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ABSTRACT We present theory and simulations to describe nonequilibrium stretching of semiflexible chains that serve as
models of DNA molecules. Using a self-consistent dynamical variational approach, we calculate the force-extension curves for
worm-like chains as a function of the pulling speed, v0. Due to nonequilibrium effects the stretching force, which increases with
v0, shows nonmonotonic variations as the persistence length increases. To complement the theoretical calculations we also
present Langevin simulation results for extensible worm-like chain models for the dynamics of stretching. The theoretical force-
extension predictions compare well with the simulation results. The simulations show that, at high enough pulling speeds, the
propagation of tension along the chain conformations transverse to the applied force occurs by the Brochard-Wyart’s stem-
flower mechanism. The predicted nonequilibrium effects can only be observed in double-stranded DNA at large (;100 mm/s)
pulling speeds.

INTRODUCTION

The ability to manipulate single molecules using optical

tweezers and atomic force microscopy under equilibrium

conditions has provided a detailed understanding of the

elasticity of biopolymers such as DNA, actin, and micro-

tubules (Smith et al., 1992; Bensimon et al., 1995;

Mackintosh et al., 1995; Bar-Zvi et al., 1995; Finer et al.,

1994). To a first approximation these molecules are

adequately described as semiflexible polymers chains (Smith

et al., 1992; Bensimon et al., 1995; Mackintosh et al., 1995)

which are usually modeled as either freely jointed chains or

worm-like chains (WLCs). At sufficiently high ionic

strength, experimentally measured force ( f )-extension (z)
curves ( f, z) for both single- and double-stranded DNA

molecules can be quantitatively described using the WLC

model (Marko and Siggia, 1995). However, there are

significant counterion-dependent deviations from the WLC

predictions for the ( f, z) curves at low ionic strengths and at

low values of f (Baumann et al., 1997). In an earlier article

we showed that, by taking into account chain conformational

fluctuations, one can quantitatively describe the measured

experimental ( f, z) results for DNA for monovalent counter-

ions (Lee and Thirumalai, 1999). These studies show that the

equilibrium response of DNA to tension is reasonably well

understood, and that the WLC model is adequate in

describing DNA elasticity, especially at high salt concentra-

tion.

A WLC in the presence of tension can be mapped onto

a Schrödinger equation for a dipole confined to a unit sphere

subject to an electric field (Fixman and Kovac, 1973). The

numerical solution of the resulting equation and a simple

extrapolation formula (Marko and Siggia, 1995),

feqlp
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1

4ð1� u
2

kðtÞÞ
� 1

4
;

(1)

provides nearly exact fits to the experimental data (Marko

and Siggia, 1995) thus showing that elasticity of DNA can be

fit by the WLC model. In Eq. 1, lp is the persistence length
and uk is the relative extension of the chain with respect to

the contour length L, i.e., uk ¼ z/L. The static ( f, z) curve has
also been obtained (Ha and Thirumalai, 1997) using a field

theory in which the constraint u2(s) ¼ 1 is replaced by

a global constraint Æu2(s)æ ¼ 1. Thus, the WLC model serves

as a reasonable model for describing the single molecule

force-extension profiles of DNA.

In recent years pulling experiments have been used to

measure, at the single molecule level, the interaction forces

between biological molecules. In addition, a number of

experiments have shown that denaturation of proteins and

RNA by force can be used to probe the underlying energy

landscape (Zhuang and Rief, 2003). In most of these cases

the pulling speeds are so large that unfolding and dis-

sociation of complexes take place under nonequilibrium

conditions. More importantly, the full utility of the single

molecule experiments is realized only when they are

combined with detailed molecular dynamics simulations

(Rief and Grubmüller, 2002; Heymann and Grubmüller,

2001; Bayas et al., 2002; Isralewitz et al., 2001). Indeed,

such simulations, which utilize large pulling speeds to

observe unfolding events in a relatively short time, have

played an important role in constructing the unfolding (or

unbinding) energy landscape. Thus, understanding non-

equilibrium effects due to mechanical stretching of bio-

logical molecules and complexes is not only important for

describing their function but also is needed for interpreting

computer simulation results.

