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ABSTRACT Mesoscopic models of unmelted and locally melted supercoiled DNAs in 20 mM ionic strength are simulated over
a range of linking difference from D‘ ¼ 0 to �26 turns, or superhelix density from s ¼ 0 to �0.062. A domain containing m ¼ 0,
28, or 56 melted basepairs (out of 4349 total) is modeled simply by a region of suitable length with substantially reduced torsion
and bending elastic constants. Average structural properties are calculated from the saved configurations, and a reversible
work protocol is used to calculate the supercoiling free energy, DGsc. The cross-writhe between duplex and melted regions
(defined herein) is found to be negligibly small. The total writhe, radius of gyration, and ordered elements of the diagonalized
inertial tensor are found to be nearly universal functions of the residual linking difference (ÆD‘ræ) associated with the duplex
region, independent of m. However, deformability of the tertiary structure, as manifested by the variance of those same
properties, is not a universal function of ÆD‘ræ, but depends upon m. DGsc varies with ÆD‘ræ more strongly than ÆD‘ræ2 due to the
low ionic strength. The twist energy parameter, ET, obtained from the simulated DGsc, ÆD‘ræ, and net twisting strain of the melted
region,ÆTDæ, is found to be independent of m, hence also of the torsion and bending elastic constants of the melted region.
However, ET increases linearly with �ÆD‘ræ, which leads to 1), a small overestimation of ET for any given ÆD‘ræ, when ET is
determined from the observed D‘ and ÆD‘ræ by the protocol of Bauer and Benham; and 2), a significant enhancement of the
apparent slope, �dET=dT , obtained via the protocol of Bauer and Benham, relative to the actual slope at fixed ÆD‘ræ. After taking
these two effects into account, the theoretical and experimental ET values and �dET=dT values agree rather well. For the larger
D‘, the melted regions are found preferentially in the linker domains between interwound arms, rather than in the apical regions
at the ends of interwound arms.

INTRODUCTION

Negative supercoiling generally raises the free energy of

a duplex circular DNA relative to that of its melted in-

tertwined single strands. In sufficiently low ionic strength

(&20 mM) at 37�C, supercoiled DNAs with sufficient

superhelix density (s) in the range 0$s$ � 0:05 (native)

will locally melt to an extent that depends upon the sequence

(Benham, 1990, 1992; Bauer and Benham, 1993; Bauer et al.,

1995). Even at higher, more physiological ionic strengths,

where stable local melting is not observed up to native

superhelix density (�0.05) (Kowalski et al., 1988), the free

energy change required to locally melt the DNA is sub-

stantially reduced. This supercoiling-induced destabilization

of duplex with respect to local melting has been suggested to

facilitate certain biological processes, wherein melted re-

gions are involved, such as the initiation of transcription,

replication, and recombination (Benham, 1990; Bauer and

Benham, 1993; Bauer et al., 1995; Sheridan et al., 1998).

A quantitative understanding of supercoiling-induced

local melting requires knowledge of 1), the decrease (DDGsc)

in deformational supercoiling free energy (DGsc) upon

melting a sequence of m basepairs, which depends upon

the unknown effective elastic constants for torsion and

bending of the melted regions, and 2), the free energy

increase upon melting m basepairs far below their normal

melting temperature, TM. Until now, neither direct experi-
mental measurements nor simulations of DGsc for a locally

melted DNA have been reported. Likewise, direct experi-

mental or theoretical assessments of DDGsc for local melting

of an initially unmelted supercoiled DNA are lacking.

Nonetheless, the phenomenon of supercoiling-induced local

melting has been extensively analyzed by Benham (1990,

1992)), who employed some of the known statistical

thermodynamics of DNA melting together with several

untested assumptions regarding both the structural properties

of partially melted supercoiled DNAs and the thermody-

namics of their supercoiling. After invoking an additional

untested assumption pertaining to the gel mobilities of

locally melted and unmelted supercoiled DNAs, Bauer and

Benham (1993) and Bauer et al. (1995) investigated the

magnitude and temperature dependence of the supercoiling

free energy. We believe that it is now essential to address

several questions pertaining to the structures and super-

coiling thermodynamics of locally melted DNAs, and to test

certain of the assumptions invoked by Benham and co-

workers. This is done via Monte Carlo simulations of

mesoscopic models of locally melted supercoiled DNAs,

wherein the denatured (melted) regions are modeled simply

as regions with much reduced torsion and bending elastic

constants. The assumptions invoked by Benham and Bauer

and Benham would be expected to be more applicable to our

simple model molecules than to real DNAs. The results in

this work significantly increase our knowledge regarding
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the structural properties and supercoiling thermodynamics

of model circular DNAs with fixed numbers (28 or 56) of

melted basepairs, and significantly deepen the level of

analysis. Hopefully, our findings will lead to a further re-

finement of Benham’s model, and ultimately lead to the

extraction of increasingly reliable and accurate estimates of

certain unknown quantities, including the effective elastic

constants of the melted regions, by fitting various experi-

mental data.

Topological and geometrical aspects
of supercoiling

Every DNA topoisomer is characterized by its integral

linking number ‘, the number of turns of each single strand

around the other. ‘ is a topological invariant that is unaltered
by any change in tertiary or secondary structure of the DNA,

including local melting. The extent of deformation of the

DNA is characterized by the linking difference, D‘ ¼ ‘� ‘0,
where ‘0 is the intrinsic twist of the unstrained DNA. For an

unmelted supercoiled DNA comprising M basepairs (bp),

‘0 ¼ Mf
bp
B , where f

bp
B ((1/10.45) turns/bp) is the intrinsic

succession angle between basepairs of the duplex DNA. For

a locally melted DNA comprising M basepairs, of which

m are melted, ‘0 ¼ ðM � mÞfbp
B 1mfbp

D , where f
bp
D is the

intrinsic succession angle between (open) basepairs of the

melted, or denatured, DNA. Although f
bp
D ¼ 0 for a real

DNA, it typically does not vanish for our simulated

molecules, so is introduced at this point and carried along

through the subsequent development. In the sequel, when

a distinction is necessary, the properties of unmelted DNAs

will be denoted by an overbar (e.g., �‘‘ ) and those of locally

melted DNAs will be denoted by a tilde (e.g., ‘̃ ). When

considering unmelted and locally melted forms of the same

molecule, �‘‘ ¼ ‘̃ ¼ ‘. Then the change in linking difference

upon local melting is

D‘̃� D�‘‘ ¼ ð‘̃� ‘̃0Þ � ð�‘‘� �‘‘0Þ ¼ �‘‘0 � ‘̃0

¼ mðfbp

B � f
bp

D Þ: (1)

For unmelted and locally melted molecules, the superhelix

density is defined by �ss[D�‘‘=�‘‘0 and ~ss ¼ D‘̃=‘̃0, respec-
tively. �ss is generally negative for native supercoiled DNAs,

since �‘‘, �‘‘0 in that case.

We assume that the linking number is partitioned between

twist (t) and writhe (w) according to (White, 1969; Fuller,

1971):

‘ ¼ t1w: (2)

Equation 2 was proved for ribbons of infinitesimal width

with smooth edges. Its validity for ribbons of finite width

might be restricted to the case of smooth inextensible edges.

Moreover, its applicability to partially denatured DNAs is far

from obvious. However, for the DNAs considered here,

which exhibit a large linking difference and only a small

locally denatured region, a large amount of linking difference

is typically absorbed into the latter, which would be expected

to wind that denatured DNA into a left-handed helical

bundle, wherein the space curves of the single strands are

reasonably smooth, and for which Eq. 2 is either valid or

a good approximation.

The DNA is here regarded as a chain of N¼M/n subunits,

each containing n basepairs. These subunits are labeled

consecutively by the index j, j ¼ 1, . . . N. In each subunit ( j)
is fixed a coordinate frame (xj,yj,zj), the zj axis of which lies

along the bond vector (bj) that extends from the origin of the

jth frame to the origin of the succeeding ( j1 1)th frame. The

Euler rotation that carries a coordinate frame from co-

incidence with the jth frame to coincidence with the ( j1 1)th

frame is Fj;j11 [ ðaj;j11bj;j11gj;j11Þ, where the component

rotations, aj;j11; bj;j11; and gj;j11, are taken sequentially

around the body-fixed z, new body-fixed y#, and final body-

fixed z$ axes (Edmonds, 1974). The net twist of the DNA is

given by

t ¼ +
N

j¼1

fj;j11=2p; (3)

where fj;j11 [ aj;j11 1 gj;j11 (radians) is the net twist of the

Euler rotation from the jth to the ( j 1 1)th frame (Schurr,

1985). For a partially melted molecule, in which the N � n
subunits, j¼ 1,2, . . .N� n, are B-helical duplex, but the n¼
m/n subunits, j ¼ N � n1 1, . . . ,N, are melted, the net twist

can be partitioned among the two regions according to

t ¼ tB 1 tD ¼ +
N�n

j¼1

fj;j11=2p 1 +
N�n

j¼N�n11

fj;j11=2p; (4)

where the first term on the far right-hand side (rhs) con-

stitutes the twist (tB) of the B-helical duplex region and the

second term constitutes that (tD) of the denatured (melted)

region.

The writhe is commonly approximated by the discretized

Gauss integral,

w ¼ 1

4p
+
N

i¼1

+
N

j¼1
i 6¼j

ðbj 3 eij � biÞ
jri � rij2

; (5)

where the ri; rj denote the positions of the origins of the ith
and jth subunit frames, respectively, in the laboratory frame,

and eij [ ðri � rjÞ=jri � rjj denotes a unit vector along ri �
rj (Hao and Olson, 1989). We imagine that the single strands

in a locally melted region are smoothly wound in such a way

that their midline is well-defined, and can be taken as a line

of discretized bond vectors for the purpose of a calculating w
according to Eq. 5. It is useful to partition the writhe among

the B-helical duplex and denatured regions according to
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w ¼ wB 1wD ¼ 1

4p
+
N�n

i¼1

+
N

j¼1
i 6¼j

bj 3 eij � bi

jri � rjj2

1
1

4p
+
N

i¼N�n11

+
N

j¼1
i 6¼j

bj 3 eij � bi

jri � rjj2
; (6)

where the first term on the far rhs constitutes the writhe (wB)

associated with the B-helical duplex region and the sec-

ond term constitutes the writhe (wD) associated with the

denatured region. The writhe wB of the duplex region

contains (N � n)2 self-terms in which both i and j lie within
that same region (1, . . .N � n), plus (N � n)n cross-terms in

which i lies within the duplex region but j lies within the

denatured region (N � n 1 1, . . .N). The writhe wD of the

denatured region similarly contains n2 self-terms in which

both i and j lie within the denatured region plus n(N � n)
cross-terms in which i lies within the denatured region, but j
lies within the duplex region. The number of cross-terms in

wB and in wD is identical. Moreover, because bj 3 eij�
bi ¼ bi 3 eji � bj is invariant to interchange of i and j, every
cross-term in wB has an identical counterpart in the cross-

terms of wD. Thus, the entire cross-term contribution of the

total writhe is divided evenly between the two regions,

regardless of their relative sizes.

The linking number of locally melted DNA can be

partitioned as ‘̃ ¼ ‘B 1 ‘D ¼ ðtB 1wBÞ1 ðtD 1wDÞ, where
‘Bð‘DÞ corresponds to the first (second) term on the far rhs.

