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ABSTRACT Multisite phosphorylation of regulatory proteins has been proposed to underlie ultrasensitive responses required
to generate nontrivial dynamics in complex biological signaling networks. We used a random search strategy to analyze the role
of multisite phosphorylation of key proteins regulating cyclin-dependent kinase (CDK) activity in a model of the eukaryotic cell
cycle. We show that multisite phosphorylation of either CDK, CDC25, wee1, or CDK-activating kinase is sufficient to generate
dynamical behaviors including bistability and limit cycles. Moreover, combining multiple feedback loops based on multisite
phosphorylation do not destabilize the cell cycle network by inducing complex behavior, but rather increase the overall
robustness of the network. In this model we find that bistability is the major dynamical behavior of the CDK signaling network,
and that negative feedback converts bistability into limit cycle behavior. We also compare the dynamical behavior of several
simplified models of CDK regulation to the fully detailed model. In summary, our findings suggest that multisite phosphorylation
of proteins is a critical biological mechanism in generating the essential dynamics and ensuring robust behavior of the cell cycle.

INTRODUCTION

To model networks that exhibit nontrivial dynamical

behavior, such as oscillations, bistability (i.e., biological

switches) or excitability, nonlinear relationships are required

to produce sensitive responses to small changes. Most often,

these sensitive responses are modeled phenomenologically

using sigmoidal or other steep relationships. We (Qu et al.,

2003b) and others (Deshaies and Ferrell, 2001; Ferrell and

Bhatt, 1997; Ferrell, 1996; Huang and Ferrell, 1996) have

suggested that multisite phosphorylation of proteins is a

common biological mechanism by which sensitive responses

critical for dynamics are generated. In many biological

signaling networks, protein phosphorylation is a common

process regulating enzyme activity. It is also common for

activation or inactivation of a protein’s enzymatic activity to

require phosphorylation at more than one site. Unlike single

site phosphorylation, multisite phosphorylation generates

a nonlinear relationship (i.e., Hill coefficient .1) in the

activation (or inactivation) profile of a protein’s enzymatic

activity. This mechanism of generating sensitive response has

been well studied in the MAP kinase signaling pathways, both

theoretically and experimentally (Ferrell and Bhatt, 1997;

Ferrell, 1996; Huang and Ferrell, 1996).

The purpose of this study is to further explore the role of

multisite phosphorylation in a complex signaling network.

Two major questions are addressed: 1), How important

are the number of phosphorylation sites and their coopera-

tivity for generating nontrivial dynamics? 2), Since detailed

multisite phosphorylation models are complex and can add

greatly to the overall complexity of a signaling network

model (especially when multiple proteins are all regulated by

phosphorylation/dephosphorylation), what simplifications

are most appropriate for modeling purposes?

To address these questions, we analyzed the cyclin-

dependent kinase (CDK) signaling network regulating the

cell cycle. In the cell cycle signaling network, many positive

and negative feedback loops are regulated by phosphoryla-

tion and dephosphorylation, and combine to form signaling

modules with distinct functions. Moreover, there is also ex-

perimental evidence (Deshaies and Ferrell, 2001; Karaı̈skou

et al., 1999; Nash et al., 2001) that multistep phosphorylation

is essential for cell cycle progression. Using a random search

strategy to explore the parameter space of a complex cell

cycle signaling network model, we analyzed the minimum

conditions required to generate nontrivial dynamics with

respect to number and cooperativity of phosphorylation sites

in proteins regulating CDK activity. Next, we examined how

multisite phosphorylation of CDK regulation in the cell cycle

is most properly represented in simplified form.

METHODS

Mathematical Modeling

The detailed descriptions of mathematical modeling are presented in the

Appendix. Here we briefly summarize the key modeling aspects.

Cyclin and CDK regulation

Cyclin, CDK binding, and CDK phosphorylation/dephosphorylation are

schematically illustrated in the full signaling network shown Fig. 1 A, and

the simplified models are shown in Fig. 1, B–D. We formulated these

signaling networks into differential equations according to the law of mass
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action—a standard method for modeling the chemical reactions (Keener and

Sneyd, 1998). We assumed that cyclin is synthesized at a constant rate (rate

constant ks,cyc in all models). Different forms of cyclin (free or complexed

with CDK) have different degradation rates. Here we used three types of

degradation rates, i.e., one for free cyclin (kd1), one for cyclin in inactive

cyclin-CDK complex (kd2), and one for cyclin in active cyclin-CDK

complex (kd3). In the simulations without negative feedback, degradation

rates were constant. In the simulations with negative feedback, rates were

variable (kd1uu, kd2uu, and kd3uu for the three forms of cyclin, respectively)

due to the negative feedback facilitated by SCF-SKP2 or APC-CDC20

(Bilodeau et al., 1999; Morgan, 1999; Peters, 1998). We assumed total CDK

to be constant (c0).

CDC25, wee1, and CDK-activating kinase regulation

CDC25 synthesis rate (ks,cdc25) and the degradation rates of all its

phosphorylated forms (kd,cdc25) were assumed to be constant. CDC25

phosphorylation is catalyzed by active cyclin-CDK. CDC25C has five

serine/threonine-proline phosphorylation sites (Thr-48, Thr-67, Ser-122,

Thr-130, and Ser-214), which are phosphorylated during the cell cycle

(Hoffmann et al., 1993; Kumagai and Dunphy, 1992; Morris et al., 2000),

but it is not clear whether phosphorylation of these sites is sequential or not.