Whereas most of the theories for DNA describe the static

force-extension relation (Marko and Siggia, 1995; Ha and

Thirumalai, 1997; Cizeau and Viovy, 1997), measurements
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are made by stretching the molecules at a constant pulling

speed v0 (Rief et al., 1999). Although for DNA currently

available experimental ( f, z) curves have been measured

at near-equilibrium (see below), it is useful to ascertain

if measurable nonequilibrium effects can be predicted. If

nonequilibrium effects prevail then the influence of energy

dissipation, which is proportional to the drift velocity V(s) of
monomers and their size (d(s)), should be taken into account

in describing the ( f, z) curves. Thus, the dynamical response

of filaments of semiflexible molecules subject to external

forces becomes relevant. Theoretical studies of the dynamics

of WLC molecules (Seifert et al., 1996; Brochard-Wyart

et al., 1999; Everaers et al., 1999; Morse, 1998) and

simulations (Cheon et al., 2002; Noguchi and Yoshikawa,

2000) have recently been reported. Seifert et al. (1996), who

considered the propagation of suddenly applied tension to

a thermally excited semiflexible chain, found that the applied

tension propagates only subdiffusively for a semiflexible

chain. More recently, Brochard-Wyart et al. (1999) have

considered the dynamics of taut DNA molecules and treated

a variety of transient regimes. They showed that, in general,

the relaxation in the longitudinal direction (parallel to the

applied force) is much faster than in the transverse direction.

When the tension is suddenly applied at one end of the chain

by pulling at a given speed, the nonuniform tension profile

increases from the fixed end in proportion to the drift

velocity of the monomers. The longitudinal profile of the

chain r(z) depends on the local tension f(z). The conforma-

tion of the chain in this limit is described by the stem-flower

model (Brochard-Wyart, 1995).

In this article, we first provide a theoretical framework for

interpreting experiments and computer simulations that

could probe the pulling-speed dependence of force-extension

profiles for WLC models. We consider the regime in which

the tension propagation is fast compared to the relaxation of

the chain. In this limit, the longitudinal profile of the chain

can be approximated as a uniform cylinder. To anticipate the

distinct time regimes it is useful to characterize the relaxation

times for the WLC under tension. Consider a WLC chain

whose equilibrium size is R0 ;
ffiffiffiffiffiffi
Llp

p
; where L is the contour

length and lp is the persistence length. The chain is rod-like

on a length scale smaller than lp, but on a larger scale

(L � lp) chain flexibility becomes important. On applying

a force f , fc ¼ kBT/R0, the chain conformation is un-

perturbed. The dissipative force at the pulling speed v0 is

fD ; h0R0v0 where h0 is the solvent viscosity. Distortion of

the chain conformation occurs only when the force exceeds

fc. The characteristic pulling speed v0 at fc ¼ fD is

v
c

0 ¼
kBT

h0R
2

0

¼ R0=t
0

Z; (2)

where tZ
0 ¼ h0R0

3/kBT is the Zimm relaxation time for weak

perturbations (Brochard-Wyart et al., 1999). Significant

nonequilibrium effects can be discerned only when the

pulling speed exceeds v0
c. The value of v0

c at water viscosity

h ;1 cP for typical parameters for DNA (L ; 10 mm, lp
; 50 nm), is v0

c ; 800 mm/s. The typical pulling speeds used

in experiments, i.e., v0 (1–10)mm/s, are at least two orders-

of-magnitude smaller than v0
c. Therefore, for all practical

purposes the current experiments only probe the equilibrium

response of DNA (except in cases when the strands melt) to

force. However, nonequilibrium response considered here

may be observed in force-extension profiles of longer DNA

molecules.

Consider a WLC chain at equilibrium under tension with

f ¼ kBT/rf where rf is the transverse size of the chain. As

described by Brochard-Wyart (1995), nonuniform profiles

(trumpets and stem-flower profiles) manifest themselves

when the pulling speed reaches vcð f Þ ¼ kBT=h0r
2
f . vc0: The

chain relaxation time under tension is tZ
f ¼ h0rf

3/kBT. Below
the threshold pulling speed, the chain conformation can be

approximated as a uniform cylinder.