The intrinsic twist can also be partitioned as

‘̃0 ¼ ‘0B 1 ‘0D ¼ ðN � nÞfB 1 nfD, where fB [ nf
bp
B is

the intrinsic succession angle (turns/subunit) between

subunits of unmelted DNA and fD ¼ nf
bp
D is that for melted

DNAs, and ‘0Bð‘0DÞ corresponds to the first (second) term on

the far rhs. Finally, the linking difference, D‘̃ ¼ ‘̃� ‘̃0 ¼
D�‘‘1 nðfB � fDÞ; can be partitioned between the duplex

and melted regions according to

D‘̃ ¼ D‘B1D‘D

¼ ðtB 1wB � ðN � nÞfBÞ1ððtD 1wDÞ � nfDÞ; (7)

where the first term on the rhs constitutes the linking differ-

ence ðD‘BÞ of the duplex region and the second term con-

stitutes that ðD‘DÞ of the melted region. Although fD ¼ 0 for

a real DNA, it typically does not vanish for our model DNAs.

Questions pertaining to locally melted
supercoiled DNAs

The following questions are relevant to the characterization

and analysis of supercoiling-induced local melting:

1. How are the writhe, twisting strain, and linking dif-

ference of a locally melted topoisomer distributed be-

tween its duplex and melted regions, the latter of which

exhibits much weaker torsional and bending rigidities

than the former?

2. How does the presence of the elastically soft denatured

region affect the structure (e.g., writhe and radius of

gyration (Rg)), and fluctuations in structure of the mole-

cule? In particular, how do such properties of a locally

melted DNA compare with the corresponding properties

of an unmelted topoisomer whose total D�‘‘ matches the

D‘B of the locally melted DNA?

3. Are the more flexible melted regions found preferentially

at certain locales or instead more or less uniformly

distributed throughout all regions of the tertiary structure

of the supercoiled DNA? Intrinsically curved sequences

with normal duplex rigidity are found preferentially at the

external ends, or apices, of interwound superhelical

branches or domains (Bussiek et al., 2002; Pfannschmidt

and Langowski, 1998; Chirico and Langowski, 1996).

Supercoiled plasmids containing the SCA10 repeats,

(ATTCT)n.(AGAAT)n, n ¼ 5, . . . 29, were deposited on

a mica surface treated with 3-aminopropyltriethoxysilane

(APS) (Lyubchenko and Shlyakhtenko, 1997), rinsed,

dried, and scanned by atomic force microscopy (AFM) in

air (Potaman et al., 2003). Open regions were observed in

these DNAs, and found not to be associated with apices.

However, the extensive flattening, low prevailing water

activity, and certain peculiarities in the data suggest that

these are not equilibrium structures typical of normal

locally melted supercoiled DNAs in solution. The open

regions in the AFM images are specific to the SCA10

sequences, and are not observed for other DNAs with (A

1 T)-rich regions of comparable length, which also

exhibit stable melting in two-dimensional gels. They also

do not show the expected negative interwinding of the

two single strands. Hence, the location(s) of locally

melted regions in normal equilibrium supercoiled DNAs

in solution remains an open question.

4. How does the (deformational) supercoiling free energy

DGsc of a locally melted DNA vary with the linking

difference of its unmelted parent topoisomer ðD�‘‘DNAÞ
and with the number m of its melted basepairs, or equiv-

alently the number n ¼ m/n of its melted subunits? From

such information, the difference in supercoiling free

energy, DDGsc, between an unmelted parent topoisomer

with linking difference D�‘‘DNA and its partially melted

daughter molecule with m melted basepairs can be esti-

mated. This latter quantity is important, because the re-

duction in supercoiling free energy upon partial melting

provides the driving ‘‘force’’ for supercoiling-induced

partial melting.

5. Can the total supercoiling free energy, including the

configurational entropy contribution, be partitioned

between the duplex and melted regions and, if so, how

does it vary with the average linking difference ÆD‘̃Bæ of
the duplex region, and the average twisting strain of the

melted region, ÆTDæ[ ÆtDæ� ‘0D?

Locally Melted Supercoiled DNAs 3081
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6. When the supercoiling free energy of the duplex region

of a locally melted DNA is expressed in terms of the

square of its associated linking difference, D‘B, how does

its effective torque constant, or equivalently its twist

energy parameter (ET), compare with the ET for the

corresponding unmelted DNA in regard to both magni-

tude and variation (if any) with linking difference?

With the answers to these questions in hand, one could

combine the estimated reduction in supercoiling free energy

upon opening a region containing m basepairs with an esti-

mate of the free energy increase upon melting m basepairs

(below Tm) to estimate m for any given linking difference

and temperature. By explicitly or implicitly assuming the

answers to certain of the preceding questions, Benham

(1990, 1992) formulated a protocol to do essentially that for

sufficiently supercoiled DNAs in low ionic strength (#20

mM) at temperatures T$ 37�C. (There is currently no

evidence for stable opening of a supercoiled DNA with

jsj# 0:05 at T# 37�C in ionic strengths $30 mM

(Kowalski et al., 1988)). After invoking an additional

assumption pertaining to the gel mobilities of unmelted

and locally melted species, Bauer and Benham formulated

and applied a protocol to analyze two-dimensional gels of an

ensemble of topoisomers of supercoiled PBR322 DNA in

;20 mM ionic strength at various temperatures, T$ 37�C,
to estimate several quantities, including ET and the free

energy, enthalpy, and entropy of supercoiling.

The primary objectives of this work are to address

questions 1–6 above for a simple mesoscopic model of

a locally melted DNA, to test or partially test certain

assumptions of Bauer and Benham (1993), and to understand

why such assumptions are, or are not, valid. It is first

necessary to clarify those assumptions somewhat.

Assumptions in the model of Benham

Benham (1990, 1992) introduced a new quantity, called the

residual linking difference (DLkr), for a locally denatured

molecule. Bauer and Benham (1993) described DLkr as ‘‘that
portion of the initial linking difference (i.e., of the unmelted

parent) that is not accommodated either by local strand

separation or by subsequent interstrand twisting in the

denatured regions’’. They further state that denaturation of

a run of m basepairs leads to a change in the magnitude of

DLkr equal tomðfbp
B � t=2pÞ, where t is the ‘‘helicity’’ (i.e.,

twist) of the denatured regions in radians per basepair.

Keeping our notation to distinguish denatured and non-

denatured forms of the same molecule, we express the above

statement as

DLk̃r � DL�kkr ¼ mðfbp

B � t=2pÞ ¼ nðfB � nt=2pÞ: (8)

This description of DLk̃r is incomplete, because Benham and

Bauer and Benham did not consider the possibility that the

denatured region might, owing to its rather low bending

rigidity, absorb linking difference not only in the form of

twist, but also in the form of writhe, perhaps by tight toroidal

winding of the axis (i.e., midline) of the denatured region.

If the convex volume that just envelopes the minor

denatured domain (D) is sufficiently small in all of its

physical dimensions compared to that of the major unmelted

domain (B), then in the vast majority of two-dimensional

projections of the molecule taken from all orientations, the

axis of the unmelted region will have no intersections with

the axis of the unmelted region, so there will be no signifi-

cant cross-term contributions to the total writhe. It will be

explicitly demonstrated below that such a circumstance

prevails for the relatively small denatured regions considered

here. In this case, any significant writhe wD associated with

the minor denatured domain D must stem primarily from its

self-writhe ðwself
D Þ, and would therefore be predominantly

local. Unfortunately, such a local writhe, wself
D , cannot be

distinguished from local twist, tD, of that same region

without some means of resolving the structure of the locally

denatured region. Currently, there is no experimental method

to ascertain unequivocally whether the linking difference

associated with a small denatured region is present in the

form of twist ðtD ¼ mt=2p ¼ nnt=2pÞ or self-writhe

ðwself
D Þ. In any event, it will be shown rigorously below that

Eq. 8 is incomplete whenever either wself
D or the cross-writhe

term ðwcross
D Þ associated with the denatured region is

nonvanishing.

Benham (1990, 1992) and Bauer and Benham (1993) also

assumed that the total supercoiling free energy, DGsc, of

a single partially melted DNA consists of only two terms,

DGsc ¼ KDLk̃
2

r 1 ð1=2Þnnabp

D t
2
; (9)

where K is an effective torque constant for supercoiling of

the duplex region and a
bp
D is the effective torsion elastic

constant of each of the m ¼ nn ‘‘torsion’’ springs between

(open) basepairs of the denatured region. It is implicitly

assumed in Eq. 9 that the intrinsic twist, ‘0D ¼ nfD, of the

denatured regions vanishes, as it does for real DNAs. Our

objective here is not to assess the validity of the assumed

Hooke’s law behavior of the melted region, but instead to

assume such behavior to address other questions and test

other assumptions. The quantity K in Eq. 9 is related to the

twist energy parameter, ET, used previously in our laboratory

by K ¼ kT(ET/M), where k is Boltzmann’s constant, T the

absolute temperature, and M ¼ nN the number of (duplex)

basepairs (Wu et al., 1988; Clendenning and Schurr, 1994;

Clendenning et al., 1994; Gebe et al., 1995, 1996; Schurr

et al., 1995; Delrow et al., 1997a,b; Naimushin et al., 2001).

For sufficiently large DNAs (M$ 2000 bp) ET is practically

independent ofM. (Bauer and Benham used the symbol q(T)
instead of ET, and Ct instead of aD). The partitioning of DGsc

into separate contributions from the duplex and denatured
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regions, which is implied by Eq. 9, suggests that for a par-

tially melted DNA, one should employ K ¼ kT(ET/(M � m),
where M is replaced by the number (M � m) of basepairs in
the duplex region. However, both in the experiments of

Bauer and Benham and in these simulations, m is only a tiny

fraction of M (m/M & 0.013), so the error in DGsc resulting

from use of M in place of M � m in the expression for K is

smaller than either the experimental or simulation errors. We

test the assumption (Eq. 9) that was originally stated by

Benham.

Another crucial assumption employed by Benham (1990,

1992) and Bauer and Benham (1993) is that the same value

of K (or ET) applies to both the unmelted DNAs and the

duplex regions of partially melted DNAs. Because K (or ET)

sensitively reflects the bending rigidity and also the parti-

tioning of D‘ between twist and writhe in an unmelted

supercoiled DNA, its use in Eq. 9 can be justified only ifD eLkLk̃r
pertains exclusively to the unmelted region B, and contains

no contribution from the torsionally and flexurally softer de-

natured region D.
To better illuminate the assumptions of Benham (1990,

1992) and Bauer and Benham (1993) that are implied by

Eqs. 8 and 9, we begin with D‘̃B in Eq. 7, which is rigorously

given by

D‘̃B [ tB 1wB � ðN � nÞfB

¼ tB 1wB � ðM � mÞfbp

B : (10)

We now define an alternative residual linking difference,

D‘̃r, of the partially melted DNA as that part of the total

linking difference that is associated with the unmelted

duplex region. That is, D‘̃r [D‘B, which gives exactly

D‘̃r [ tB 1wB � ðN � nÞfB

¼ ‘̃� ðtD1wDÞ � ðN � nÞfB: (11)

For the unmelted parent molecule with the same linking

number, �‘‘ ¼ ‘̃r ¼ ‘, the residual linking difference is

D�‘‘r ¼ D�‘‘ ¼ �tt1 �ww� �‘‘0 ¼ �‘‘� NfB: (12)

After subtracting Eq. 12 from Eq. 11, and setting tD ¼ nnt/
2p, we obtain

D‘̃r � D�‘‘r ¼ nfB � tD � wD

¼ nðfB � nt=2pÞ � wD (13)

for the change in D‘̃r upon local melting ofm¼ nn basepairs.
Our Eq. 13 differs from the corresponding relation of Bauer

and Benham (our Eq. 8) by the term, �wD. Our definition of

the residual linking difference in Eq. 11 is complete and is

the most appropriate choice for two main reasons. i), The

value of our D‘̃r is unaffected by any interconversion be-

tween tD and wself
D in the denatured region. This is important,

because the exact form of the linking difference in that

region is not known, and could well be self-writhe instead of

twist. ii), D‘̃r pertains only to the duplex region, and is

therefore the appropriate quantity to employ in Eq. 9 for the

supercoiling free energy, given that the same value of K (or

ET) is assumed to apply for both unmelted DNAs and the

duplex regions of locally melted DNAs. Consequently, we

believe that Bauer and Benham either intended, or should

have intended, to adopt our choice of the residual linking

difference in Eq. 11. Thus, their adoption of Eq. 8 instead of

Eq. 13 involves the implicit assumption that wD ¼
wself
D 1wcross

D is negligibly small. Because wself
D and the

cross-writhe term ðwcross
D Þ associated with the denatured

region are expected to have the same sign, the assumption

that wD is negligibly small is equivalent to assuming that

wself
D and wcross

D are both negligibly small.