For CDC25A and CDC25B, it is not clear how many sites are

phosphorylated during the cell cycle. Therefore, we assumed a variable

scheme of N phosphorylation sites, as shown in Fig. 2 A. To examine the

effects of cooperativity of multisite phosphorylation, we modeled each

phosphorylated form of CDC25 to have an assignable kinase activity, so that

the total CDC25 kinase activity (or reaction rate of CDK dephosphorylation

by CDC25) was given by kcdc25 ¼ +N

n¼0
anzn; in which zn is the con-

centration of the nth-phosphorylated form of CDC25 and an represents the

phosphatase activity of the nth-phosphorylated form.

It is not known to us how many phosphorylation sites that wee1 has. We

therefore assumed the same regulation scheme as for CDC25 (Fig. 2 B) and

its kinase activity was quantified as kwee1 ¼ +N

n¼0
bnwn; in which wn is the

nth-phosphorylated form of wee1 and bn represents the phosphatase activity

of the corresponding phosphorylated form.

CDK-activating kinase (CAK) is known to be phosphorylated by CDK1

or CDK2 at two sites, Thr-170 and Ser-164 on CDK7 (Garrett et al., 2001).

We modeled the CAK phosphorylation and its kinase activity the same way

as for CDC25 and wee1 (Fig. 2 C), with kinase activity kcak ¼ +N

n¼0
gnhn; in

which hn is the nth-phosphorylated form of CAK and gn represents the

kinase activity of the corresponding phosphorylation form.

SCF-SKP2 and APC-CDC20 regulation

Activation of SCF-SKP2 and APC-CDC20 requires CDK-mediated

phosphorylation (Bilodeau et al., 1999; Morgan, 1999; Peters, 1998). SCF

or APC binds cyclin for ubiquitination and degradation, thus forming a key

negative feedback loop in the cell cycle network. We did not analyze the

effects of multistep phosphorylation of SCF-SKP2 or APC-CDC20, since

we were interested primarily in assessing the effects of negative feedback on

dynamics. Therefore, we used a simple phenomenological differential

equation developed previously (Qu et al., 2003a), which is presented in the

Appendix as Eq. E.

FIGURE 1 Models of the signal transduction network for CDK regulation. (A) Signaling network of the full model. (B) Signaling network of simplified

Model A. (C) Signaling network of simplified Model B. (D) Signaling network of simplified Model C. The thick solid arrows indicate cyclin synthesis and

dashed arrows indicate cyclin degradation. Labels refer to the variables used in the differential equations (Appendix) for each monomer and dimer. Rate

constants for CDC25, CAK, wee1, and Myt1 phosphorylation and dephosphorylation of CDK are denoted as kcdc25, kcak, kwee1, and kmyt1, and other rate

constants are as indicated.
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Computer simulation

Definition of dynamical behaviors

Simulations were designed to detect bistability, limit cycle, and complex

dynamical behaviors. For detecting bistability, the steady state of the

differential equations was obtained numerically and the stability was

analyzed using MATLAB programming. Specifically, we set the left-hand

side of the differential equations to zero and numerically solved the algebra

equations to get the steady-state solutions. When multiple steady-state

solutions were found for a set of parameters, we analyzed the stabilities of

the steady-state solutions to determine whether they are bistable solutions or

not. For detecting limit cycle and other complex oscillations, we numerically

solved the differential equations using the fourth-order Runge-Kutta method

(Press et al., 1992) and integrated the differential equations long enough to

resolve transient oscillations. Limit cycle and complex oscillations were

detected by calculating the period of the oscillation. If the period was

constant from cycle to cycle, it was defined as a limit cycle. If the period

changed from cycle to cycle, it was defined as complex dynamics.

Random parameter search methods

Since the model is very complex, with 17 differential equations and 38

parameters in most cases, it is not possible to explore systematically the

parameter space to define all possible dynamical regimes. In addition,

experimentally determined values of most parameters are not available from

the literature, or differ substantially among species. We therefore used

a Monte Carlo-like method to randomly search the parameter space of the

model, similar to that described by von Dassow et al. (2000) to detect pattern

formation during insect development. This method yields statistics on the

frequency at which different types of dynamical behaviors occur in the

signaling network, and also provides a measure of robustness. Briefly, we

defined an interval for each parameter (Table 4) and randomly selected the

parameters values from within this range. Whenever possible, we defined

biologically plausible ranges for the parameters. For each component of the

cell cycle network being examined, we then randomly selected 100,000 sets

of parameter values, and analyzed the corresponding dynamics for each

parameter set according to the criteria defined above.

RESULTS

The Results are divided into three sections. First, we describe

the dynamical behaviors exhibited by the cell cycle model

illustrated in Fig. 1A, with the positive feedback loops caused

by CDC25, wee1, and CAK all active, either with or without

the presence of negative feedback due to SCF-SKP2 or APC-

CDC20. Next we examine how multisite phosphorylation of

key phosphoproteins in the various feedback loops influence

dynamical behaviors using the random parameter search

method. Finally, we examine three simplified representations

of CDK regulation to determine how faithfully they represent

the fully detailed model.

Dynamical behaviors of the cell cycle
signaling network

Fig. 3 summarizes types of dynamical behaviors observed

in the cell cycle signaling network in Fig. 1 A for different

parameter settings, using active cyclin-CDK complex as the

readout. The following behaviors were observed:

1. The steady state of active cyclin-CDK equilibrated to

a stable low activity level, regardless of the initial

conditions (Fig. 3 A).