If the chain is pulled at constant pulling speed v0 . v0
c the

relaxation time for the chain is longer than the time for

the tension propagation. The nonuniform tension along the

contour leads to the transient trumpet-like chain conforma-

tion (see Fig. 1). As time progresses, further stretching

results in smaller transverse fluctuations. When the smallest

transverse size matches r with the pulling speed v0 ¼ kBT/
h0r

2, the transverse size of the chain becomes stationary. As

a result, the chain envelope can be approximated again as

a uniform cylinder.

The contour length of the typical DNA molecule is

considerably large compared to its persistence length. Our

aim here is to construct force-extension curves for L $ lp.
Therefore we concentrate on the extension of the chain on

large scale only and treat the dynamical influence of local

(rod-like) structure self-consistently. We estimate the total

dissipation under the assumption that the force acting on

each monomer is uniform along the chain.

In this article we first calculate the force extension of

a worm-like chain subject to a time-dependent force. We

use a dynamical mean field approach that effectively

replaces the local constraint u~2ðsÞ ¼ 1 by a global constraint

Æu~2ðsÞ ¼ 1æ for all times. The static version of this method

has been used successfully to compute the static force-

extension curves (Ha and Thirumalai, 1997). The theory,

which assumes that the tension propagates uniformly along

the chain, is only valid when the pulling speed is not

significantly larger than v0
c. We find highly nonmonotonic

variations in the ( f, z) curves at a given value of v0 as lp
changes. This is very different from the corresponding

equilibrium stretching situation. To access the validity of

the approximations and to obtain a microscopic picture of

the dynamics of tension propagation, we also present

Langevin simulation results for an extensible WLC that is

subject to a time-dependent stretching force. In the strong

pulling limit our simulations also validate the stem-flower
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model which was proposed to describe the fate of polymers

in strong flows.

THEORY

We consider a semiflexible chain made of N monomers with Kuhn length

b (L ¼ Nb). The effective partition function describing the chain under

uniform tension is (Marko and Siggia, 1995),

Z ¼
Z

D½u~ðsÞ�dðu~ðsÞ2 � 1Þexpð�H=kBTÞ; (3)

where

H ¼ k

2

Z L

0

@u~ðsÞ
@s

� �2

ds�
Z L

0

ds f~ðsÞ � u~ðsÞ; (4)

and where k, the bending rigidity of the semiflexible chain, is related to lp as

lp ¼ k/kBT.
To obtain insights into the pulling speed dependence on the ( f, z) profiles

we use a tractable mean field representation of the WLC. The basic idea is to

replace the constraint u~ðsÞ2 ¼ 1 by the global constraint Æu~ðsÞ2æ ¼ 1 where

Æ..æ is an average over the distribution in Eq. 3. With this, we can rewrite the

free energy as

F
kBT

¼
Z L

0

ds
lp
2

@u~ðsÞ
@s

� �2

1 lðsÞu~2ðsÞ
" #

� 1

kBT

3

Z L

0

ds f~ðsÞ � u~ðsÞ: (5)

The variable l(s) is the undetermined Lagrange multiplier that enforces the

global constraint and is a function of the applied stress. From now on we use

the dimensionless persistence length l̃p [ lp=b ¼ k=bkBT; and the di-

mensionless force f̃ [ fb=kBT: Length is measured in units of b.

Following our earlier work (Lee and Thirumalai, 1999; Ha and

Thirumalai, 1997) we evaluate the integral over l(s) by the stationary

phase approach. In terms of q, the Fourier variable conjugate to s, the saddle

point condition is

1

2p

Z
dq

3

2

1

lð f Þ1 ðlp=2Þq2

 !
1 f

2
=4lð f Þ2 ¼ 1; (6)

which, in the thermodynamic limit (L / N), reduces to

3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

lplð f Þ

s
1

f
2

4lð f Þ2
¼ 1: (7)

The average elongation ze ¼ Æzæ is related to l as follows,

Æzæ ¼ ẑ � @F
@f

¼
Z

ds
f ðsÞ

2lð f Þ1lp
@

@s

� �2

0
BBB@

1
CCCA ¼ fL

2lð f Þ : (8)

Here we generalize the mean field approach to probe dynamics of WLC

under tension. Consider a WLC chain in equilibrium at a force fo. At t ¼ 0,

the chain is pulled in the ẑ direction at a constant speed v0 so that z(t1 Dt)¼
z(t) 1 v0Dt. In a relatively short time we expect the chain to orient itself in

the direction of the force. This occurs when DNA is subject to forces.1 pN.