A possible alternative interpretation of the ansatz of

Benham (1990, 1992) and Bauer and Benham (1993),

contained in Eqs. 8 and 9, is that the total ‘‘helicity’’ of the

denatured region (in turns) is actually the sum of the twist

(tD) and the self-writhe ðwself
D Þ, rather than simply the twist,

so that mt=2p ¼ nnt=2p ¼ tD 1wself
D . Then, if the ratio

tD=w
self
D were to remain constant with increasing linking

difference (as is the case for tB/wB in an unmelted DNA),

then the free energy associated with the superhelicity in the

denatured region could conceivably be quadratic in the sum,

tD 1wself
D , (as it is for an unmelted DNA). Because the

effective torque constant aD is taken as an unknown adjust-

able parameter characteristic of denatured regions, it could

conceivably apply as well to the square of ðtD 1wself
D Þ as to

the square of tD. In this case, Eq. 13, which applies in all

events, could be written as

D‘̃r � D�‘‘ ¼ nfB � ðtD 1w
self

D Þ � w
cross

D

¼ nðfB � nt=2pÞ � w
cross

D ; (14)

where wcross
D denotes the cross-writhe of the denatured

region. Equation 8 is identical to Eq. 14 if, and only if, wcross
D

is negligibly small. In this interpretation, the implicit

assumption of Benham is that wcross
D is negligibly small.

One might also ask whether Eqs. 8 and 9 would be

reasonable assumptions, if the total ‘‘helicity’’ of the dena-

tured region, nnt/2p turns, were taken to be its associated

linking difference in turns, D‘D ¼ ðtD 1wDÞ. This would

cause Eq. 8 to coincide with the first line of Eq. 13. However,

wcross
D depends strongly on the space curve of the duplex B

region, as well as that of the locally melted D region, and

those regions have very different elastic constants. Conse-

quently, it seems most unlikely that tD/wD would remain

constant with increasing linking difference, or that the

free energy of the denatured region would vary simply

quadratically with ðD‘DÞ2 ¼ tD 1wself
D 1wcross

D � ‘0D
� �2

,
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unless wcross
D were negligibly small. Indeed, one cannot

expect to decompose the supercoiling free energy of the

entire molecule into separate local contributions of its

unmelted and denatured domains, whenever cross-writhe

terms make a significant contribution to either D‘D ¼ tD 1

wself
D 1wcross

D � ‘0D or D‘̃r ¼ D‘B ¼ tB 1wself
B 1wcross

B � ‘0B.
Hence, this interpretation would be sensible only if the

identical cross-writhe terms, wcross
D and wcross

B , were negli-

gibly small.

Thus, under any interpretation of the meaning of the

‘‘helicity’’ ascribed to the denatured region, an additional

assumption is required, namely that wcross
D ¼ wcross

B is negli-

gibly small.

The assumptions of Benham’s model that are tested in this

work are summarized in our notation as follows:

1. w
cross

D ffi 0: (15)

2. DGsc=kT ¼ ðET=ðnNÞÞðD‘̃rÞ2 1 ð1=2Þ
3 a

bp

D =kT
� �

nnð2ptD=nnÞ2: (16)

3. ET is the same for unmelted and partially melted DNAs.

4. ET is a constant, independent of D‘̃r.

Our simulations of model DNAs containing m ¼ 28 or 56

contiguous melted basepairs indicate that Assumption 1

above is an excellent approximation. However, the assumed

quadratic variation of DGsc with D‘̃r appears to be

somewhat inaccurate, even for the unmelted DNA, at the

prevailing low (20 mM) ionic strength. For the unmelted

DNA, n ¼ 0 and D‘̃r ¼ D�‘‘r ¼ D‘. For the same value of

D‘̃r, the same value of ET is obtained for all three DNAs

(m ¼ 0, 28, 56), so Assumption 3 appears to be surprisingly

accurate. Assumption 4 is found to be somewhat in-

accurate, again due to the nonquadratic variation of DGsc

with D‘̃r.
The final term in Eq. 16 reflects the assumption that the

intrinsic twist of the melted region vanishes. Although that is

indeed true for a real DNA, in our simulations the intrinsic

twists of both duplex and melted regions are varied to alter

the linking difference, as described below. In that case, the tD
in Eq. 16 must be replaced by the net twisting strain of the

melted region, TD ¼ tD � ‘0D ¼ tD � nfD. It is implicit in

Benham’s analysis that D‘̃r, tD, and TD must all be regarded

as ensemble average values.

Additional assumptions in the protocol of Bauer
and Benham

Bauer and Benham (1993) created a collection of top-

oisomers of pBR322 containing every linking difference

from ;110 to �24 at an ionic strength ;20 mM and

investigated these at 40, 45, 50, 55 and 60�C. These

topoisomers were analyzed by two-dimensional gels, where

the prevailing temperatures for the first dimension were one

or another of those just noted, which caused partial melting

of the more negatively supercoiled topoisomers. The second

dimension was run at 25�C in the presence of sufficient

chloroquine to relieve the negative superhelical strain of

every topoisomer, so that it is no longer locally melted,

regardless of whether or not it was melted in the first

dimension.

In addition to the assumptions implicit in their model,

Bauer and Benham (1993) invoked an additional crucial

assumption to interpret their two-dimensional gels, namely

that any two topoisomers, one partially melted and the

other unmelted, with the same gel mobility in the first

dimension, have the same residual linking difference, D‘̃r.
Under this gel mobility assumption, the residual linking

difference D‘̃jr of the jth locally melted topoisomer can be

equated to the interpolated D�‘‘kr ¼ D�‘‘ k of the (hypothetical)
unmelted topoisomer with the same mobility in the first

dimension. The D�‘‘j of the unmelted parent of the jth
topoisomer, and the D�‘‘p of all the other unmelted

topoisomers, are obtained from their positions in the

second dimension. Specifically, D�‘‘j is reckoned by

counting the sequence of (unmelted) topoisomers in the

second dimension that extends from the topoisomer with

the slowest mobility in the first dimension up to that with

the mobility of the jth topoisomer in the first dimension. In

the computational protocol of Benham and Bauer and

Benham, the experimental value of D‘̃jr ¼ D�‘‘k becomes the

‘‘target’’ for a statistical thermodynamic calculation con-

ducted for the jth topoisomer with unmelted linking

difference D�‘‘j. The relative probabilities for various

partially melted states are calculated for a nearest-neighbor

two-state (i.e., unmelted or melted) melting model that

takes account of the supercoiling (deformational) free

energy in a parameterized way, based upon Eq. 18 below.

The calculation ideally treats all possible numbers, m$ 0,

of open basepairs, which are arranged in all compatible

numbers of melted domains of various sizes, but takes no

direct account of the actual tertiary structures or fluctua-

tions in tertiary structure that determine the thermodynam-

ics of supercoiling and the reduction in supercoiling free

energy upon melting. In each iteration, the three adjustable

parameters, ET, a
bp
D , and an opening initiation free energy

a, are fixed at appropriate trial values. For any given value

of m, D‘̃jr is eliminated in favor of t and D�‘‘jr ¼ D�‘‘j ¼ D�‘‘
by using Eq. 13 with wD ¼ 0. In the general case, where

‘0D ¼ mfbp
D does not vanish, t is related to the twisting

strain of the denatured region, TD ¼ tD � ‘0D, according to

t ¼ ð2p=mÞTD 1 2pf
bp
D . Using this relation in Eq. 13 with

wD ¼ 0 gives D‘̃r ¼ D�‘‘1mðfbp
B � f

bp
D Þ � TD. When this

expression for D‘̃r is substituted into Eq. 16, and tD in the

final term of that equation is replaced by TD, then TD can

also be eliminated in favor of D�‘‘ by minimizing DGsc with

respect to TD, which gives (at the minimum)
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TD ¼ 2ðET=MÞðD�‘‘1mu
bp

0 Þ
2ðET=MÞ1 ð2pÞ2abp

D =ðmkTÞ

¼ ð2ET=MÞD‘̃r
ð2pÞ2abp

D =ðmkTÞ
; (17)

where u
bp
0 [f

bp
B � f

bp
D is the difference in the intrinsic

succession angle between the duplex and denatured regions

(u
bp
0 vanishes for our model filaments.)

Now the supercoiling free energy in Eq. 16 can be written

as

DGscðD�‘‘;mÞ
kT

¼ ðET=MÞðabp

D =kTÞ2p
2

ð2p2
a
bp

D =kT1mET=MÞ
ðD�‘‘1mu

bp

0 Þ
2
; (18)

which depends only on the fixed (known) D�‘‘ ¼ D�‘‘j and the

specified value of m. The total free energy of each state

consists of DGscðD�‘‘;mÞ plus a free energy of melting term,

which also depends upon m. The average value of D‘̃jr for the
set of partially melted topoisomers with the same D�‘‘j, but
different values of m, is computed by averaging the quantity

D‘̃r ¼
2p

2
a
bp

D =kT

ð2p2
a
bp

D =kT1mET=MÞ
ðD�‘‘1mu

bp

0 Þ (19)

from Eq. 17 over all of the various partially melted states,

each of which is weighted according to the exponential

function of its total free energy divided by�kT. In Benham’s

analysis, f
bp
D ¼ 0 and u

bp
0 ¼ f

bp
B . The experimental estimate

of the average D‘̃r and its corresponding D�‘‘ are fitted by Eq.

19, and the disposable parameters, ET, a
bp
D , and a are

adjusted until the computed average value of D‘̃r matches the

experimental value. By simultaneously fitting the observed

D‘̃r values for several ($3) partially melted topoisomers at

a given temperature, Bauer and Benham obtained a unique

optimum fit for all three parameters at each temperature.

Clearly, the gel mobility assumption that D‘̃jr of the jth
partially melted topoisomer is identical to the interpolated

D�‘‘kr ¼ D�‘‘k of the (hypothetical) unmelted topoisomer with

the same gel mobility provides the crucial experimental

estimate of D‘̃jr upon which the entire subsequent analysis is

based.

