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Scaling and Mean-Field Theories Applied to Polymer Brushes

Analysis of the osmotic pressures of aqueous poly(ethylene

glycol) solutions indicates a power-law behavior in the range

of volume fractions from 0.08–0.12 to 0.33 or higher, for

polymers with average molecular masses in the range 1500–

4000 Da. The exponent of the power law is closer to a value

of 2, which is predicted by mean-field theory, than to the

value of 5/4, which is predicted by scaling theory for a good

solvent. The latter value is attained by long polymers, with

molecular masses 8000–20,000 Da. Quantitative predictions

of the repulsive pressure between grafted polymer brushes

requires a further scaling factor, additional to that relating

bulk osmotic pressure and polymer volume fraction, in both

scaling and mean-field theories.

Recently, Hansen et al. (2003) established the validity of

scaling theory applied to lipid-grafted polymer brushes. The

criterion used was that the effective monomer concentration

of polymer in the brush should equal that at which the os-

motic pressure, Pf, of the corresponding free poly(ethylene

glycol) (PEG) polymer in bulk solution conforms to that for

a very long polymer, PEG:20,000. With the latter, the de-

pendence of Pf on volume fraction, ff, of free polymer is

that predicted by scaling theory for a good solvent, viz.,

Pf ; f
9=4
f ; over a wide range of ff in the semidilute regime.

This criterion is achieved in polymer brushes only for

relatively long PEG polymers at relatively high grafting

densities, e.g., PEG:5000 lipid at a mol fraction of X5000 ffi
0.07–0.1, or PEG:2000 lipid at a mol fraction X2000 ffi 0.23

(Hansen et al., 2003). These contents of PEG lipid exceed

those at which micellization is initiated in unsupported

liposomal membranes (Montesano et al., 2001), and those

that are used routinely in the steric stabilization of liposomes

for drug delivery (Lasic and Needham, 1995).

It is therefore of considerable practical interest to inquire

as to whether, with less restrictive criteria, scaling-theory

behavior could still be fulfilled in polymer brushes. The

requirement of convergence to universal behavior, indepen-

dent of molecular weight, used by Hansen et al. (2003) en-

sures a fortiori that scaling theory holds. Nevertheless, it is

possible that the characteristic power-law dependence of Pf

on volume fraction of free polymer might be achieved with

smaller polymers before strict conformity to the osmotic

pressure of the very long polymers is reached. An associated

consideration is the extent to which mean-field theory might

apply to the polymer brush. It is likely that criteria for the

latter may be less restrictive than for scaling theory, because

uniform monomer density throughout the brush is not

required by mean-field theory of stretched polymers (Pincus,

1991; Milner et al., 1988). In addition to scaling theory,

mean-field theory also has been used extensively for

interpreting data on polymer-lipid brushes (Hristova and

Needham, 1994; Marsh et al., 2003; Netz and Andelman,

2003). For free polymers in bulk solution, the dependence of

osmotic pressure on polymer volume fraction predicted by

mean-field theory is Pf ;f2
f in the semidilute regime, which

differs significantly from that for scaling theory (De Gennes,

1979). The mean-field prediction corresponds to dominance

of the second-order term in a virial expansion, for the

semidilute regime.

In the above connection, it is worthwhile to review the

predictions of scaling theory over the entire range of polymer

concentration. At very low mol fractions, the osmotic pres-

sure of the dilute polymer will obey the ideal ‘‘gas’’ law:

Pfa
3
m=kBT;ff ; with exponent one. At higher volume frac-

tions, the more general version of scaling theory is (Grosberg

and Khokhlov, 1994):

Pfa
3

m=kBT;f
3n

3n�1
f ; (1)

where v is the exponent associated with the Flory radius of

the polymer, RF ; amn
n
p, with np being the degree of poly-

merization. For a good solvent: v ¼ 3/5, which leads to the

familiar scaling theory exponent of 9/4 in Eq. 1, for the

semidilute regime. For an ideal solvent, however, which

gives rise to effective Gaussian behavior, the Flory exponent

is v ¼ 1/2, and the exponent of the osmotic pressure in Eq. 1

becomes 3. The latter may apply in the so-called melt re-

gime at very high volume fractions, where correlation effects

vanish and give way to effective Gaussian behavior, via the

Edwards mechanism (Grosberg and Khokhlov, 1994; Netz

and Andelman, 2003). With increasing volume fraction of

polymer, therefore, scaling theory predicts a crossover from

the dilute regime, for which the exponent of the osmotic

pressure is one, to the semidilute regime where the exponent

of the osmotic pressure is 9/4 for good solvents. Hence, it

is possible that an osmotic pressure coefficient of 2, as

predicted by mean-field theory, could represent a part of the

crossover region between the dilute and semidilute regimes.