Upon application of force, we assume that the tension propagation is fast

enough so that the variation due to this stretch occurs uniformly through the

contour of the chain. It has been argued that even at large pulling speeds,

comparable to those used in simulations, the propagation of applied tension

is rapid (Evans and Ritchie, 1997). Using this assumption we write the

tangential vector in the z direction as uk(s, t) [ uk(t) ¼ z(t)/N, and its time

derivative duk(t)/dt¼ v0/N where Nlp ¼ L. We introduce the time-dependent

mean field variable l(t) to enforce the nonequilibrium global constraint

Æu2(t)æ ¼ 1. We assume that l(s, t) [ l(t) is only a function of t and is

independent of s. If the propagation of tension is fast enough then this

approximation is expected to be valid. Here we justify this approximation by

making comparisons with simulations.

FIGURE 1 Schematic sketch of the envelope of chain

conformations as a function of the pulling speeds. (Top)

Weak deformation of the chain at pulling speeds v0 , v0
c.

The right-hand side gives a sketch of the stationary

deformation induced by pulling. (Bottom) Nonuniform

longitudinal profiles when v0. v0
c. The trumpet-like profile

gives rise to a steady-state cylindrical profile upon

stretching at constant pulling speeds.
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In terms of the Fourier transformed variable q (which becomes

continuous in the N / N limit) the free energy functional given in Eq. 4

becomes

H=kBT ¼
Z N

�N

dq

2p

lp
2
q
2
1 lðtÞ

� �
u~ðqÞ � u~ð�qÞ

�
Z

dqf~ðqÞ � u~ðqÞ: (9)

Balancing the transverse force�@F=@r and the viscous drag z0ðdr~=dtÞ (z0 is
the monomer friction coefficient that is proportional to h0) we obtain the

equation of motion. Since dr=ds ¼ u~ðsÞ; we obtain

1

D

dr~?ðqÞ
dt

¼ �q
2ðlpq2r~?ðqÞ1 2lr~?ðqÞÞ: (10)

With the stationary approximation, the force is constant along the contour of

the chain, i.e., f~¼ foẑ: Upon taking derivatives on both sides of the above

equation with respect to s, the equation of motion for u~? becomes

1

D

du~?ðqÞ
dt

¼ �q
2ðlpq2u~?ðqÞ1 2lu~?ðqÞÞ; (11)

where D ¼ kBT/z0 is the monomer diffusion constant. In this description

(Rouse Model) the hydrodynamic screening length is effectively the size of

the monomers. We measure time in units of t0 [ b2/D.
The equal time dynamical structure factor S(q, t) is

Sðq; tÞ ¼ Æu~ðq; tÞ � u~ð�q; tÞæ; (12)

where Æ. . .æ indicates the average over both the initial condition and the

thermal noise. We decompose S(q, t) into two components, Sk and S?, where

Sk and S? are the parallel and perpendicular components of S(q, t),

respectively,

Sðq; tÞ ¼ Æu~kðq; tÞ � u~kð�q; tÞæ1 Æu~?ðq; tÞ � u~?ð�q; tÞæ: (13)

The time evolution of the dynamic structure factor S?(q, t) can be written as
(Langer, 1992)

d

dt
S?ðq; tÞ ¼ �2Dq

2ðq2lp 1 2lðtÞÞ; (14)

thus,

S?ðq; tÞ ¼ S?ðq; 0Þe�2Dq
2ðq2lpt12

R t

0
dt#lðt#ÞÞ

: (15)

We impose the global constraint in the form of a sum-rule

Z N

�N

dq

2p
Sðq; tÞ ¼ 1 for all t: (16)

The mean elongation Æz(t)æ/N can be evaluated using Eq. 8. Assuming a l(t)

that satisfies Eq. 8 exists, the sum-rule (Eq. 16) can be expressed as

1

2p

Z
dq

e�2Dq
2ðq2lpt12

R
dtlðtÞÞ

ðlp=2Þq2 1 li

1
zðtÞ
L0

� �2

¼ 1: (17)