We wish to test this crucial gel mobility assumption

insofar as possible. Unfortunately, a complete test is not

possible, because we do not know how to calculate gel

mobilities for individual topoisomers. Nevertheless, we can

calculate equilibrium tertiary structural properties, such as

the principal components of the inertial tensor, the radius of

gyration Rg, and writhe wB, of the duplex region, upon

which the gel mobility might depend, and with which it

might be expected to vary in some smooth and continuous

way. We then plot the average value of each structural

property versus ÆD‘̃ræ for each of our model DNAs, which

contain m ¼ 0, 28, or 56 melted basepairs, and compare the

resulting ‘‘curves’’ to see whether they are superimposable.

Coalescence of all three curves for each equilibrium tertiary

structural property is regarded as a necessary, though not

sufficient, condition for validity of the gel mobility as-

sumption of Bauer and Benham. In fact, for several structural

properties examined, all three curves for m ¼ 0, 28, and 56

melted basepairs do coincide within the simulation error.

Evidently, the global equilibrium tertiary structural proper-

ties of our model DNAs with very small denatured regions

are determined almost entirely by the average residual

linking difference, ÆD‘̃ræ[ ÆD‘̃Bæ, of the duplex region. The

gel mobility assumption of Bauer and Benham clearly passes

this test. However, it remains doubtful that these conclusions

will extend to situations, wherein a much larger fraction of

the total sequence is melted.

Electrophoretic migration of large supercoiled and linear

DNAs in dilute agarose gels involves periodic extension of

the DNA to highly elongated states far outside the normal

equilibrium range, as it becomes temporarily trapped in

extended hairpin configurations while sliding over physical

constraints within the gel, followed by contraction to more

normal dimensions, as it finally slides past those constraints

(Smith et al., 1989; Song and Maestre, 1991). Hence, the gel

mobility presumably reflects also the deformability of the

DNA. In regard to small displacements from the average

value of any particular structural property, the corresponding

deformability is linearly related to the equilibrium variance

of that same property (Kubo, 1957). Hence, we calculate the

variance of each tertiary structural property and plot its

standard deviation ((variance)1/2) versus ÆD‘̃ræ for each of our
model DNAs with m ¼ 0, 28, and 56 melted basepairs.

Whenever the standard deviation is not negligibly small

compared to the mean value, the coincidence of such curves

for all three DNAs is regarded as a necessary, though

probably still not sufficient, condition for validity of the gel

mobility assumption of Bauer and Benham. In our sim-

ulations, the standard deviations in every tertiary structural

property at the same value of ÆD‘ræ are found to be

significantly larger for DNAs with 56 melted basepairs than

for those with zero basepairs. In the case of Rg and principal

moments of the inertial tensor, the standard deviations are

negligibly small compared to the mean values, even for the

partially melted DNA, and probably have an insignificant

effect on the gel electrophoretic mobility. However, in the

case of the writhe, the standard deviation is significant

compared to its mean value, so the greater deformability of

the writhe in the case of the partially melted DNA may well

endow that DNAwith a different gel electrophoretic mobility

even at the same value of ÆD‘̃ræ. Thus, insofar as

deformability of the writhe, or fluctuations therein, contrib-

utes significantly to the gel electrophoretic mobility, the gel

mobility assumption of Bauer and Benham might be some-

what inaccurate.
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The analysis of experimental data by Bauer and Benham

(1993) relies primarily on Eq. 18 for DGsc and Eq. 19 for D‘̃r.
Both of these expressions were derived from Eq. 16 by

minimizing DGsc with respect to TD (or t) to eliminate TD in

favor of D‘̃r, and ultimately to determine how the total

linking difference D‘ is apportioned between TD (or t) and

D‘̃r (i.e., between the melted and duplex regions). The

specific protocol adopted by Benham to perform the min-

imization involves yet another assumption, namely that ET

is a constant independent of D‘̃r. As described below, this

assumption is found to be inaccurate at the prevailing

relatively low ionic strength.

The plan of the article

In this work, we simulate supercoiled mesoscopic model

DNAs with m ¼ 0, 28, or 56 melted basepairs and selected

linking differences over the range from D‘ ¼ 0 to�26 turns.

The supercoiling free energies, DGsc, are reckoned as

a function of D‘ for each molecule with fixed m via a

reversible work protocol. In addition, for each molecule at

a given D‘, the ensemble average residual linking difference

of its duplex region, ÆD‘̃ræ ¼ ÆtBæ1 ÆwBæ� ðN � nÞfB, and

net twisting strain of its melted region, ÆTDæ ¼ ÆtDæ� nfD,

are calculated. Hence, we can directly assess the variation of

DGsc with D‘ for each molecule, and for each value of ÆD‘̃ræ
we can determine the effective ET value, since that is the only

unknown quantity in Eq. 16, and examine its variation with

ÆD‘ræ. In addition, we can extract ET values from Eq. 19 by

using the simulated ÆD‘ræ and D�‘‘1mfbp
0 in a manner

directly analogous to the way in which Bauer and Benham

obtained ET. ET values can also be estimated from ÆTDæ and
the corresponding ÆD‘ræ via Eq. 17 or from DGsc and the

corresponding D�‘‘ via Eq. 18. ET values obtained by these

different methods are critically compared. The ET values

determined from Eq. 16 are not necessarily identical to those

extracted from Eq. 19, because the minimization protocol

used to obtain the latter rests upon an additional assumption,

as noted above, namely that ET does not vary with ÆD‘ræ. In
fact, a nonquadratic variation of DGsc with ÆD‘̃ræ would

imply a (possibly modest) variation of ET with ÆD‘̃ræ.
Because ET was assumed to be constant, when performing

the minimization with respect to TD (or t), Eqs. 17–19 will

be somewhat inaccurate, whenever ET actually does vary

with ÆTDæ (or with ÆD‘̃ræ, or D‘̃, or D�‘‘). Fortunately, the errors
in the extracted ET values that are associated with this mini-

mization protocol are found to be relatively small (5–7%).

THE MODEL

Our mesocopic model of a circular DNA comprises N ¼ 155

rigid-rod subunits, each connected to its neighbors at either

end by Hookean torsion and bending springs. The subunit

length, b ¼ 95.4 Å, corresponds to n ¼ 28.06 bp, and the

overall chain length corresponds to 4349 bp, which is similar

in size to the pBR322 plasmid DNA (4363 bp) investigated

by Bauer and Benham (1993). The total potential energy is

given by

Utot ¼Utwist1Ubend1UI; (20)

where Utwist is torsion potential energy, Ubend is the bending

potential energy, and UI is the repulsive potential energy of

interaction between nonnearest-neighbor subunits. Expres-

sions for Utwist, Ubend, and UI, and the selections of input

parameters therein, are presented and discussed in the

Appendix.

In this work, we simulate model DNAs containing small

torsionally and flexurally weak regions. This is done by

designating n ¼ 0, 1, or 2 consecutive springs as weak. We

take the (155,1) spring for n¼1, and the (154,155) and (155,1)

springs for n¼ 2 as weak springs, which are assigned reduced

torque constants for torsion and bending. For melted regions

comprising only one or two rigid-rod subunits, wself
D ¼ 0 (see

Appendix), so wD ¼ wcross
D . With a subunit length of 95.4 Å,

the n ¼ 0, 1, and 2 weak springs correspond to denatured

regions with m ¼ 0, 28.06, and 56.12 bp. For convenience,

these m values are rounded to the nearest integer in the text,

though not in the data analysis. The torsion elastic constant

for a duplex subunit corresponds to a torsional rigidity, C ¼
2.0 3 10�19 dyne cm2, and its bending elastic constant is

chosen to yield a persistence length, P ¼ 500 Å, after taking

account of the intersubunit repulsions. The torsion elastic

constant of a melted subunit was determined by extrapolating

the corresponding results of Bauer and Benham to 37�C, and
is 54.6-fold smaller than that for the duplex region. The

bending elastic constant of a melted subunit was taken to be

10-fold smaller than for a duplex subunit, and yields a 2.9-fold

smaller persistence length after taking account of the

intersubunit repulsions. The intersubunit potential consists

of a screened Coulomb interaction plus a hard-cylinder

interaction with a 24 Å diameter. The locations and magni-

tudes of the effective charges appropriate for the prevailing

ionic strength are described in the Appendix. The simulation

temperature is 298 K.

SIMULATION PROTOCOLS

Our simulation protocols, relevant computational proce-

dures, and statistical methods are described in the Appendix.

Average values of the various quantities are plotted versus

D‘ or ÆD‘ræ. Typically, either straight lines or quadratic

polynomials are fitted to the data to guide the eye.

RESULTS AND DISCUSSION

The calculated hwDi are negligibly
small for n 5 1, 2

The ensemble average value �ÆwDæ ¼ �Æwcross
D

æ is plotted

versus D‘ for n ¼ 1 and 2 in Fig. 1. Although ð�ÞÆwDæ
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increases overall between D‘ ¼ 0 and D‘ ¼ �26 turns, it

never exceeds 0.05 turns for n ¼ 1 or 0.10 turns for n ¼ 2,

even though the total writhe Æwæ rises from �0 to �13 turns

over the same range of D‘. The average fraction, ÆwD=wæ, of
the total writhe contained in wD is plotted versus D‘ in Fig. 2.
Clearly, ÆwD=wæ is typically less than or equal to the frac-

tion of bond vectors, 1/155 or 2/155, that are contained

in the weak region. Consequently, ÆwDæ can be regarded

as negligibly small compared to Æwæ. Thus, the implicit

assumption of Benham that Æwcross
D æ ¼ 0 is a rather good

approximation, and our Eq. 13 becomes practically identical

to the relation assumed by Benham and Bauer and Benham

(our Eq. 8). Because the fraction of cross-writhe in the

melted region evidently increases with size of that region,

this approximation very likely fails for much larger melted

regions.

The mean tertiary structural properties are
nearly universal functions of hD‘ri

The total mean writhe Æwæ for n¼ 0, 1, and 2 is plotted versus

D‘ in Fig. 3 a and versus ÆD‘ræ in Fig. 3 b. The three separate
curves in Fig. 3 a have coalesced to a single curve in Fig. 3 b,
which indicates that Æwæ is a nearly universal function of

ÆD‘ræ, independent of n. The evident curvature shows that

this universal relation is not strictly a proportionality.

The net twisting strain in the melted region,

ÆTDæ ¼ ÆtDæ� ‘0D, is plotted versus D‘ for n ¼ 1 and 2 in

Fig. 4. These two data sets do not coalesce even when plotted

FIGURE 1 Negative writhe of the melted region, �ÆwDæ, versus linking
difference of the entire molecule, D‘. Simulated molecules have either n¼ 1

(shaded circles) or n ¼ 2 (;) contiguous melted subunits out of 155 total

subunits. In both cases, ÆwDæ is purely cross-writhe between the melted and

duplex regions.

FIGURE 2 Ratio ÆwD=wæ of the writhe of the melted region, wD, to the

total writhe of the entire molecule, Æwæ, versus linking difference of the en-

tire molecule, D‘. Simulated molecules have either n ¼ 1 (shaded circles) or
n ¼ 2 (;) contiguous melted subunits out of 155 total subunits. The dashed

lined has the value 1/155, and the dotted line has the value 2/155.

