protonic connectivity

between the ring A propionate of heme a3, Asp-372, and
a H2O molecule that is part of the Q-proton pathway.

One of the strongest interactions between different groups

in heme-copper oxidases is that between the ring A propio-

nate and Asp-372 because the two carboxyl groups are only

3.3 Å apart (Kannt et al., 1998). It was concluded that net

protonation of the coupled system will depend on the inter-

action with the environment and that these two residues share

a single proton over a pH 4–11.5 range (Kannt et al., 1998).

In addition, this network recently has been proposed as a part

of the exit pathway for the pump protons (Soulimane et al.,

2000; Than and Soulimane, 2001). To account for the pre-

sence of both the protonated and deprotonated forms of the

ring A propionate and only the deprotonated form of Asp-

372, we present in Fig. 3 a schematic view, based on the

TRS2 FTIR data presented here and the crystal structure

(Soulimane et al., 2000; Than and Soulimane, 2001), that

involves the Asp-372/propionate pair and a H2O molecule.

In the scheme, we invoke a specific role to the ring A

propionate-Asp-372 to proton motion. This pair may accept a

proton either in the oxidative or reductive phase (Verkhov-

sky et al., 1999), which in turn causes release of a proton to

the water pool. The accumulation of H2Omolecules has been

identified in the P. denitrificans oxidase and its involvement

in proton exit channels has been demonstrated by mutagen-

esis experiments (Ostermeier et al., 1996; Kannt et al., 1998).

It is important to note that in the scheme presented here only

states B and D, in which a single proton is shared between

the ring A propionate and Asp-372, may accept a proton that

in turn causes the release of a proton to the water pool. We

postulate that this pathway is blocked when both groups are

protonated (state A) or deprotonated (state C). Although we

do not know the source of the proton, our data strongly

indicate that it is not from His-283 or any of the other CuB-

His ligands (Koutsoupakis et al., 2002). This sequential or

concerted H-bonded connectivity between the environments

sensed by the ring A heme a3 propionate-Asp-372-H2O

could have an activation energy for proton motion. The

abovementioned protonic connectivity and the fast equilib-

rium of the water pool with bulk solvent suggest that the

water pool may serve as a primary acceptor for both the H2O

molecules, formed during the catalytic turnover, and pumped

protons.

FIGURE 3 Schematic view of the protonic connectivity between the ring

A heme a3 propionate-Asp-372-H2O of the Q-proton pathway in ba3-

cytochrome c oxidase.
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The exchangeable protons could play a vital role in the

biological function of the enzyme. The first step in locat-

ing possible sites of proton motion requires identification of

labile protons that could be either redox linked or perturbed

by ligand motion; in this case, the CO photodissociation

from heme a3. The model discussed above postulates the role

of the ring A heme a3 propionate-Asp-372-H2O site in the

Q-proton channel as a proton carrier to the water pool,

demonstrating a facile pathway connecting the catalytic bi-

nuclear center and the exit/output proton channel. Based on

the status of the ring A heme a3 propionate-Asp-372-H2O

site in all structurally known heme-copper oxidases we sug-

gest that our data do not reflect only specific properties of

the ba3-cytochrome c oxides but rather are extended to the

superfamily of heme-copper oxidases. The lack of similar

observation in other heme-copper oxidases containing Glu-

278 can be explained by the observation of difference peaks

near 1734 cm�1 that have been attributed to Glu-278. This

way, strong overlap between the Glu and Asp modes in that

frequency domain may have prevented the spectral isolation

of the C¼O stretching vibration of Asp that is located near

the water pool. Experiments are in progress with emphasis

on these questions.
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