The components of the initial equal time dynamical structure factors

S(q, 0) in the perpendicular direction are given as

Sxxðq; 0Þ ¼ Syyðq; 0Þ ¼ 1

2

1

ðlp=2Þq2 1 li

: (18)

Integrating Eq. 17 over q, we obtain

lðtÞ ¼ leq 1
lp

8DleqN

ukðtÞ
1� u

2

kðtÞ
dukðtÞ
dt

; (19)

where leq is the equilibrium value that satisfies Eq. 8 at t ¼ 0. Note that l(t),

which is a function of the pulling speed v0¼NdukðtÞ=dt; is related to the

transverse component of the time-dependent force f tr(t) by (from Eq. 8),

f
trðtÞ ¼ 2lðf ; tÞukðtÞ: (20)

This is the additional drag force due to the dissipation of the transverse

mode. Because the transverse and the longitudinal modes are coupled (Æu2æ
¼ 1), the dissipation in the transverse mode results in a net force in the

longitudinal direction. Inserting Eq. 19 into Eq. 20 results in the expression

for the transverse component of the time-dependent force f tr(t),

f
trðtÞ ¼ 2lequkðtÞ1

lp

4DN
2
li

u
2

kðtÞ
1� u

2

kðtÞ
v0: (21)

The force-extension relation consists of two parts: the first term

corresponds to the static contribution and the second term is the dynamic

contribution. If the system was in equilibrium at t ¼ 0 with small force fo �
0 (Ha and Thirumalai, 1997) we may approximate leq � 1/lp. Then, the
pulling-speed-dependent force-extension relation is written as

f
trðtÞ ¼ l

�1

p ukðtÞ1
l
2

p

4DN
2

u
2

kðtÞ
1� u

2

kðtÞ
v0: (22)

Note that the first term of the right-hand side is identical to the first term in

the static calculation (see Eq. 1). The second term on the right-hand side of

Eq. 21 is proportional to the product of the pulling speed and the inverse of

the diffusion coefficient (1/D), which is related to the energy dissipation. The

effective friction depends on the geometric factor u2kðtÞ=ð1� u2kðtÞÞ; which
reaches a maximum at large extensions. Furthermore, this relation depends

on the history of the chain, i.e., the choice of initial conformation at the

starting point of the pulling. If the system was in equilibrium with constant

force at t ¼ 0, the choice of leq should satisfy Eq. 7 with finite force f 6¼ 0. If

the chain is released from the extended conformation (i.e., v~¼ �v0 ẑ) where

the equilibrium force is f$ 2/lp, then leq should be chosen as leq � f/2 � lp.
This could lead to hysteresis in the force-extension curve.

We have numerically solved the self-consistent dynamical equations to

obtain the pulling-speed-dependent ( ftr, z) curves (see Fig. 2). In our theory

the longitudinal elastic constant (see Eq. 26 below) kb is infinite. From Fig. 2

we note that the force required to stretch the WLC to given extension

increases as v0 increases. In Fig. 3, we plot the lp dependence of force

extensions at the fixed pulling speed v0 ¼ 1b/t0. The flexible chain requires
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larger force at small extension. As the extension becomes comparable to the

contour length, the stiffer chain (larger lp) requires larger force. This

crossover stems from the fact that the excess stored length in the case of

flexible chain should be released at small extension whereas the transverse

fluctuation of the semiflexible chain remains until z becomes large. The

nonmonotonic dependence in ( f tr, z) as a function of lp is a nonequilibrium

effect and cannot be observed if the WLC is stretched under equilibrium

conditions (see Eq.(1)).

The total drag force is the sum of the drag from the transverse mode and

the longitudinal mode. The longitudinal displacement (i.e., extension along

the applied force) is determined by the dynamics at finite pulling speed

rather than by diffusive motion which has been considered elsewhere

(Brochard-Wyart et al., 1999; Seifert et al., 1996; Everaers et al., 1999). The

drag force arising from the motion in the direction of the pulling is

f
ln ¼ 1

2
h0v0ukL: (23)

Thus, the total drag force is

f ¼ 1

2
h0v0ukL1l

�1

p ukðtÞ1
l
2

p

4DN
2

u
2

kðtÞ
1� u

2

kðtÞ
v0: (24)

SIMULATIONS

We have performed Langevin simulations of an extensible

worm-like chain model (EWLC) that is subject to non-

equilibrium stretching force. We undertook these simula-

tions for the following reasons:

1. The theory described above has a number of approx-

imations. Although the effect of replacing u2(s) ¼ 1 by

the global constraint Æu2(s)æ ¼ 1 is correct for equilibrium

stretching (Ha and Thirumalai, 1997), its validity when

pulling under nonequilibrium conditions is not clear.