2. The steady state of active cyclin-CDK equilibrated to

a stable high activity level, starting from any initial

conditions (Fig. 3 B).

3. Multiple steady-state solutions of active cyclin-CDK

coexisted. In the case of bistability, there were two stable

solutions, and cyclin-CDK activity could remain in either

the low or high state, depending on the initial conditions

(Fig. 3, C and D).

4. Active cyclin-CDK oscillated periodically as a limit

cycle (Fig. 3, E and F).

5. Active cyclin-CDK oscillated in a complex (i.e., more

than period-1) manner (Fig. 3, G–J). Complex oscillations

were observed exclusively in the presence of negative

feedback due to SCF-SKP2 or APC-CDC20.

To show where these dynamics were located in parameter

space, Fig. 3, D and F, illustrate the steady state of active

cyclin-CDK (x) versus the cyclin synthesis rate ks,cyc, while

keeping other parameters fixed. In Fig. 3 D, for the low ks,cyc

range, there is a single stable steady state of low kinase

activity, from which the example in Fig. 3 A was chosen.

In the intermediate range of ks,cyc, there are three steady-state

solutions. The upper and lower steady states are stable and

the middle one is unstable, corresponding to the bistability

case shown in Fig. 3 C. For large ks,cyc, there is a single stable

steady state of high kinase activity, corresponding to Fig. 3 B.

In this case, if ks,cyc is increased from a small value gradually,

the kinase activity (x) will suddenly jump up to the high state

at the end of the bistable regime, but if ks,cyc is decreased from

a large value gradually, the kinase activity will jump back to

the low kinase state at the other end of the bistable regime,

forming a hysteresis loop (see the shaded arrows in Fig. 3 D).

Fig. 3 F shows the analogous graph for limit cycle obtained

with a different set of parameter values. The intermediate

range of ks,cyc produces a limit cycle regime.

FIGURE 2 Models for the phosphorylation steps for CDC25 (A), wee1

(B), CAK (C), and SCF-SKP2 or APC-CDC20 (D). Phosphorylation of

CDC25, wee1, and CAK are catalyzed by active cyclin-CDK. SCF-SKP2 or

APC-CDC20 (U inactive and U* active in D) is also activated by active

cyclin-CDK.
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Effects of multisite phosphorylation on
dynamical behavior

Case 1: positive feedback restricted to CDC25

In this case, positive feedback by CDC25 was the only

feedback loop in the network. kwee1 and kcak were set to

constant values, randomly chosen in the same way as other

rate constants in the simulation. Assuming that CDC25 had

only one phosphorylation site, then using the random search

algorithm (see Methods) with 100,000 searches, we found

only 32 parameter sets that exhibited bistable solutions

and 11 with limit cycle solutions (Case 1: CDC25_1p in

Table 1). If we assumed that CDC25 had two phosphory-

lation sites, the number of parameter sets exhibiting bistable

solutions increased 20-fold to 796, and the number

exhibiting limit cycle solutions increased fourfold to 40 in

the same number of searches (Case 1: CDC25_2p in Table

1). For the case in which CDC25 had five phosphoryla-

tion sites, 2090 cases exhibited bistable solutions and 1467

cases exhibited limit cycle solutions (Case 1: CDC25_5p in

Table 1). Therefore, as the number of phosphorylation sites

on CDC25 increased, progressively more bistable and limit

cycle solutions occurred, demonstrating that multisite

phosphorylation plays a key role in generating dynamical

instabilities.

To illustrate the characteristics of the parameter values

causing these dynamics, we plotted histograms for certain

parameters in Fig. 4, for Case 1: CDC25_2p. Fig. 4, A and

B, show the distribution of cyclin synthesis rates (ks,cyc) at

which bistability and limit cycle dynamics were favored.

Limit cycles tended to occur at lower cyclin synthesis

rates (average rate 9.97) than bistability (average rate

19.8).

To evaluate the importance of cooperativity in multi-

site phosphorylation of CDC25, Fig. 4, C and D, show the

distributions of kinase activities of unphosphorylated

CDC25 (a0) or CDC25 phosphorylated at one site (a1),

which yielded bistable or limit cycle solutions. In these

simulations, CDC25 had two phosphorylation sites, with the

doubly phosphorylated state having maximum activity (i.e.,

a2 ¼ 1). No cooperativity between phosphorylation sites

in activating kinase activity corresponds to a0 ¼ 0 and a1 ¼
a2 ¼ 1, whereas positive cooperativity corresponds to 0 ,

a 1 , a2 ¼ 1. For bistability to occur, a0 had to be very

small (mostly ,0.03, with an average value of 0.016),

whereas a1 could range from 0 to 1 (average value 0.31).

Thus, unphosphorylated CDC25 had to be 20 times (;0.31/

0.016) less active than the singly phosphorylated CDC25

and 62 (;1/0.016) times less active than the doubly

phosphorylated CDC25 for bistability to occur. Similar

results were obtained for limit cycle dynamics (Fig. 4, E and

F), which also required that a0 is much smaller than a1 and

a2. This dynamical requirement agrees with the experimental

finding that CDC25 kinase activity is much higher when

phosphorylated (Kumagai and Dunphy, 1992). For either

bistability or limit cycle dynamics, however, a1 and a2 could

both have values near the maximum of 1. Thus, positive

cooperativity between the first and second phosphorylation

sites in CDC25 kinase activity (i.e., producing to a higher

Hill coefficient) was not very important.