FIGURE 3 (a) Negative total writhe, �ÆwDæ, versus linking difference

of the entire molecule, D‘. (b) �ÆwDæ versus residual linking differ-

ence associated with the duplex region, ÆD‘ræ. Simulated molecules have

n ¼ 0 (h), n ¼ 1 (shaded circles), or n ¼ 2 (;) melted subunits out of 155

total subunits. ÆD‘ræ is calculated according to the first line of Eq. 11.
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versus ÆD‘ræ (not shown), so ÆTDæ is not a universal function
of ÆD‘ræ independent of n. Of course, ÆTDæ is also not a tertiary
structural property. Within simulation error, ÆTDæ is pro-

portional to both D‘ and ÆD‘ræ (not shown) in agreement with

Eq. 17, when u
bp
0 ¼ 0, as it does here. This simultaneous

proportionality of ÆTDæ to both D‘ and ÆD‘ræ implies that

ÆD‘ræ is also proportional to D‘, in agreement with Eq. 19

(when u
bp
0 ¼ 0). Because ÆwDæ ffi 0 for n ¼ 1 and 2, Eq. 7

gives ÆTDæ ffi D‘� ÆD‘ræ for our model DNAs.

The fraction of the total linking difference that resides in

the melted region is approximately fD‘D ¼ ÆTDæ=D‘ ¼ 0:15
for m ¼ 1 and 0.26 for m ¼ 2. These values apply over the

full range of D‘. When an unmelted parent DNA with s ¼
�0.05 and D�‘‘ ¼ �20:9 turns melts 56 bp, then its linking

difference drops to D‘ ¼ �15:5 turns, of which �4.0 are

contained in the melted region. The �4.0 turns are �0.75

times the intrinsic twist of that same region, when it is

present as duplex. Thus, very substantial negative interwind-

ing of the single strands of the melted region is expected,

whenever the molecule is at least moderately supercoiled,

provided Benham’s torsion elastic constant for the melted

region applies, as assumed here. The fraction of the total

twisting strain in the denatured region is fTD
¼ ÆTDæ=

ðÆtæ� ‘0Þ ¼ ÆTDæ=ðD‘� ÆwæÞ. Because w is not strictly pro-

portional to D‘, fTD
is not independent of D‘. However, for

D‘ ¼ �26 turns, fTD
¼ 0:26 for n ¼ 1 and 0.42 for n ¼ 2.

The mean radius of gyration, Rg, for n ¼ 0, 1, and 2, is

plotted versus D‘ in Fig. 5 a and versus ÆD‘ræ in Fig. 5 b.
Again, the three curves in Fig. 5 a have largely coalesced in

Fig. 5 b. The ensemble average values of ÆRgaæ, ÆRgbæ, and
ÆRgcæ for n ¼ 0, 1, and 2 also do not coalesce when plotted

versus D‘, but are significantly more coalesced, when plotted

versus ÆD‘ræ (not shown) (Sucato, 2001). This coalescence is

most pronounced for the largest element, ÆRgaæ, which is

most sensitive to n at fixed D‘. The values of the smaller

elements, ÆRgbæ and ÆRgcæ, are considerably less sensitive to n
at fixed D‘.
These results indicate that Æwæ, Rg, and Rga depend

primarily upon the residual linking difference of the duplex

region, ÆD‘ræ, independent of the size of the melted region.

This conclusion most likely does not extend to DNAs with

very much larger melted regions, for reasons noted above.

The fluctuations in structural properties are not
universal functions of hD‘ri

The standard deviation of the total writhe, sw, is plotted

versus ÆD‘ræ in Fig. 6 for n ¼ 0 and 2. sw clearly depends

FIGURE 4 Negative twisting strain per subunit of the melted region,

�ÆTDæ, versus linking difference, D‘. Simulated molecules have either n¼ 1

(shaded circles) or n ¼ 2 (;) melted subunits out of 155 total. The dashed

and dotted lines are the respective best-fit proportionality relations.

FIGURE 5 (a) Radius of gyration, Rg, versus linking difference of the

entire molecule, D‘. (b) Rg versus residual linking difference associated with

the duplex region, ÆD‘ræ. Simulated molecules have n ¼ 0 (h), 1 (shaded

circles), or 2 (;) melted subunits out of 155 total subunits. ÆD‘ræ is

calculated according to the first line of Eq. 11.
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upon n even at the same ÆD‘ræ. Specifically, at the same ÆD‘ræ,
sw increases with the size of the melted region. In addition,

sw declines with increasing jÆD‘ræj, which presumably

reflects the diminished deformability of the more tightly

writhed structures prevailing at larger jÆD‘ræj. For the

molecule with n ¼ 2 melted subunits, sw exceeds 10% of

Æwæ at all jÆD‘ræj& 16 turns. These fluctuations in the writhe

imply an enhanced deformability of the writhe that increases

with size of the melted region at constant ÆD‘ræ. To the extent
that such writhe deformability affects the gel mobility, the

latter will not be a universal function of ÆD‘ræ, independent of
n. This finding leaves open the possibility that the gel

mobility assumption of Bauer and Benham is not entirely

correct, despite the fact that the average structural properties

of the unperturbed DNAs are universal functions of ÆD‘ræ,
independent of n.
swD

for the denatured region increases with increasing

jÆD‘ræj (data not shown). This trend is in the opposite

direction to that for sw. Because swD
pertains only to the

cross-writhe, wD, which is the same as the cross-writhe in

wB, we conclude that fluctuations in cross-writhe increase

with increasing jÆD‘ræj, whereas fluctuations in self-writhe of
the B-helix region decrease with increasing jÆD‘ræj, as ex-

pected. The increase in cross-writhe fluctuations with

increasing jÆD‘ræj may simply be a consequence of

compaction of the dimensions of the B-helical region, which

may allow greater fluctuations in cross-writhe for the same

range of variations in local structure. In any case, swD
is

much smaller than sw, and is insignificant compared to Æwæ.
It was similarly found that sRg; sRga ; andsRg? vary

significantly with n at constant ÆD‘ræ, but these standard

deviations are negligibly small compared to the correspond-

ing average values (data not shown). Hence, their effect on

the gel mobility is probably negligible.

Results pertaining to the supercoiling
free energy

When a real unmelted supercoiled DNA with linking

difference D�‘‘DNA undergoes melting of m basepairs, its

linking difference becomes D‘̃DNA ¼ D�‘‘DNA 1mfbp
B , and

the supercoiling free energy declines due to both the decline

in magnitude of the (negative) linking difference and the

presence of elastically weak regions. However, for our

model molecules, D‘ ¼ D‘̃ ¼ D�‘‘, because in our simulations

we have for convenience taken f
bp
D ¼ f

bp
B , as noted above.

Nevertheless, for each of our simulated molecules, we can

reckon the linking difference D�‘‘DNA of that real unmelted

DNA, whose linking difference after melting m basepairs,

D‘̃DNA, is precisely equal to the linking difference of our

simulated molecule, D‘, by setting D‘ ¼ D‘̃DNA, which gives
D�‘‘DNA ¼ D‘� mfbp

B .

Computed values of DGsc/kT are plotted versus ðD�‘‘DNAÞ2
in Fig. 7. The drop from the top curve (n ¼ 0) to the middle

(n ¼ 1) or lower (n ¼ 2) curve at fixed D�‘‘DNA gives the

decrease in supercoiling free energy, DDGsc, upon opening

m ¼ 28 or 56 basepairs, respectively. The evident curvature

indicates that DGsc is not a quadratic function of D�‘‘DNA, even
for n ¼ 0 (m ¼ 0), where D�‘‘DNA ¼ D‘. This curvature far

exceeds that (negligibly small curvature) predicted and

observed for 0.1 M ionic strength (Gebe et al., 1995), and

is attributed to the greater magnitude and range of the

electrostatic repulsions prevailing at this lower ionic

strength. DGsc rises more rapidly than the second power of

ÆD‘ræ, because at 20 mM ionic strength the intersubunit

electrostatic repulsions not only contribute significantly to

the supercoiling free energy, but also contribute a larger

FIGURE 6 Standard deviation of the writhe, sw, versus linking difference

associated with the duplex region, ÆD‘ræ. Simulated molecules have n ¼ 0 or

2 melted subunits out of 155 total subunits.

FIGURE 7 DGsc=kT versus ðD�‘‘DNAÞ2. DGsc is the supercoiling free

energy of a simulated molecule with linking difference, D‘, and D�‘‘DNA is

the linking difference of the unmelted real DNA that would have the linking

difference of the simulated molecule after melting m basepairs

(D�‘‘DNA ¼ D‘� mfbp
B ), and f

bp
B is the intrinsic twist per basepair of the

duplex region. Simulated molecules contain n ¼ 0 (h), n ¼ 1 (shaded
circles), or n ¼ 2 (;) melted subunits out of 155 total melted subunits.
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fraction of the total at the larger jÆD‘ræj, where the DNA is

more compact. When plotted versus ÆD‘ræ, the DGsc/kT
values do not coalesce to a single curve (not shown). Hence,

DGsc/kT is not a universal function of ÆD‘ræ independent of n,
nor was it expected to be so.

Values of ET that are determined directly from the

simulated DGsc, ÆD‘ræ, and ÆTDæ via Eq. 16 (with ÆTDæ in

place of ÆtDæ) are denoted by EI
T. In Fig. 8, EI

T is plotted

versus ÆD‘ræ for m ¼ 0, 28, and 56. Although the EI
T values

are very noisy at small jÆD‘ræj, they nearly coalesce at large

jÆD‘ræj, where the simulated DGsc, ÆD‘ræ, and ÆTDæ are better
converged. This coalescence confirms that ET is independent

of n, as assumed by Benham (1990, 1992). However, the

upward slope of EI
T with jÆD‘ræj implies a nonquadratic

variation of DGsc/kT with ÆD‘ræ, which was not anticipated

by Benham (1990, 1992) or Bauer and Benham (1993).

ET values can also be determined from Eq. 19 by using the

values of ÆD‘ræ and D‘ from the simulations in each case.

This corresponds most closely to the protocol of Bauer and

Benham (1993). These values are denoted by EII
T, and are

coplotted with the EI
T values versus ÆD‘ræ in Fig. 9. These EII

T

values are much noisier than the EI
T values. This is due to the

fact that modest relative errors in ÆD‘ræ produce five- to

sixfold larger relative errors in ET via Eq. 19 and in ÆTDæ via
Eq. 17. For the larger ÆD‘ræ, where the relative errors in ÆD‘ræ
are smallest, the EII

T values systematically exceed the

corresponding EI
T values. This systematic overestimation

of EI
T by EII

T at the larger jÆD‘ræj arises because the variation
of ET with ÆD‘ræ (or ÆTDæ) was neglected, when taking the

derivative of DGsc/kT with respect to ÆTDæ in the minimiza-

tion step. When the simulated slope, @EI
T=@ÆTDæ

� �
D‘
ffi 7:40,

is actually taken into account in the minimization step for

n ¼ 1, the corrected EII
T values lie 5–7% lower than those

obtained directly from Eq. 19, and are in reasonable, if noisy,

accord with the EI
T values in Figs. 8 and 9. These

observations indicate that the ET values obtained by Bauer

and Benham from Eq. 19 are likely to be systematically

several percent too large, and to be quite sensitive to errors in

the experimental estimates of ÆD‘ræ.
ET values obtained from the simulated ÆTDæ and D‘ via Eq.