Moreover, the neglect of variations in the longitudinal

profiles of the chain, which is especially important at

high pulling speeds, requires scrutiny. The simulations

allow us to access the effects of these assumptions on the

predicted results.

2. It has been pointed out by Brochard-Wyart (1995) that

there are several distinct mechanisms for tension

propagation in flexible polymers. Similarly, Seifert et al.

(1996) have identified various timescales in the way the

applied force propagates across the semiflexible fila-

ments. To obtain additional insights into the microscopic

mechanism underlying tension propagation as a function

of the pulling speeds we have performed a series of

simulations by assuming that the chain dynamics can be

described by the Langevin equation. We use an

extensible WLC (EWLC) model to mimic the possibility

of stretching the chain beyond L by connecting the beads

of WLC by a spring with large but finite longitudinal

elastic constant (see below).

The dynamics of stretching is obtained by integrating the

Langevin equation

FIGURE 2 Theoretically determined dynamical (f tr, z) curves for a WLC

at various pulling speeds. The values of the pulling speeds change from v0¼
(0.5, 1, 2, 3)b/t0 from bottom to top. The persistence length lp¼ 20b andN¼
100. The inset is in linear-log scale.

FIGURE 3 Dynamical (f tr, z) curves for a WLC chain for varying values

of the persistence length lp (10, 20, 30, 50)b. The pulling speed is v0 ¼ 1b/t0.

Stretching Semiflexible Chains 2645
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dr

dt
¼ � 1

z

@Ua

@r

� �
1~hhðs; tÞ; (25)

where the friction coefficient z¼ kBT/D and the value ofD in

water at 300 K is D ; 10�6 cm2/s. The thermal noise h(s, t)
is assumed to be Gaussian with zero mean, and the corre-

lation is given by Æ~hhðs; tÞ~hhðs#; t#Þæ ¼ 6Ddðt � t#Þ: The

equations of motion are integrated with step size dt ¼
2.5 3 10�4t0.
We consider a stiff chain consisting of 100 monomers.

The monomers are connected by a molecular spring with

a longitudinal elastic constant kb that allows for fluctuations
around the equilibrium bond length b.
The energy function for a given chain conformation of the

EWLC is

UaðuÞ=kBT ¼ +
i

Ab~i � b~i11 1 kbðr~i � r~i11Þ2; (26)

where r~i is the position of ith monomer, b~i ¼ r~i11 � r~i is the
bond vector, and kb is the molecular spring constant. The

strength of the angular potential A determines the stiffness of

the chain. We determined the persistence length lp using the

formula for the fixed-bond-angle model of the worm-like

chain,

lp ¼ jbj=ð1� cos ÆuæÞ: (27)

where Æuæ is average angle between the adjacent bonds. For A
¼ 20, the persistence length lp ¼ (19 6 2)jbj for the two

values of kb (see below) considered. If this is equated to lp ¼
;53 nm for the l-phage DNA (Smith et al., 1992) then the

bond length b ¼ jb~j is ;2.8 nm.

The contour length of the simulated chain (N ¼ 100)

corresponds to 280 nm, which is comparable to the length of

the ssDNA, L ¼ 300 nm, used in experiments of Rief et al.

(1999). To make qualitative comparisons with AFM experi-

ments (Rief et al., 1999), the terminal of the EWLC is pulled

along the z axis with the force

f ¼ �keðz� z0 � v0tÞ; (28)

where z is the end-to-end distance (extension in the z
direction), z0 is the end-to-end distance of the chain in the

absence of force, v0 is the pulling speed, and ke is the spring
constant of the cantilever in the pulling experiments. We use