The average rates of CDC25 phosphorylation and de-

phosphorylation in these simulations (az1/[CDC25]T, az1/

[CDC25]T, and k�z1=½CDC25�T; respectively) were 0.011,

0.12, and 1.2, close to experimental estimates (Marlovits

et al., 1998). Since both wee1 and CAK can phosphorylate

CDK, it is interesting to examine the relationship between

their relative kinase activities during the above dynamics.

Fig. 5 shows the distribution of kwee1/kcak when bistability

occurred in Case 1: CDC25_2p. Both kwee1 and kcak were

randomly chosen to have values from 0 to 10. More than

98% of kwee1/kcak ratios were .1, with an average value of

8.25. This indicates that phosphorylation of the Thr-14 and

Try-15 has to be much faster than the phosphorylation of

Thr-160 or Thr-161. We are not aware whether there is

experimental data to support this prediction.

In summary, the incidence of bistability and limit cycles

increased dramatically as the number of CDC25 phosphor-

ylation sites increased, but the steepness of kinase activity

(i.e., positive cooperativity between phosphorylation sites)

did not play a major role.

Case 2: positive feedback restricted to wee1

In this case, the positive feedback (actually double-negative)

feedback facilitated by wee1 was the only feedback loop

present in the network, with kcdc25 and kcak set as randomly

chosen constants. For only one phosphorylation site on

wee1, we found one bistable solution and no limit cycles in

100,000 searches (Case 2: wee1_1p in Table 1). For two

phosphorylation sites, there were 90 cases of bistability and

12 cases of limit cycles (Case 2: wee1_2p in Table 1). For

five phosphorylation sites, however, there was a dramatic

increase to 3223 cases of bistability and 476 cases of limit

cycles (Case 2: wee1_5p in Table 1).

Fig. 6, A and B, show the influence of positive

cooperativity between the phosphorylation sites in deacti-

vating wee1 kinase activity, for the case in which wee1 had

two phosphorylation sites (Case 2: wee1_2p). For bist-

ability to occur, b2 (average value 0.049) had to be much

smaller than b1 (average value 0.33) and b0 (¼ 1). Similar

results were obtained for limit cycles. Thus, phosphorylated

wee1 had to have much lower kinase activity than

unphosphorylated wee1 for bistability or limit cycles. This

finding agrees with the experimentally measured properties

of wee1, which has much lower kinase activity when

phosphorylated than when unphosphorylated. However, b1

could have a value near 1, so that positive cooperativity

between the singly and doubly phosphorylated wee1 in

inactivating wee1’s kinase activity was not critically

important.
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Case 3: positive feedback restricted to CAK

In this case, the positive feedback facilitated by CAK was the

only feedback loop present in the network, with kcdc25 and

kwee1 set as randomly chosen constants. With only one CAK

phosphorylation site, we did not find any cases of bistability,

limit cycles, or other interesting dynamics in 100,000

searches (Case 3: CAK_1p in Table 1). For more than one

phosphorylation site, however, both bistability and limit

cycles were observed (Case 3: CAK_2p and Case 3:

CAK_5p in Table 1), although less frequently than when

FIGURE 3 Dynamical behaviors

from the signaling transduction network

shown in Fig. 1. (A–D) Active cyclin-

CDK (x) versus time at different

dynamical regimes. (A) Stable low

kinase activity. (B) Stable high kinase

activity. (C) Bistability. Starting from

different initial conditions, the system

approached to different steady state. (D)

Bifurcation diagram of bistability.

Dashed segment is the unstable steady

state. Shaded arrows indicate the hys-

teresis loop. (E) Limit cycle oscillation.

(F) Bifurcation diagram of limit cycle.

Solid circles are stable steady states and

open circles are the maxima and

minima of the limit cycle oscillation.

(G) Complex (period-2) dynamical

behavior. (H) Complex (chaotic) dy-

namical behavior. (I) Active cyclin-

CDK versus free CDK for the period-2

dynamics in G. (J) Active cyclin-CDK

versus free CDK for the chaotic oscil-

lations in H. The parameters for A–D

are: k1 ¼ 0.5, k2 ¼ 8.64, kpp ¼ 0.094,

kd1 ¼ 0.72, kd2 ¼ 0.75, kd3 ¼ 0.57,

ks;cdc25 ¼ 15.8, kd;cdc25 ¼ 1/3,

k�z1 ¼ 67:8; k�z2 ¼ 82:5; ks;wee1 ¼ 3.92,

kd;wee1 ¼ 1/3, k�w1 ¼ 19:7; k�w2 ¼ 58:4;

ks;cak ¼ 26.31, kd;cak ¼ 1/3, k�h1 ¼ 63:9;

k�h2 ¼ 28:3; az1 ¼ 0.215, az2 ¼ 0.8,

aw1 ¼ 0.085, aw2 ¼ 0.8, ah1 ¼ 0.06,

ah2 ¼ 0.37, bz1 ¼ 6.3, bz2 ¼ 7.6,

bw1 ¼ 5.6, bw2 ¼ 5.2, bh1 ¼ 2.5,

bh2 ¼ 7.4, a0 ¼ 0.015, a1 ¼ 0.015,

a2 ¼ 1, b0 ¼ 1, b1 ¼ 0.72, b2 ¼ 0.19,

g0 ¼ 0.02, g1 ¼ 0.91, and g2 ¼ 1. The

parameters for E and F are: k1 ¼ 0.5,

k2 ¼ 0.4, kpp ¼ 0.33, kd1 ¼ 0.83,

kd2 ¼ .013, kd3 ¼ 1, ks;cdc25 ¼ 24.8,

kd;cdc25 ¼ 1/3, k�z1 ¼ 86:5; k�z2 ¼ 76:6;