By the same token, of course, a 9/4 power law might

be viewed as part of the crossover between the semidilute

and melt regimes. The distinction between crossover and

semidilute behavior can only be decided experimentally. In

what follows, we characterize the semidilute regime as a sus-

tained region in which the dependence of osmotic pressure

on polymer volume fraction is characterized by a single

exponent, considerably greater than unity, up to at least

moderately high concentrations. A further requirement is that

the transition to the dilute regime, at low volume fractions,
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should take place relatively abruptly, i.e., over a considerably

shorter interval.

Table 1 gives the exponent, mf, of the power-law depen-

dence of Pf on ff for aqueous solutions of poly(ethylene

glycol) (PEG) polymers of different lengths at room tem-

perature. Values of mf are obtained from linear regression of

the logarithmic expression:

logPf ¼ mf logff 1 logðakBT=a
3

mÞ; (2)

to osmotic pressure data from Rand (2002), and from Reid

and Rand (1997a,b) where not duplicated on the website. In

Eq. 2 and above, am is the effective size of the monomer unit,

a is the proportionality constant introduced by Hansen et al.

(2003), kB is Boltzmann’s constant, and T is the absolute

temperature. Values of the volume fraction, ff, were ob-

tained from the weight fraction, w, of polymer according to

the definition of the latter by Reid and Rand (1997a):

ff ¼ vPEGw=½vPEGw1 vwð1 � wÞ�; (3)

where vPEG and vw are the partial specific volumes of PEG

and water, respectively. A value of vw=vPEG ¼ 1:335 was

obtained from the densitometric data of Hasse et al. (1995)

for PEG:4000 at 208C. The latter corresponds to a monomer

size ofam ¼ ðMmvPEG=NAÞ1=3 ¼ 0:38 nm, whereMm¼44.06

and NA is Avogadro’s number (cf., Evans et al., 1996).

The results of Table 1 indicate a scaling-law behavior (mf¼
9/4) for the longer polymers, PEG:8000–PEG:20,000. How-

ever, for the shorter polymers, PEG:1500–PEG:4000, the

power law corresponds better to that expected from mean-

field theory (mf ¼ 2), and PEG:6000 exhibits intermediate

behavior. Values of mf significantly below two are obtained

for PEG:1000 and yet-shorter polymers. Representative

data for PEG:1500–PEG:4000 are shown in Fig. 1. In this

case, the solid-line fits are with a fixed value of mf ¼ 2 (cf.

Table 1). The dependence on ff for PEG in this size range

differs systematically from that for the very long polymer

PEG: 20,000. A fit to the data for the latter with a fixed value

of mf ¼ 9/4 (cf., Table 1) is indicated by the dotted lines in

Fig. 1. As seen from Fig. 1 and Table 1, a characteristic mf ¼
2 power-law behavior is displayed by PEG:2000–PEG:4000

from ff ¼ 0.08 onwards, and from ff ¼ 0.12 onwards for

PEG:1500. For PEG:2000, this is a factor of two lower than

the stricter criterion used by Hansen et al. (2003), and is

comparable to the critical volume fraction for overlap:

f�
f ; N�4=5 ¼ 0:05 for a polymer of length N ¼ 45

monomers.

From Fig. 1, it is clear that the osmotic pressure of the

shorter polymers PEG:1500–PEG:4000 approximates to that

of PEG:20,000, only at higher values of ff than those at

which linearity (i.e., power-law behavior with mf ¼ 2) is

attained. In this connection, it is significant that the pressure

between bilayers containing 10 mol % PEG:5000 lipid is well

described by scaling theory (Hansen et al., 2003). Whereas,

on the other hand, the pressure between less dense brushes

formed by 4.5 mol % PEG:2000 lipid is better described by

mean-field theory (Efremova et al., 2000). In Fig. 1, the

osmotic pressure is consistent with an exponent 2, up to the

TABLE 1 Exponent, mf, in the dependence of osmotic

pressure on volume fraction, ff, of free poly(ethylene glycol)