ke ¼ 5 kBT/jbj2 ¼ 2.64 pN/nm. In our simulations pulling

speeds vary from (0.1–2)b/t0 which correspond to (3.6 3

104 – 7.2 3 105)mm/s. This is ;5 orders-of-magnitude

faster than experimental values (Rief et al., 1997, 1999) and

is typical of the pulling speeds used in simulations. Most of

the simulations were done with kb¼ 2 3 103 kBT/jbj2 � 103

pN/nm, which mimics the actual DNA molecule spring

constant of 800 pN per Kuhn length. With this model, we

allow for internal stretch of the backbones at large values

of f.
To access the validity of the theory we have obtained the

( f, z) curves at different pulling speeds (Fig. 4, top) using
Langevin simulations. Because the theory is only valid when

kb is infinite we chose a sufficiently large value of kb
(¼ 10,000 kBT/jbj2) for which stable integration of the Lan-

gevin equations are possible. The results in Fig. 4, top, show

that, at all the pulling speeds, the theory and simulations are

in good agreement. This justifies the assumptions made in

obtaining the nonequilibrium force-extension curves. The

comparison between theory and simulations also shows that

the present theory can be used to interpret future simulations

of nonequilibrium stretching of WLC.

FIGURE 4 (Top) Comparison of the theoretical and simulation results for

the force-extension curves at various pulling speeds. The dashed lines are the

theoretical results and the thick lines represent simulation results. The

simulations were performed for the EWLC chain with kb ¼ 10,000 kBT/jbj2.
A large kb was chosen for better comparison with the theory in which it is

assumed that kb is infinite. The pulling speeds change from v0 ¼ (0.5, 1, 2,

3)b/t0 from the bottom to the top curve. (Bottom) Plots of the dynamical force-

extension curves for the EWLC at various pulling speeds. The persistence

length lp ¼ 20b and N¼ 100. The molecular spring constant is 2000 kBT/b
2,

which corresponds to the slope at large values of z/L. The pulling speeds

change from v0 ¼ (0.5, 1, 2, 3)b/t0 from the bottom to the top curve.
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In Fig. 4, bottom, we present the force-extension curves

obtained from simulations at various pulling speeds for the

chain with kb ¼ 2000 kBT/jbj2 which is a realistic value for

DNA. Each curve is an average of force-extension over 20

different initial conformations of which the end-to-end

vectors are oriented in the direction of pulling. The slope

of the ( f, z) plots at large extensions (z/L . 1) reflects the

overall stretching of the chain. In accord with the theoretical

predictions (Fig. 2), we find that as the pulling velocity

increases, the force required to extend the chain increases.

For v0 # 1b/t0, tension is uniform along the chain resulting

in a longitudinal profile that is also uniform along the

z-direction. Therefore, the approximation that the applied

tension is uniform along the chain, which was made in our

theory, is valid. Coil-to-rod transition occurs in the ( f, z)
curves over a narrow extension range when L . L0 (Fig. 4).

The transition point appears at larger extension when the

pulling speed is larger, reflecting that a part of the chain is

straightened and more stretched than the corresponding

contour length, although entropy still prevails in the

conformation of the other part.

We also computed, using Langevin simulations, chain

extension at constant force. The equilibrium extension is

obtained by averaging over 104t0. The initial conformations

for the simulations are prepared from both the overstretched

chain conformation (L . L0) and relaxed conformation. The

static equilibrium force at a given extension is smaller than

what is found under nonequilibrium conditions. Coil-to-rod

transition also occurs at smaller forces (data not shown).

An important aspect of the simulations is that one can

directly obtain a microscopic picture of the dynamics of

tension propagation. When the pulling speed is large v0 .

1b/t0, the tension along the chain is no longer uniform and

the profile, r(z) ; kBT/zv(z), is determined by the local

z-dependent drift velocity v(z). If one end is pulled at a

constant speed v0 whereas the other end is fixed, the local

drift velocity of the chain scales linearly with the distance

from the fixed end. If the local force is larger than kBT/lp,
entropic contribution is suppressed, which results in the

segment being locally stretched. We observe that the end of

the chain that is close to the pulling terminus is straightened

whereas the part close to the fixed end remains closer to the

initial coil-like conformation. The rod-like part (stem) grows

as the extension increases. These features are shown in the

serious of snapshots in Fig. 5. This limit, which is observed

at high pulling speed in our simulations, corresponds to the

stem-flower model (Brochard-Wyart, 1995).