ks;wee1 ¼ 5.6, kd;wee1 ¼ 1/3, k�w1 ¼ 56:2;

k�w2 ¼ 84:5; ks;cak ¼ 24.5, kd;cak ¼ 1/3,

k�h1 ¼ 60:3; k�h2 ¼ 0:13; az1 ¼ 0.12, az2

¼ 0.65, aw1 ¼ 0.82, aw2 ¼ 0.74,

ah1 ¼ 0.74, ah2 ¼ 0.17, bz1 ¼ 7.9,

bz2 ¼ 0.31, bw1 ¼ 9.5, bw2 ¼ 3.5,

bh1 ¼ 5.2, bh2 ¼ 9.0, a0 ¼ 0.011,

a1 ¼ 0.61, a2 ¼ 1, b0 ¼ 1, b1 ¼ 0.70,

b2 ¼ 0.19, g0 ¼ 0.0058, g1 ¼ 0.26, and

g2 ¼ 1. The cyclin synthesis rate in each panel is: (A) ks;cyc ¼ 8.0; (B) ks;cyc ¼ 30; (C) ks;cyc ¼ 13.9; and (E) ks;cyc ¼ 1.92. The parameters for G and I are:

ks;cyc ¼ 12.4, kd1 ¼ 0.83, k1 ¼ 0.27, k2 ¼ 6.65, kpp ¼ 0.99, kd3 ¼ 0.9, kd2 ¼ 0.14, ks;cdc25 ¼ 28.9, kd;cdc25 ¼ 1/3, k�Z1 ¼ 93, k�Z2 ¼ 71.8, ks;wee1 ¼ 7.74, kd;wee1 ¼ 1/3,

k�w1 ¼ 77.4, k�w2 ¼ 14, ks;cak ¼ 32.7, kd;cak ¼ 1/3, k�h1 ¼ 70.9, k�h2 ¼ 17.7, KM ¼ 5.0, kd1u ¼ kd2u ¼ kd3u ¼ 2.0, az1 ¼ 0.23, az2 ¼ 0.18, aw1 ¼ 0.625, aw2 ¼ 0.78,

ah1 ¼ 0.9, ah2 ¼ 0.19, bz1 ¼ 9.5, bz2 ¼ 4.8, bw1 ¼ 7.1, bw2 ¼ 10, bh1 ¼ 1.15, bh2 ¼ 4.23, a0 ¼ 0.07, a1 ¼ 0.155, a2 ¼ 1, b0 ¼ 1, b1 ¼ 0.81, b2 ¼ 0.1, g0 ¼ 0.02,

g1 ¼ 0.76, g2 ¼ 1, and t ¼ 20. The parameters for H and J are: ks;cyc ¼ 32.98, kd1 ¼ 0.1, k1 ¼ 0.365, k2 ¼ 9.94, kpp ¼ 0.33, kd3 ¼ 0.965, kd2 ¼ 0.164, ks;cdc25

¼19.1, kd;cdc25 ¼ 1/3, k�Z1 ¼ 99.9, k�Z2 ¼ 97.5, ks;wee1 ¼ 8.68, kd;wee1 ¼ 1/3, k�w1 ¼ 86.8, k�w2 ¼ 88.9, ks;cak ¼ 29.96, kd;cak ¼ 1/3, k�h1 ¼ 79.3, k�h2 ¼ 39.45, KM ¼ 5.0,

kd1u ¼ kd2u ¼ kd3u ¼ 1.0, az1 ¼ 0.07, az2 ¼ 0.07, aw1 ¼ 0.71, aw2 ¼ 0.054, ah1 ¼ 0.066, ah2 ¼ 0.0065, bz1 ¼ 6.29, bz2 ¼ 6.58, bw1 ¼ 6.14, bw2 ¼ 2.4, bh1

¼ 0.94, bh2 ¼ 1.27, a0 ¼ 0.134, a1 ¼ 0.118, a1 ¼ 1, b0 ¼ 1, b1 ¼ 0.298, b2 ¼ 0.07, g0 ¼ 0.013, g1 ¼ 0.34, g2 ¼ 1.0, and t ¼ 20.
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positive feedback was due to CDC25 or wee1. Fig. 6, C and

D, show that positive cooperativity between the kinase

activity of unphosphorylated CAK (g0, average value

0.029), singly phosphorylated CAK (g1, average value

0.12), and doubly (g2 ¼ 1) phosphorylated CAK was more

important for dynamics arising from CAK-positive feedback

than for CDC25 or wee1. The reason is because the

dephosphorylation or phosphorylation of CDK by CDC25

or wee1 involves two CDK sites, whereas CAK only

phosphorylates one CDK site. Therefore, the cooperativity

in the case of CDC25 or wee1 exists in CDK phosphory-

lation/dephosphorylation, but it has to be generated from

multistep CAK phosphorylation in the case of CAK-positive

feedback.