17 are similar to, and behave like, those from Eq. 19. This is

expected, because Eqs. 17 and 19 are simply two different

realizations of the same equation. In contrast, ET values

reckoned from Eq. 18 (with the simulated DGsc/kT and D‘)
lie much closer to the corresponding EI

T values. It is

unfortunate that the particular expression (Eq. 19) required to

analyze the ÆD‘ræ versus D‘ data of Bauer and Benham

manifests to a much greater extent the effects of the un-

expected slope, @ET=@ÆTDæð ÞD‘.

A systematic error in the apparent slope,
2dET/dT, obtained by the protocol of
Bauer and Benham

With increasing temperature, the spans of the experimental

ÆD‘ræ versus D‘ data that are fitted by Bauer and Benham

(1993) are centered about progressively smaller jÆD‘ræj
values. This is because topoisomers with lower jÆD�‘‘æj
undergo melting at higher temperature. If ET decreases with

decreasing jÆD‘ræj at fixed temperature, as predicted by the

present simulations, then the decrease in typical jÆD‘ræj
values that are sampled with increasing T should act to

enhance the slope, �dET=dT, above the intrinsic value that

FIGURE 8 Twist energy parameter, EI
T, versus residual linking difference

of the duplex region, ÆD‘ræ. EI
T is determined directly from the simulated

DGsc, ÆD‘ræ, and ÆTDæ via Eq. 16 with ÆTDæ in place of ÆtDæ. Simulated

molecules have n ¼ 0 (h), n ¼ 1 (shaded circles), or n ¼ 2 (;) melted

subunits out of 155 total subunits.

FIGURE 9 Twist energy parameter, ET, versus residual linking difference

of the duplex region. The solid or shaded symbols apply to EII
T values that are

determined from the D‘ and ÆD‘ræ of the simulated molecules according to

Eq. 19. These EII
T values apply for n ¼ 1 (shaded circles) or n ¼ 2 (;)

melted subunits. The open symbols represent the same EI
T values that appear

in Fig. 8 for n ¼ 0 (h), n ¼ 1 (s), or n ¼ 2 (,) melted subunits out of 155

total subunits.
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would apply, if ÆD‘ræ were held constant. The magnitude of

this enhancement can be estimated in the following way.

First, we note that the simulated ET values in Fig. 8 for

jÆD‘ræj$ 8 can be satisfactorily approximated by the

empirical linear relation, ET ¼ 11701 ð7:59Þ jÆD‘ræj � 2ð Þ.
The jÆD‘ræj values at each temperature in Fig. 4 of Bauer and

Benham can be characterized by the minimum value,

jÆD‘ræjmin in each case. These jÆD‘ræjmin values range from

13.25 turns at 313 K to 4.5 turns at 333 K. We now assume

that the simulated slope, @ET=@jÆD‘ræj ¼ 7:59, is indepen-

dent of T. The simulated ET value at 298 K for

jÆD‘ræj ¼ 13:25 is ET ¼ 1255, and that for jÆD‘ræj ¼ 4:5 is

ET ¼ 1189. The shift in jÆD‘ræjmin from 13.25 to 4.5, as T
increases from 313 to 333 K, then contributes to the apparent

slope,�dET=dT, a term�(1189� 1255)/20¼ 3.3 K�1. This

value should be subtracted from the negative slope of the ET

values reported by Bauer and Benham, which are given in

Table 1. A least-squares fit of a straight line (ET ¼ aT1 b) to
those data yields the experimental slope, �a ¼ �dET/dT ¼
9.36 K�1. After subtracting the preceding correction, 3.3

K�1, we obtain �dET=dT ¼ 6:06K�1, which should apply

to any fixed ÆD‘ræ.

Statistical errors in ET and 2dET/dT

Bauer and Benham (1993) reported no standard deviations

for ET. Determinations of ET by the topoisomer distribution

method require typically 10 replicate measurements of ET to

reduce the standard deviation of the mean to the 3% level, or

630, when ET is;1000. This 3% uncertainty is comparable

to the spacing between reported ET values at the different

temperatures in the study of Bauer and Benham. In addition,

problems with reproducibility of ET measurements and slow

temporal shifts in behavior of pBR322 have been noted

previously (Song et al., 1990; Naimushin et al., 1994).

Although the protocol of Bauer and Benham is a very

different approach to ET measurements that is possibly less

prone to statistical and reproducibility errors, in the absence

of any evidence to support such a conjecture, that must be

regarded as unlikely. Indeed, in a subsequent application of

the same protocol to pSM1 DNA, the scatter in the plot of ET

versus 1/T is ;630 around the best-fit curve (Bauer et al.,

1995). If we assume a standard deviation of 630 in the ET

measurements, then a routine error propagation analysis

yields a standard deviation, sa ¼ 61:9K�1, for the best-fit

slope, a ¼ �9.36 K�1, of the experimental data. The above

corrected experimental slope for fixed ÆD‘ræ can now be

restated as �dET=dT ¼ 6:066 1:9K�1. The 31% relative

uncertainty in the corrected slope is considerably greater than

that (;8%) reported for the uncorrected slope by Bauer and

Benham, who evidently assumed much smaller relative

errors, sET
=ET ,1%, in their measurements. We suspect that

the fourfold larger relative errors in both ET and �dET=dT
found for pSM1 are more realistic.

The predicted variation of ET with hD‘ri and T

The present simulations for n ¼ 0 were performed using

a torsion elastic constant, a
bp
B ¼ 5:93 10�12 dyne cm, be-

tween basepairs, a persistence length, P ¼ 500 Å, and re-

pulsive interactions for 20 mM ionic strength at 298 K. The

line defined by the linear parts of the coalesced ET ver-

sus ÆD‘ræ curves in Fig. 8 is empirically given by

ET ¼ 11701 ð7:59ÞðjÆD‘ræjÞ � 2Þ, as noted above, and takes
the value 1170 at ÆD‘ræ ¼ �2.

Previously, ET values at various temperatures were

simulated for a model unmelted DNA in a 55 mM ionic

strength buffer containing 5 mM Mg21 by using the mea-

sured temperature dependent torsion elastic constants of an

1876 bp pBR322 fragment under those same conditions

(Delrow et al., 1997b). In addition, the persistence length

was taken as 500 Å, and the intersubunit repulsions were

appropriate for the 55 mM ionic strength buffer containing 5

mM Mg21. Simulations were performed only for D‘ ¼ 0;
2; 4 turns, so any variation of DGsc with D‘ was not dis-

cernible. Although the presence of the Mg21 significantly

raised the torsion elastic constant to a
bp
B ¼ 7:33 10�12 dyne

cm at 293 K, it also significantly decreased the repulsive

interactions in comparison to those in the present simulation.

The best-fit line of the simulated ET versus T, namely

ET ¼ 1400� ð7:6ÞðT � 270Þ, takes the value ET ¼ 1187 at

298 K, which is close to the corresponding value, ET¼ 1170,

obtained from the empirical line of ET versus ÆD‘ræ for

ÆD‘ræ ¼ �2 at 298 K in our simulations. Evidently, for small

jÆD‘ræj, the differences in torsion elastic constant and inter-

subunit repulsions between the two simulations have almost

exactly canceling effects on ET. The slope of the torsion

elastic constant, daB=dT, was previously found to be

insensitive to either removal of the 5.5 mM Mg21 or an

increase in ionic strength. We now assume that the temp-

erature dependence of ET at small fixed ÆD‘ræ under con-

ditions of these simulations would be practically the same as

found in the previous simulations. Then the combined

variation of the simulated ET with both T and ÆD‘ræ in 20 mM

ionic strength should be closely approximated by the

relation,

Eth

T ¼ 1170�ð7:6ÞðT�298Þ1ð7:59ÞðjÆD‘ræj� 2Þ: (21)

TABLE 1 Comparison of theoretical and experimental

ET values

T (K) jÆD‘ræjminðturnÞ Eth
T * Eexp

T
y

313 13.25 1141 1160

318 11.0 1086 1125

323 8.8 1032 1085

328 6.8 978 1035

333 4.5 923 973

*Eth
T is calculated for the appropriate jÆD‘ræjmin according to Eq. 21.

yReported as q by Bauer and Benham.
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The theoretical slope, �dET=dT ¼ 7:66 1:0K�1, agrees

with the above corrected experimental slope, �dET=dT ¼
6:066 1:9K�1, within their combined uncertainties.

Equation (21) enables theoretical predictions of the

absolute magnitude of ET for arbitrary T and ÆD‘ræ for

pBR322 in 20 mM ionic strength.

A test of the theory versus experiment

We assume that the minimum value, jÆD‘ræjmin, of the fitted

data at each temperature in Fig. 4 ofBauer andBenham carries

the most weight in their fitting procedure, and is maximally

responsible for determining the best-fit value of ET. If we

further suppose that their protocol yields reliable values of

both ÆD‘ræ and ET, then the experimental ET values reported

by Bauer and Benham should match the theoretical val-

ues computed from Eq. 21 by using the various

jÆD‘ræjmin ¼ 13:25, 11.0, 8.8, 6.8, and 4.5 turns at T ¼ 313,

318, 323, 328, and 333 K, respectively. This comparison is

given in Table 1. The experimental values exceed the

theoretical values by ;2–5%. As noted above, a ;5%

overestimation of the experimental ET values is expected due

to the use of Eq. 19, when ET increases with jÆD‘ræj, as
predicted in 20 mM ionic strength. After scaling the

experimental values by 0.95 to compensate for their over-

estimation, the agreement is remarkably good, with discrep-

ancies of 3.4, 1.6, 0.1, �0.5, and �0.1% between the

theoretical and the downward scaled experimental values (not

shown) at, respectively, 313, 318, 323, 328, and 333 K. Such

good agreement argues for the approximate validity of both

Eq. 21 and the 0.95 scaling of the experimental ET values.

To what extent does Eq. 21 depend upon parameters of the

melted region, such as its torsion and bending elastic

constants? The coalescence of the ET versus ÆD‘ræ curves in
Fig. 8 establishes that ET is independent of n (or m). Because
ET for n ¼ 0 is necessarily independent of the torsion and

bending elastic constants of the melted region, it must be

presumed that ET depends only on parameters of the duplex

region, even in locally melted DNAs. Thus, the slope,

@ET=@jÆD‘ræj ¼ 7:59, in Eq. 21 should be practically

independent of the values of the torsion and bending elastic

constants of the melted region. Equation 21 may prove useful

in the prediction of ET values at various temperatures for the

duplex regions of both unmelted and locally melted super-

coiled DNAs with lengths comparable to 4349 bp in 20 mM

ionic strength.

A possible enhancement of the slope, 2daD/dT,
in the protocol of Bauer and Benham

It seems likely that the elastic constant for interwinding

single strands, corresponding to a
bp
D in our model, increases

with increased interwinding, or linking difference, jÆD‘Dæj ¼
jÆtDæj, in the melted region. This phenomenon should be

similar to the increase in ET with jÆD‘ræj of the duplex region,
and should occur for a similar reason, namely an increase in

electrostatic free energy relative to the interwinding free

energy for a hard filament upon increasing jÆD‘Dæj. If this
conjectured increase of a

bp
D with increasing jÆD‘Dæj were

true, that would provide an additional contribution to

�daD=dT, because the typical jÆD‘Dæj ¼ jÆtDæj (orjD‘j) of
the topoisomer with a given fixed number of melted

basepairs decreases with increasing T. Such an artifactual

enhancement of �daD=dT may be partly responsible for the

extrapolation of the experimental a
bp
D to unphysical negative

values for temperatures above 79�C, as discussed in the

Appendix.