of various molecular weights (mol wt) in aqueous solution

Mol wt mf ff (b3/b2) 3 ff*

1000 1.79 6 0.04 0.08–0.43 0.0

1500 1.91 6 0.07 0.12–0.53 0.1–0.5

2000 1.98 6 0.05 0.08–0.33 0.4–1.5

3000 2.09 6 0.06 0.08–0.29 0.4–2.0

4000 1.93 6 0.05 0.08–0.29 0.0

6000 2.14 6 0.08 0.08–0.29 0.3–1.2

8000 2.27 6 0.07 0.08–0.29 0.4–1.4

10,000 2.27 6 0.11 0.08–0.29 0.5–1.8

20,000 2.21 6 0.03 0.02–0.40 0.1–1.2

Osmotic pressure, Pf, from the listings by Rand (2002) and from Reid and

Rand (1997a,b), where they are not duplicated on the website. Exponent is

obtained by linear regression with: logPf ¼ mf logff 1 const. The range of

ff-values used is indicated.

*Ratio of third to second virial terms in Eq. 4 over the range of ff from

which mf is determined. Virial coefficients b2 and b3 were obtained from

constrained fits of Eq. 4 truncated to the third term, over the full experi-

mental range of ff.

FIGURE 1 Dependence of osmotic pressure, Pf, of aqueous solutions of

poly(ethylene glycol)s on volume fraction, ff, of free polymer. Data from

Rand (2002), and from Reid and Rand (1997a,b), where they are not

duplicated on the website. Molecular weight of the PEG is indicated. Solid

lines are linear fits to the solid symbols, with fixed slope mf ¼ 2. Dotted lines

are linear fits to data for PEG:20000 over the range ff ¼ 0.02–0.40, with

fixed slope of mf ¼ 9/4. Dashed lines represent a slope of mf ¼ 1 for the data

at lowest volume fraction (open symbols).
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highest volume fractions for which measurements were

made. This represents a considerable range of polymer

concentrations. Only at the lowest volume fractions are there

deviations from this constant power law. Then there is

a relatively abrupt transition toward a region in which the

exponent becomes ;1. This crossover region is much nar-

rower than the region of constant slope with mf ¼ 2. The

latter is therefore identified with the semidilute regime.

An alternative means of analyzing osmotic pressure data

from the free polymer is to use a virial expansion (see, e.g.,

Cohen and Highsmith, 1997):

Pfa
3

m=kBT ¼ ð1=npÞff 1 b2f
2

f 1 b3f
3

f 1 . . . : ; (4)

where np (monomers) is the polymer length, and b2, b3 are

the second and third virial coefficients, respectively. Esti-

mates of b2 and b3 can be obtained from fitting Pf/ff as

a function of ff with a second-order polynomial, under the

constraint that the first term, 1/np, is fixed by the polymer

molecular weight. The final column of Table 1 gives the ratio

of the third to second virial terms in the osmotic pressure

expansion, over the ranges of ff for which the logarithmic

fits were made according to Eq. 2. For PEG:1000 and

PEG:4000, inclusion of the third virial term in Eq. 4 does not

improve the fit. Additionally, the second virial term domi-

nates for PEG:1500. These results are consistent with the

predictions of mean-field theory. However, for the inter-

mediate-length polymers PEG:2000 and PEG:3000, the third

virial term can be appreciable. For the longer polymers,

PEG:8000–PEG:20,000, which conform to the predictions

of scaling theory, the osmotic pressure also can be described

adequately by a virial expansion that is limited to the first

three terms (Cohen and Highsmith, 1997). In the latter cases,

the third virial term is also appreciable. Consequently, the

virial expansion is not especially useful for comparing the

performance of the mean-field and scaling theories. Below it

will be seen that entirely equivalent treatments of the mean-

field and scaling approaches predict a power-law depen-

dence, as given by Eq. 2, in both cases.

A further aspect of the use of data from bulk solutions

of the free polymer is worthy of consideration. This is the

question of transferability of the scaling factor a for the

osmotic pressure in Eq. 2 from bulk solution to the polymer

brush. Hansen et al. (2003) tacitly assumed that the value of

a from polymer osmotic pressure measurements should

be taken over quantitatively in interpreting measurements of

bilayer-bilayer interactions in the presence of grafted poly-

mer brushes. A consistent comparison of the two types of

measurement requires tracking of multiplicative constants

that normally are neglected. In terms of volume fraction, f,

the free energy of the grafted polymer chain is given from

scaling theory by (Alexander, 1977):