Case 4: combined positive feedback loops from CDC25,
wee1, and CAK

We first studied the case in which both CDC25 and wee1

gave rise to positive feedback loops, but CAK did not (i.e.,

kcak was a randomly chosen constant). For one phos-

phorylation site on both CDC25 and wee1 (Case 4:

CDC25_1p 1 wee1_1p in Table 1), the incidence of both

bistability and limit cycles in the 100,000 searches increased

substantially (compare to Case 1: CDC25_1p or Case 2:

wee1_1p in Table 1). If positive feedback by CAK with

one phosphorylation site was added as well, bistable and

limit cycle cases increased further (Case 4: CDC25_1p 1

wee1_1p 1 CAK_1p in Table 1). For two phosphoryla-

tion sites on CDC25, wee1, and CAK, the incidence

increased further (Case 4: CDC25_2p 1 wee1_2p 1

CAK_2p in Table 1). With five phosphorylation sites on

CDC25 and wee1, however, the incidence of bistability

decreased, whereas the incidence of limit cycles in-

creased further (Case 4: CDC25_5p 1 wee1_5p 1 CAK_1p

in Table 1).

TABLE 1 Incidence of bistability (BS) and limit cycles (LC)

among 100,000 random searches, for Cases 1–4 (positive

feedback only)

Hypothetical cases BS LC

Case 1: CDC25_1p 32 11

Case 1: CDC25_2p 796 40

Case 1: CDC25_5p 2090 1467

Case 2: wee1_1p 1 0

Case 2: wee1_2p 90 12

Case 2: wee1_5p 3223 476

Case 3: CAK_1p 0 0

Case 3: CAK_2p 20 0

Case 3: CAK_5p 437 0

Case 4: CDC25_1p 1 wee1_1p 224 25

Case 4: CDC25_1p 1 wee1_1p 1 CAK_1p 729 40

Case 4: CDC25_2p 1 wee1_2p 1 CAK_1p 3639 125

Case 4: CDC25_2p 1 wee1_2p 1 CAK_2p 4131 134

Case 4: CDC25_5p 1 wee1_5p 1 CAK_1p 1313 750

FIGURE 4 Histogram of key parameters

for Case 1: CDC25_2p. (A and B) Cyclin

synthesis rate ks,cyc distributions for bistable

(Æks,cycæ¼ 19.8) and limit cycle (ks,cyc ¼ 9.97)

dynamics. (C and D) Distributions of a0

(kinase activity of unphosphorylated CDC25,

Æa0æ ¼ 0.0016) and a1 (kinase activity of

one-site phosphorylated CDC25, Æa1æ ¼ 0.3)

for bistability. (E and F) Distributions of

a0 (Æa0æ ¼ 0.05) and a1 (Æa1æ ¼ 0.39) for

limit cycle.
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Case 5: dynamics caused by positive feedback interacting
with negative feedback

Without the presence of negative feedback loops, bistability

was the most commonly observed dynamical behavior

(Table 1). In a previous study (Qu et al., 2003a), we found

that when the negative feedback was facilitated by SCF-

SKP2 or APC-CDC20, bistability was converted to limit

cycle behavior. Here we evaluate the generality of this

finding using the random search strategy. Table 2 summa-

rizes the incidence of bistability, limit cycles, and complex

oscillations for four negative feedback schemes, operating

on free cyclin only (Case 5a: kd1u ¼ ku, kd2u ¼ kd3u ¼ 0), on

free cyclin and inactive cyclin-CDK (Case 5b: kd1u ¼ kd2u ¼
ku, kd3u ¼ 0), on active cyclin-CDK only (Case 5c: kd1u ¼
kd2u ¼ 0, kd3u ¼ ku), and on all forms of cyclin (Case 5d: kd1u

¼ kd2u ¼ kd3u ¼ ku). The positive feedback case was

CDC25_2p 1 wee1_2p 1 CAK_1p. The biological ration-

ale for these negative feedback schemes is that SCF binds to

phosphorylated cyclin and APC binds to free cyclin to target

them for ubiquitination (Peters, 1998). In addition, cyclins in

different forms are degraded using different pathways

(Clurman et al., 1996; Winston et al., 1999). Table 2 shows

that, in general, as the strength of the negative feedback

increased, the incidence of bistable solutions decreased and

the incidence of limit cycle solutions increased. These

findings support the idea that negative feedback converts

bistability to limit cycle behavior. The ability of negative

feedback to promote limit cycle is well known in biological

systems (Goldbeter, 2002; Tyson et al., 2002), and has been

previously proposed as a mechanism of the cell cycle

machinery (Cross et al., 2002; Pomerening et al., 2003; Qu

et al., 2003a; Sha et al., 2003; Tyson and Novak, 2001). Here

we demonstrate using the random search method that this

proposed mechanism is robust in the model shown in

Fig. 1 A.

The inclusion of negative feedback into the model also had

another important consequence. Without negative feedback,

we did not find any examples of complex oscillations in all our

searches. With negative feedback present, however, complex

oscillations were observed, although infrequently (Table 2).

Fig. 3, G and I, show a period-2 oscillation in active cyclin-

CDK versus time and active cyclin-CDK versus free CDK.

Fig. 3, H and J, show a chaotic oscillation in active cyclin-

CDK versus time and active cyclin-CDK versus free CDK.

FIGURE 5 (A and B) Distributions of b1 (kinase activity of one-site

phosphorylated wee1, Æb1æ ¼ 0.33) and b2 (kinase activity of two-site

phosphorylated wee1, Æb2æ ¼ 0.049) for bistability in Case 2: wee1_2p. (C

and D) Distributions of g0 (kinase activity of unphosphorylated CAK,

Æg0æ¼ 0.0029) and g1 (kinase activity of one-site phosphorylated CAK, Æg1æ
¼ 0.12) for bistability in Case 3: CAK_2p.