Locations of the melted regions

More than 100 configurations were examined visually with

the aid of a modeling program. The writhe was found

predominantly in interwound domains, as expected, and the

superhelix axis was commonly branched especially at the

larger jD‘j values. To determine where the melted regions

occurred, each molecule was subdivided into the following

four rough categories:

i. An arm domain, which is the interior of a well-defined

interwound superhelix.

ii. An apex domain, which is the external end loop of an

interwound superhelix.

iii. A linker domain at a ‘‘node’’, where two or more

superhelix branches, or arms, meet.

iv. Other domains not easily characterized.

Detailed inspections were carried out for randomly chosen

configurations from three regular simulations:

a. n ¼ 0, D‘ ¼ �10.

b. n ¼ 2, D‘ ¼ �14.

c. n ¼ 2, D‘ ¼ �26.

Subsets a and b have very similar Æwæ and ÆD‘ræ values
despite the difference in n, whereas subsets b and c have the

same n, but very different D‘ and ÆD‘ræ values. Twenty

configurations were inspected in each case to determine the

locations of subunits 154 and 155, which are those

possessing the weak bending and torsion springs. The

numbers of occurrences in each kind of domain are shown in

Table 2. For n¼ 0, there are no elastically weak regions, and

the results simply provide a noisy sampling of the fraction of

the molecule within each kind of domain. For the n ¼ 2

molecules with intermediate linking difference (D‘ ¼ �14),

the melted regions occupy about equally the apex and linker

domains, both of which are apparently preferred to arms.

However, at larger linking difference (D‘ ¼ �26), where

more superhelix branching is evident, the melted regions

strongly prefer linker and to a lesser extent arm domains to

apex domains. A typical location for a melted domain is

shown in Fig. 10. Substantial bends are typically associated

with the melted regions in the linker domains. This behavior

contrasts sharply with that found for directional permanent
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bends (Bussiek et al., 2002; Pfannschmidt and Langowski,

1998; Chirico and Langowski, 1996), which strongly prefer

apex domains. The strong preference of a melted region for

linker domains in the typically branched molecules at large

D‘ is likely due in part to the entropy associated with the

ability of the molecule to bend in any direction at that point,

which allows for many relative orientations of the two

superhelix branches that are connected by that linker domain.

To determine whether the softer bending potential or

instead the softer torsion potential was primarily responsible

for the preference of the melted regions for linker regions at

large D‘, two additional simulations were performed for

models containing a single subunit with a weak bending

spring typical of a melted region, but also a normal duplex

torsion spring. The results for this model are presented in the

fourth and fifth columns of Table 2. These results are very

similar to those in columns three and four, respectively. We

conclude that the softer torsion elastic constant contributes

little or nothing to the preference of melted regions for linker

domains.

The contrasting preferences of flexurally weak melted

regions for linker domains on one hand and of intrinsically

curved duplex sequences for apex regions on the other may

stem largely from the strong directionality of the latter bends,

which would prevent such a region from realizing the full

entropy of bending in different directions, if it were to

occupy a linker domain. This interpretation is supported by

the fact that the strong preference of flexurally weak regions

for linker domains over apex regions occurs only at the larger

linking differences, where superhelix branching is both more

common and more extensive.

APPENDIX: POTENTIALS, INPUT PARAMETERS,
SIMULATION PROTOCOLS, AND STATISTICAL
METHODS

Potential functions

The torsion potential is given by

Utwist ¼ ðaB=2Þ +
N�n

j¼1

ðfj;j11�f
0

j;j11Þ
2
1ðaD=2Þ

3 +
N

j¼N�n11

ðfj;j11�f
0

j;j11Þ
2
; (A1)

where N � n and n are the numbers of subunits in the duplex and melted

regions, respectively, aB is the torsion elastic constant of those springs for

which 1# j#N � n lies in the duplex region, aD ¼ a
bp
D =n is the torsion

elastic constant of those springs for which N � n1 1# j#N lies in the

melted region,fj;j11 ¼ ðaj;j11 1gj;j11Þ is the sum of the first and last angles

of the Euler rotation, Fj;j11 ¼ ðaj;j11;bj;j11;gj;j11Þ, which orients the

( j 1 1)th subunit in the frame of the jth subunit, and f0
j;j11 (radians) is the

intrinsic twist from the jth to ( j 1 1)th subunit. In this study, f0
j;j11 is not

identified with the intrinsic subunit succession angle, fB, of a real DNA, but

instead is a parameter that is employed to continuously vary the linking

difference from 0 to�26 turns, whereas the linking number remains fixed at

zero turns.

The simulation temperature is taken to be 298 K. For duplex regions, we

take aB ¼ 2:1027253 10�13 dyne cm, which corresponds to a torsional

rigidity, C ¼ b � aB ¼ 2:03 10�19 dyne cm2. Numerous measurements of

the torsional rigidities of pBR322 and other plasmids of comparable size by

time-resolved fluorescence polarization anisotropy yielded values in the

range (1.9–2.2) 3 10�19 dyne cm2 in the ionic strength range 10–100 mM

at ambient temperature (Schurr et al., 1992; Heath et al., 1996; Naimushin

et al., 2000, 2001). When such measured values of C were employed along

with a persistence length, P ¼ 500 A, and appropriate intersubunit

repulsions in simulations of supercoiled p30dDNA (4752 bp) in 0.1 M ionic

strength, the predicted values of the twist energy parameter (ET), structure

factor (S(q)) over a range of scattering vectors from q ¼ 0 to 2.4 3 105

cm�1, and translational diffusion coefficient (DT) agreed well with the

corresponding measured values over a wide range of superhelix density from

zero to native (Gebe et al., 1995, 1996; Clendenning et al., 1994). Likewise,

simulations of surface-flattened pSA509 DNA (3760 bp) in 161 mM ionic

strength, using C ¼ 2.0 3 10�19 dyne cm2, yielded structures similar to

those seen in AFM (Fujimoto and Schurr, 2002; Lyubchenko and

Shlyakhtenko, 1997).

The torsion elastic constant between subunits (containing 28.06

bp/subunit) for locally melted regions is here taken to be

aD ¼ 3:8490573 10�15 dyne cm, which is 54.5-fold smaller than aB for

the duplex regions at 298 K. This choice of aD corresponds to

a
bp
D ¼ ð28:06ÞaD ¼ 1:083 10�13 dyne cm, which is obtained by extrapo-

lating the results of Bauer and Benham to 37�C. A longer extrapolation to

25�C, some 15� below their lowest measurement, cannot be justified,

because unphysical negative values of a
bp
D are predicted by their best-fit

straight line ðabp
D ¼ A1BTÞ for T $ 79�C, and presumably arise from an

overestimated negative slope (�B), as noted in the main text.

FIGURE 10 Typical structure of a simulated model DNA with n ¼ 2

melted subunits and D‘ ¼ �26 turns. The location of the melted region is

indicated by the arrow, and lies in the linker region between interwound

arms.

TABLE 2 Numbers of occurrences of subunits 154 and 155

in different regions for various simulated molecules

Simulated molecules

n ¼ 0 n ¼ 2 n ¼ 2 n ¼ 1* n ¼ 1*

Domain D‘ ¼ �10 D‘ ¼ �14 D‘ ¼ �26 D‘ ¼ �14 D‘ ¼ �26

Arm 8 0 5 2 3

Apex 2 5 2 5 1

Linker 2 6 11 6 10

Other 8 9 2 7 6

*The (154,155) spring has the weak bending elastic constant of a melted

subunit, but also has the torsion elastic constant of a normal duplex subunit.

Locally Melted Supercoiled DNAs 3093

Biophysical Journal 86(5) 3079–3096



The electrostatic part of the nonnearest-neighbor interaction energy is

reckoned by placing three spheres, each containing Z electronic charges, on

the axis of each subunit rod. These charged spheres are spaced (95.4)/3 ¼
31.8 Å apart and are centered at positions rj, rj 1 (1/3)bj, and rj 1 (2/3)bj,
where rj is the position of the coordinate frame of the jth subunit at the end of

the ( j� 1)th rod, and bj is the bond vector from the jth frame to the ( j1 1)th

frame. The electrostatic interaction energy is taken over all pairs of charged

spheres that do not lie on the same or adjacent subunit rods. The subunit

interaction energy also includes a hard-cylinder repulsion energy, UHC,

between nonnearest neighbor units. The total interaction energy between

two charged spheres, i and j, on nonadjacent subunits is taken as (Fujimoto

and Schurr, 2002; Delrow et al., 1997a)

UI ¼
ðeZÞ2

e
exp½kd�
11kd

� �2

exp½�krij�=rij1UHC ; (A2)

where e is the electronic charge, e is the dielectric constant, rij is the

distance between charge centers, d is the charged sphere radius, and k(cm�1)

is the Debye-Hückel screening parameter, given in cgs units by k2 ¼
8pe2ð1000=NAÞI=ekBT, where NA is Avogadro’s number, I ¼
ð1=2Þ+

s
csZ

2
s is the ionic strength, cs is the concentration (mole/L), and Zs

is the valence of the sth kind of ion. The dielectric constant is taken to be

e ¼ 78.54 at 25�C. The radius of the charged spheres is taken as d ¼ 12 Å.

UHC is infinite, when the axes of the two subunit rods approach more closely

than 24 Å (corresponding to a hard-cylinder diameter, 2d ¼ 24 Å), and zero

otherwise. Screened Coulomb interactions are ignored, when rij exceeds

a cut-off distance, which is chosen so that the first term on the right-hand

side of Eq. A2 equals (7.3 3 10�4)kT at the cut-off distance. UHC is

implemented by a protocol that performs the test and rejects any Monte

Carlo move leading to a configuration that violates the minimum distance of

closest approach (Gebe et al., 1995).

The screening parameter k is calculated from the prevailing ionic strength

in the 90 mM Tris-borate solution of Bauer and Benham (1993). The

reckoning of this ionic strength is complicated, because the measured pH of

the 90 mM Tris-borate solution (8.4 at 25�C) differed from that expected

(8.65) from the pKa’s of Tris�H1 (8.069) and boric acid (9.236) alone. This

discrepancy is presumably attributable to the formation of complexes

between the neutral Tris and borate anion (Taylor et al., 1996). Three

different approximate estimates of the ionic strength clustered around 20

mM, which is the value adopted here. Finally, the effective valence of the

charged spheres, Z ¼ �9.19, was chosen so that the electrostatic potential

surrounding the middle of a linear array of 2001 charged spheres with 31.8 Å

spacing closely matched the solution of the nonlinear Poisson-Boltzmann

equation for a uniformly charged cylinder with 12 Å radius and the linear

charge density of DNA at all distances beyond the hard-cylinder diameter,

d ¼ 24 Å, as described by Delrow et al. (1997a).