F
SC

C ¼ NkBT k1f
5=4

1 k2

am

D

� �4

f
�7=4

� �
; (5)

where N is the number of monomers per polymer chain and

D is the average distance between grafting sites. Here k1 and

k2 are constants representing the relative strengths of the

osmotic and stretching contributions, respectively, to the free

energy. For a free polymer, only the first term enters. It is

convenient for what follows to write k1 ¼ (4/5)a and k1/k2 ¼
(7/5)l3; the reason for doing this, as will be seen later, is that

a becomes directly the scaling factor for the osmotic pres-

sure and l the scaling factor for the natural length of the

polymer brush. The pressure in the polymer brush is given

by: P ¼ �ð@Fc=@VÞN;T ¼ ðf2=Na3
mÞð@Fc=@fÞN;T, which

then leads to:

P
SC

brush ¼ al
�9=4 kBT

D
3

� �
L

SC

o

L

� �9=4

� L

L
SC

o

� �3=4
" #

; (6)

where L is the length of the polymer brush, and LSC
o is the

equilibrium value of L when Pbrush ¼ 0. The change of

variable from f to L is made by invoking the relation

f=fSC
o ¼ LSC

o =L (Hansen et al., 2003), where the equilib-

rium monomer volume fraction of the unstressed brush is

fSC
o ¼ l�1ðam=DÞ4=3

, obtained from the condition: @Fc/@f
¼ 0. The length of the unstressed polymer brush is therefore:

L
SC

o ¼ lNamðam=DÞ2=3
; (7)

where l is the explicit multiplicative constant for scaling

theory. From Eq. 6, putting the second (i.e., stretching) term

equal to zero, the osmotic pressure of the free polymer is

given by:

P
SC

osm ¼ aðkBT=a
3

mÞf
9=4
; (8)

which defines a as fully consistent with Eq. 2. Thus, in

general, two multiplicative constants are required to describe

the pressure, Pbrush, in the polymer brush: that for the bulk

osmotic pressure, a, and that for the equilibrium length of the

polymer brush, l. Comparing Eq. 8 with Eq. 6, it is seen that

only in the case that l ¼ 1 are the multiplicative factors for

bulk osmotic pressure and pressure in the polymer brush

equal. This, of course, depends on the value of am used to

obtain l in Eq. 7, but demonstrates that there is not a strict

requirement for equality of the two multiplicative factors.

A comparable calculation using mean-field theory leads to

the following relations. The polymer free energy per chain is

given by (see, e.g., De Gennes, 1979):

F
MF

c ¼ aNkBT f1
1

2l
3

am

D

� �4

f
�2

� �
; (9)

where, in this case, the multiplicative terms scaling the

osmotic and stretching contributions to the free energy are

given respectively by: k1 ¼ a and k2/k1 ¼ 1/2l3. The osmotic

pressure of the free polymer is correspondingly given by:
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P
MF

osm ¼ aðkBT=a
3

mÞf
2
; (10)

consistent with Eq. 2. Note that Eq. 10 is derived in exactly

the same manner, i.e., on the same level, as is Eq. 8, which is

the corresponding asymptotic form for scaling theory. The

equilibrium length of the unstressed brush in mean-field

theory is given by:

L
MF

o ¼ lNamðam=DÞ2=3
; (11)

where l is defined in Eq. 9, in order that Eq. 11 corresponds

with the equivalent expression (viz., Eq. 7) in scaling theory.

The pressure in the brush according to mean-field theory

then becomes:

P
MF

brush ¼ al
�2 D

am

� �1=3
kBT

D
3

� �
L

MF

o

L

� �2

� L

L
MF

o

" #
: (12)

The relation of the multiplicative constant for Pbrush to that

for the equilibrium length Lo therefore differs from that in

scaling theory. The fact that the multiplicative factors may

differ between bulk osmotic pressure and pressure in the

polymer brush further lessens the constraints that must be

met to achieve semidilute behavior in the polymer brush.

In conclusion, there is reason to believe that the criteria for

semidilute behavior in a good solvent introduced by Hansen

et al. (2003) may apply to a less restricted range of polymer

brushes that are of direct experimental interest. Additionally

to the above considerations, it further seems likely that

semidilute behavior will be achieved more readily for grafted

polymers than for those free in solution. This is exemplified

by the critical overlap condition f�
1 � ðam=DÞ4=3

for the

grafted polymer, which, unlike that for free polymer

f�
f � N�4=5, is independent of polymer length.
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