The stem-flower mode of tension propagation is more

dramatically shown in Fig. 6 in which we produce a two-

dimensional projection of the monomer coordinates at

various pulling speeds. Each curve in this figure represents

FIGURE 5 Snapshots of the EWLC from simulations done at the pulling

speed v0 ¼ 3b/t0. The extension of each figure corresponds to z ¼ 11.02,

33.85, 46.48, 59.11, and 103.89, respectively. The contour length is L ¼
100. All lengths are measured in units of b.

FIGURE 6 Two-dimensional projection of the chain

conformations at various pulling speeds. The y axis

represents the coordinates transverse to the pulling

direction and the x axis is the extension in the direction

of force. The uppermost figure corresponds to a chain at

equilibrium. The subsequent profiles represent the chain

deformations at pulling speeds v0¼ (2.0, 1.0, 0.5)b/t0 from
top to bottom. At each pulling speed the conformations

represent the dynamics of the evolution of the chain

deformation. The stem-flower model for chain stretching

is evident at high pulling speeds.

Stretching Semiflexible Chains 2647

Biophysical Journal 86(5) 2641–2649



the positions of the monomers (the y axis represents locations
transverse to the force direction and the x axis denotes the

coordinates (z) parallel to f). All the snapshots are taken at

equal time intervals. At lower pulling speeds (for example, v0
¼ 1b/t0, which is the second profile from the bottom) the

conformations of the chain in the transverse direction spread

out. On the other hand, at larger pulling speeds, the

fluctuations in the transverse direction are localized. At the

highest pulling speed, v0 ¼ 3b/t0, the diffusive motion is

strongly suppressed. This regime most clearly exhibits the

stem-flower profile anticipated by Brochard-Wyart (1995) in

the context of coil-to-stretch transition in polymers subject to

elongational flow.

CONCLUSIONS

We have presented a theory to describe the pulling-speed-

dependent elastic response of WLC when it is stretched from

one end. Using a self-consistent dynamical variational

approach, we have calculated quantitative estimations for

the force extension of worm-like chains subject to a time

dependent force. As expected, the measured forces at finite

pulling speeds are larger than the static stretching force feq.
The theoretical force-extension estimation also predicts that

at small forces (extensions), the larger the lp, the bigger the
dissipation. Therefore, larger force is required at a given

extension. When the extension is comparable to the contour

length, dissipative forces are larger for larger values of lp.
The competition between the viscous force and the stretch-

ing force, both of which depend on lp, gives rise to non-

monotonic variations in the ( f, z) curves as lp is altered. This
prediction, which is a purely nonequilibrium effect, is

amenable to experimental test.

To complement the theoretical predictions we performed

Langevin simulations for extensible WLC, which show that

at pulling speeds v0 # b/t0, the uniform cylinder approxi-

mation for the transverse envelope is valid. For larger pulling

speeds, the transient behavior of WLC is well described by

the previously described physical picture (Brochard-Wyart

et al., 1999; Seifert et al., 1996). In particular, the stem-

flower tension propagation mechanism at high pulling

speeds is confirmed in our simulations. A direct comparison

between our theoretical predictions and simulations for large

value of the longitudinal spring constant (see Fig. 4, bottom)
shows excellent agreement. The favorable agreement

between theory and simulations justifies the use of dynamic

self-consistent theories to probe nonequilibrium response of

semiflexible macromolecules, such as DNA, to force.

In this article hydrodynamic interactions have been

neglected. If the hydrodynamic interactions are not fully

screened, the major friction comes from the largest di-

mension of the moving element, i.e., the size in the axial

direction Rz. The friction that the moving object experiences

is h0Rz rather than ;h0Nb. For a rod-like element, the

largest dimension is approximately the length of the chain

when the extension is comparable to the contour length. The

total friction is proportional to the length of the chain ;L
(with logarithmic corrections) if the object is moving in the

direction of the force. If one end of the chain is fixed then

hydrodynamic friction from the rotational mode (;L3) will
play a role in the dissipation mechanism. These consid-

erations suggest that, in the limit of high pulling speeds,

hydrodynamic interactions can significantly affect the force-

extension profiles. Numerical simulations, along the lines

used previously (Dunweg, 1993; Abrams et al., 2002), would

be needed to examine the role of hydrodynamic interactions.
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