The bending potential energy is given by

Ubend ¼ ðkB=2Þ +
N�n

j¼1

b
2

j;j111ðkD=2Þ +
N

j¼N�n11

b
2

j;j11; (A3)

where kB and kD are the torque constants for bending of the duplex and

denatured regions, respectively. bj,j11 is the second rotation in the composite

Euler rotation, Fðaj;j11;bj;j11;gj;j11Þ. The value of kB was chosen to yield

a persistence length, P ¼ 500 Å, in the following manner. Simulations of

both 10- and 20-subunit (b ¼ 95.4 Å) chains were performed (10 million

attempted moves per simulation) with several different values of kB, but

using always the same values of the parameters in Utwist and UI that were

discussed above. For each simulation, the persistence length was calculated

according to P ¼ b=ð1� Æcosbj;j11æÞ for each model, where the average,

Æcosbj;j11æ, was taken over all subunits, j ¼ 1, . . . ,N � 1, in all

configurations. The value kB ¼ 1.806 3 10�13 dyne cm was found to

yield P ¼ 500 Å (within the simulation errors) for both 10- and 20-subunit

chains, and was adopted for the simulations reported here.

To our knowledge, the effects of flexurally soft regions on the tertiary

structure and energetics of supercoiled DNAs have not previously been

simulated. In the absence of any precedent, we choose kD ¼ kB=10.

However, due to the large size and valence of the charged spheres, the

electrostatic interactions make an overly large contribution to the persistence

length (Delrow et al., 1997a). Thus, despite the fact that kD ¼ kB=10, the

persistence length associated with kD is ;175 Å, which is only ;2.9-fold

smaller than that associated with kB.

Calculation of tB, wB, tD, TD, wD, and D‘̃r

For each selected configuration, the net twist, t, is calculated according to

Eq. 3), and tB and tD are reckoned from the first and second terms,

respectively, on the far right-hand side of Eq. 4. Finally, TD ¼ tD � nfD.

Due to the long subunit length in this work, the writhe computed

according to Eq. 5 is insufficiently accurate, and leads to fluctuations in the

computed linking difference, D‘ ¼ ‘� ‘0 ¼ t1w� ‘0, of as much as 4%

around the starting value. To improve the accuracy of the writhe

calculations, each subunit rod is subdivided into 10 coaxial subrods of

equal length, b/10. The total writhe is now calculated according to

w¼wB1wD ¼
1

4p
+
N�n

i¼1

+
9

s¼0

+
N

j¼1

+
9

t¼0

bjt3eisjjt �bis

jris� rjtj2

1
1

4p
+
N

i¼N�n11

+
9

s¼0

+
N

j¼1

+
9

t¼0

bjt3eisjjt �bis

jris� rjtj2
; (A4)

where bjt ¼ bj=10; t ¼ 0; . . . 9; bis ¼ bi=10; s ¼ 0; . . . ; 9, ris � rjt [
ri 1 ðs=10Þbi � ðrj 1 ðt=10ÞbjÞ, and eisjjt [ ðris � rjtÞ=jris � rjtj. wB and

wD correspond to the first and second terms, respectively, in Eq. A4. Use

of this higher-resolution writhe calculation reduced the fluctuations in

computed linking difference around the starting value to less than one part in

103. The writhe is calculated for only one configuration in every 10,000

moves.

Nonvanishing self-writhe requires a minimum of three bond vectors,

sufficient to create a nonplanar bend. In these models, wherein the denatured

region contains only n¼ 1 or 2 rigid-rod subunits, wself
D ¼ 0, so wD ¼ wcross

D .

The total linking difference of any simulated DNA, whether partially

melted or not, is reckoned according to D‘ ¼ t1w� ð1=2pÞ+N

j¼1
f0
j;j11,

where f0
j;j11 is the intrinsic twist of the torsion spring between the jth and

( j 1 1)th subunits, and is defined explicitly below.

The residual linking difference of the duplex region in a partially melted

molecule is calculated by D‘̃r ¼ tB 1wB � ð1=2pÞ+N�n

j¼1
f0
j;j11.

Models with total linking differences of {0, �2, �4, �6, . . . , �26} turns

are simulated by using the corresponding uniform values of f0
j;j1 1, namely

f0
j;j1 1 ¼ f0; 2ð2p=NÞ; 4ð2p=NÞ; 6ð2p=NÞ; . . . ; 26ð2p=NÞg for all j ¼

1, . . . , N, together with a starting configuration that is a planar polygon with
initial twist angles, fj,j11 ¼ 0, so w ¼ 0 and t ¼ 0. In this convention,

‘ ¼ t1w remains at the value 0 in all of our simulations, but the linking

difference is decreased stepwise, as f0
j;j1 1 is raised from each step to the

next. In other words, the actual DNA comprising a duplex region with

intrinsic subunit succession angle, fB ¼ nð1=10:45Þ, a melted region with

intrinsic succession angle, fD ¼ 0, and a nonvanishing linking number,

‘ ¼ t1w, is replaced by a model that exhibits a linking number, ‘ ¼ 0, and

a uniform intrinsic twist, Nf0
j;j11=2p (turns), that is chosen to yield the

desired linking difference. Although the intrinsic twist is chosen to be

uniform over the entire molecule, the torsion and bending elastic constants

differ greatly between duplex and melted regions. Such a procedure is valid

because the state of torsional strain of the molecule depends only upon the

difference between the actual twist ðfj;j11Þ and intrinsic twist ðf0
j;j11Þ of each

spring, not upon either value separately. In principle, the f0
j;j1 1 for a given

subunit could be assigned any value, provided that+N

j¼1
f0
j;j11=2p ¼ ‘0, the

total intrinsic twist of our model DNA. Here, ‘0 is used as an adjustable

parameter to vary the linking difference, so for each of our DNAs with n¼ 0,

1, or 2 weak springs (i.e., ‘‘melted’’ subunits), the initial value is taken to be

‘0 ¼ 0, and ‘0 is increased stepwise to 2, 4, . . . , 26 turns to generate total

linking differences, D‘ ¼ 0, �2, �4, . . . , �26 turns, respectively. The
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unmelted parent of a locally melted model molecule is not simulated.

However, its linking difference ðD�‘‘Þ is reckoned from the D‘̃ ¼ D‘

of its locally melted model daughter DNA via Eq. 1,

D�‘‘ ¼ D‘� nðfB � fDÞ ¼ D‘, since fB ¼ fD ¼ f0
j;j11=2p in these simu-

lations. For our simulated molecules, then, it is always true that

D�‘‘ ¼ D‘̃ ¼ D‘.

Calculation of the inertial tensor elements
and the radius of gyration

The squared radius of gyration of a single configuration is calculated

according to R2
g ¼ Tr½ð1=NÞ+N

j¼1
ðrj � r0Þðrj � r0Þ�, where r0 [ ð1=NÞ

+N

j¼1
rj is the center of ‘‘mass’’. The quantity in square brackets is the

dyadic inertial tensor, which can be expressed as a 3 3 3 symmetric matrix.

This symmetric matrix is diagonalized to yield its three positive eigenvalues,

which are designated in order from largest to smallest as R2
ga, R

2
gb, and R2

gc.

Each of these three quantities and also R2
g? ¼ ðR2

gb 1R2
gcÞ is averaged over

the saved molecular configurations. Invariance of the trace to similarity

transformation gives R2
g ¼ R2

ga 1R2
gb 1R2

gc.

Simulation protocols

The Metropolis Monte Carlo protocol is similar to that described previously

by Schurr et al. (1995). In particular, the full potential energy function, rather

than just the reduced potential energy function, is evaluated on every step

and used in the Metropolis acceptance criterion. Moreover, the 3N Euler

angles that orient each subunit in the laboratory frame are kept to define each

configuration. The topological constraint in Eq. 2 is never explicitly

enforced, except for the initial configuration, but instead is automatically

obeyed to acceptable numerical accuracy (better than 1 part in 103). Our

protocol employs the sampling, ring closure, hard-cylinder exclusion, knot

detection, and reversible work algorithms of Gebe et al. (1995), Gebe and

Schurr (1996), and Schurr et al. (1995), and the electrostatic interaction

algorithm of Delrow et al. (1997a). When supplied with appropriate input

parameters, simulations using these algorithms satisfactorily reproduce

experimental values of the supercoiling free energy, translational diffusion

coefficient, and structure factor of the p30d DNA over a wide range of

superhelix density in 0.1 M ionic strength, and also yield typical observed

structures of a surface-flattened native supercoiled plasmid in 0.161 M ionic

strength, as noted above. However, these same protocols and potentials are

known not to work so well at lower ionic strength, specifically at 0.01 M

(Gebe et al., 1996; Fujimoto and Schurr, 2002). There is considerable

evidence that certain supercoiled DNAs in 0.01 M ionic strength undergo

one or more long-range allosteric transitions in secondary structure with

increasing superhelix density (Shibata et al., 1984; Wu et al., 1988, 1991;

Song et al., 1990; Schurr et al., 1992, 1997; Heath et al., 1996; Delrow et al.,

1997b; Naimushin et al., 2000). This phenomenon may be at least partially

responsible for the observed shortcomings of these protocols and potentials

for 0.01 M ionic strength. Such complications are ignored here to assess the

properties of the very simplest idealized model of a supercoiled DNA.

The starting configuration for the simulation of each model supercoiled

DNA with n¼ 0, 1, or 2 weak springs was taken to be a planar polygon with

zero intrinsic twist, f0
j;j1 1 ¼ 0, j ¼ 1, . . . ,N, and zero actual twist,

fj;j11 ¼ 0, j¼ 1, . . . , N. Thus, the initial values of the writhe, w; net twist, t;

linking number, ‘; intrinisic twist, ‘0, and linking difference all vanish. The

system was then ‘‘equilibrated’’ for 12 million attempted moves before

saving any configurations. The final configuration at the end of this

‘‘equilibration’’ period was used as the initial configuration for eight

additional runs of 4 million attempted moves, totaling 32 million attempted

moves. During these latter data collection runs, a configuration was saved

once every 10,000 moves (3200 saved configurations for each linking

difference). From these saved configurations, the average values and

variances are calculated for t, tB, tD, TD, w, wB, wD, D‘r ¼ tB 1wB�
ðN � nÞf0

j;j11, Rga, Rgb, Rgc, Rg?, and Rg. The total linking difference D‘ is

initially selected in the simulation. The values of D‘ computed according to

Eq. A5 fluctuate only very slightly (by less than 1 part in 103) from the initial

value, due to numerical errors primarily in the writhe calculation. The

ensemble average values ÆD‘æ lie even closer to the initially selected values.

For that reason, we take D‘ as the initially selected value, rather than the

practically identical average value, ÆD‘æ, in the discussion of results.

The squared standard deviation (variance) of each property, x, is

calculated in the usual way, s2
x ¼ +3200

j¼1
ðxj � ÆxæÞ2=3200, where the average

value, Æxæ, is reckoned from all 3200 sample values.

The squared standard deviation of the mean of each property is estimated

according to s2
Æxæ ¼ ð1=8Þ+8

i¼1
ðÆxæi � ÆxæÞ2, where Æxæi ¼ ð1=400Þ+400

j¼1
xj

is the average over individual values of the ith data collection run, of which

there are eight (for each selected value of D‘ and n). This relation provides

an accurate estimate, when the system relaxes well within the 4 million

moves of each data collection run, which is the case here.

After completion of the data collection runs, the intrinsic succession

angle, f0
j;j1 1, is incremented by 4p/N for all j ¼ 1, . . . , N, which decreases

the linking difference by two turns. The starting configuration for this new

linking difference is taken to be the final configuration at the end of the

‘‘equilibration’’ period for the previous linking difference. The system is

then ‘‘equilibrated’’ at the new linking difference for 12 million attempted

moves. Again, the final configuration at the end of the ‘‘equilibration’’

period was taken as the starting configuration for each of eight additional

runs of 4 million moves, and the entire procedure outlined above is repeated.
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