FIGURE 6 Distribution of kwee1/kcak for

bistability in Case 1: CDC25_2p. The

average ratio Ækwee1/kcakæ ¼ 8.25.
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Dynamics of simplified models of CDK
regulation by phosphorylation

In their M phase cell cycle model of Xenopus oocytes,

Marlovits et al. (1998) assumed that Thr-14 and Tyr-15 on

CDK were phosphorylated and dephosphorylated simulta-

neously, and thus could be considered as one step. We refer

to this simplified model as Model A (Fig. 1 B). In their cell

cycle models of yeast (Chen et al., 2000; Novak and Tyson,

1997; Tyson and Novak, 2001) and other cell cycle models

(Ciliberto et al., 2003; Ciliberto and Tyson, 2000), Tyson

and colleagues assumed that cyclin binds to CDK to form an

active complex, which is inactivated by wee1 and reactivated

by CDC25. We refer to this model as Model B (Fig. 1 C). A

third model first proposed by Solomon and colleagues

(Solomon et al., 1990; Solomon and Kaldis, 1998) and used

in a number of cell cycle modeling studies (Aguda and Tang,

1999; Pomerening et al., 2003; Qu et al., 2003a,b) assumes

that cyclin binds to CDK to form an inactive complex, which

is activated by CDC25 and inactivated by wee1. We refer to

this model as Model C (Fig. 1 D).

To compare Models A–C, we used the random search

method and the same regulation schemes for CDC25, wee1,

CAK, and SCF-SKP2 or APC-CDC20 shown in Fig. 2.

Table 3 summarizes the results. When the positive feedback

was facilitated by CDC25 (Case 1) and CDC25 had only one

phosphorylation site, no dynamical instability occurred for

any of the three simplified models (Case 1: CDC25_1p in

Table 3). This differed from the full scheme, in which one-

step phosphorylation of CDC25 was enough to cause

dynamical instabilities (Case 1: CDC25_1p in Table 1).

The reason is that in the full scheme, Thr-14 and Tyr-15 on

CDK are phosphorylated in two steps, producing a nonlinear

CDK activation pattern. In all the simplified models,

however, CDK phosphorylation is condensed into one step,

making its activation linear. Thus, if CDC25 was also linear

(i.e., Hill coefficient ¼ 1), there was no nonlinear element in

the network to generate dynamics. With two or more CDC25

phosphorylation sites to create nonlinear CDC25 activation,

however, dynamical instabilities could be generated. Posi-

tive feedback by either wee1 or CAK alone (Cases 2 and 3),

or by the combination of CDC25, wee1 and CAK (Case 4)

also required at least two phosphorylation sites in one of

these feedback loops to generate dynamics.

When more than one positive feedback mechanism with at

least two phosphorylation sites was present (Case 4), Model

A and Model C generated a higher incidence of bistability

and limit cycles than Model B. Moreover, the addition of

negative feedback (Case 5) converted the bistability to (and

generated additional) limit cycles in Models A and C, but not

in Model B. For Model B, the negative feedback in Case 5d

stabilized the system by substantially reducing the incidence

of bistable solutions (Table 3).

To further compare the dynamical behaviors of these

simplified models to that of the full scheme, Fig. 7 shows

phase diagrams for the full model and models A–C in the

two-parameter space of cyclin synthesis rate (ks,cyc) and

negative feedback strength (ku). The full model, Model A,

and Model C shared similar phase diagrams but Model B had

much smaller regions of dynamics. This explains why

randomly searching the parameter space detected less

dynamics than in the other models. Based on this analysis,

we conclude that, to preserve dynamics, Model A and Model

C are superior simplified representations of the full scheme

than Model B.

DISCUSSION

Multisite phosphorylation and cell cycle
dynamics

In this study, we used a random search strategy to analyze

the dynamics of a complex signaling network underlying

the eukaryotic cell cycle. Various hypothetical conditions

TABLE 2 Incidence of bistability (BS), limit cycles (LC), and complex oscillations (C) among 100,000 random searches,

for Cases 5, a–d (both positive and negative feedback loops)

Negative feedback strength

Case 5a Case 5b Case 5c Case 5d

BS LC BS LC BS LC BS LC C

ku ¼ 0 3639 125 3639 125 3639 125 3639 125 0

ku ¼ 10 3444 181 1398 1334 1906 530 725 1794 64

ku ¼ 20 3354 249 628 2932 1321 940 308 2881 38

ku ¼ 50 3120 404 152 5443 741 1470 77 3510 5

ku ¼ 80 2924 532 61 6349 524 1684 34 3403 5

TABLE 3 Incidence of bistability (BS) and limit cycles (LC)

among 100,000 random searches, using simplified models

A–C simulating multisite phosphorylation

Hypothetical cases

Model A Model B Model C

BS LC BS LC BS LC

Case 1: CDC25_1p 0 0 0 0 0 0

Case 1: CDC25_2p 27 3 7 2 82 3

Case 2: wee1_1p 0 0 0 0 0 0

Case 2: wee1_2p 6 0 5 0 6 0

Case 3: CAK_1p 0 0 - - - -

Case 3: CAK_2p 14 0 - - - -

Case 4: CDC25_1p 1 wee1_1p 0 0 0 0 0 0

Case 4: CDC25_2p 1 wee1_2p 1 CAK_1p 577 35 121 0 437 20

Case 5d: positive 1 negative feedback 33 611 2 0 9 595

Case 5b: positive 1 negative feedback 40 557 36 100 53 2275
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were simulated to investigate the conditions required for

this network to generate dynamical instabilities, focusing

on the role of multisite phosphorylation of key proteins

regulating CDK activity. Multisite phosphorylation has

been shown to be an important mechanism underlying

ultrasensitive biological responses (Deshaies and Ferrell,

2001; Ferrell, 1996; Huang and Ferrell, 1996), and in

a previous simplified model (Qu et al., 2003b), we

proposed that multisite phosphorylation of CDC25 was

critical for the CDK signaling module to generate

bistability and limit cycle behavior. Here we show that

multisite phosphorylation of CDK, CDC25, or wee1 can

also generate these dynamical behaviors. It is interesting to

note that although many proteins regulating CDK activity

contain more than two phosphorylation sites, our modeling

results suggest that the incidence of dynamics was not

greatly affected either by positive cooperativity between

the first two sites, nor by additional sites beyond the first

two. In fact, for Case 4 in which all the positive feedback

loops were present, increasing the number of phosphory-

lation sites on CDC25 and wee1 from two to five decreased

the combined incidence of bistability and limit cycles

(Table 3).

Experimental evidence supports the importance of multi-

site phosphorylation in normal cell cycle function. Karaiskou

et al. (1999) showed that the second stage phosphorylation of

CDC25 was necessary for the amplification of maturation

promoting factor. A recent study by Garrett et al. (2001)

showed that Thr-170 and Ser-164 in CDK7 (CAK is a com-

plex of cyclin H and CDK7) are phosphorylated indepen-

dently by CDK1 and CDK2, but it is not clear whether the

phosphorylation at both sites is required for CAK activation.

Multisite phosphorylation on CDK inhibitor has also been

shown to play a critical role in cell cycle regulation (Deshaies

and Ferrell, 2001; Nash et al., 2001).

Simplified mathematical models of CDK
regulation in the cell cycle

A number of mathematical models for cyclin and CDK

regulation in the cell cycle have been proposed. In these

models, two major mechanisms for cell cycle dynamics have

been identified: negative feedback causing a limit cycle

oscillation (Goldbeter, 1991), and negative feedback-facili-

tated hysteresis along a bistable solution (Tyson and Novak,

2001). Recent experiments (Cross et al., 2002; Pomerening

FIGURE 7 Phase diagram in the parameter

space of cyclin synthesis rate ks,cyc and negative

feedback strength ku(kd1u ¼ kd2u ¼ ku, kd3u ¼ 0).

BS marks the bistable region and LC marks the

limit cycle region. (A) The full model in Fig.

1 A. (B) Simplified Model A in Fig. 1 B. (C)

Simplified Model C in Fig. 1 D. (D) Simplified

Model B in Fig. 1 C. The parameters for the Full

model and Model A are: k1 ¼ 0.5, k2 ¼ 7.5, kpp

¼ 0.96, kd1 ¼ 0.7, kd2 ¼ 0.78, kd3 ¼ 0.2, ks;cdc25

¼ 24.5, kd;cdc25 ¼ 1/3, k�Z1 ¼ 16, k�Z2 ¼ 3.1, ks;wee1

¼ 2.9, kd;wee1 ¼ 1/3, k�W1 ¼ 97, k�W2 ¼ 95, ks;cak ¼
9.1, kd;cak ¼ 1/3, k�h1 ¼ 96, k�h2 ¼ 68, KM ¼ 5.0,

kd3u ¼ 0, az1 ¼ 0.39, az2 ¼ 0.22, aw1 ¼ 0.18,

aw2 ¼ 0.077, ah1 ¼ 0.007, ah2 ¼ 0.79, bz1 ¼ 2.0,

bz2 ¼ 2.0, bw1 ¼ 3.5, bw2 ¼ 7.2, bh1 ¼ 9.68, bh2

¼ 1.56, a0 ¼ 0.0044, a1 ¼ 0.36, a2 ¼ 1, b0 ¼ 1,

b1 ¼ 0.027, b2 ¼ 0.198, g0 ¼ 0.005, g1 ¼ 0.31,

g2 ¼ 1, and t ¼ 20. The parameters for Model C

are the same as above except ks;cdc25¼ 24.5. The

parameters for Model B are k1 ¼ 0.8, k2 ¼ 5.3,

kpp ¼ 0.48, kd1 ¼ 0.42, kd2 ¼ 0.38, kd3 ¼ 0.26,

ks;cdc25 ¼ 8.0, kd;cdc25 ¼ 1/3, k�Z1 ¼ 54, k�Z2 ¼ 42,

ks;wee1 ¼ 7.2, kd;wee1 ¼ 1/3, k�W1 ¼ 42, k�W2 ¼ 4.7,

KM ¼ 5.0, kd3u ¼ 0, az1 ¼ 0.88, az2 ¼ 0.08,

aw1 ¼ 0.5, aw2 ¼ 0.86, bz1 ¼ 1.6, bz2 ¼ 1.3, bw1

¼ 3.7, bw2 ¼ 6.6, a0 ¼ 0.02, a1 ¼ 0.24, a2 ¼ 1,

b0 ¼ 1, b1 ¼ 0.19, b2 ¼ 0.1, and t ¼ 20.
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et al., 2003; Sha et al., 2003) have demonstrated that

bistability and hysteresis occur in dividing cells. In agreement

with the latter mechanism, we find that bistability is the major

dynamical behavior in our model of the CDK signaling

network, and negative feedback changes bistability into limit

cycle behavior. However, the former mechanism could also

be true in our model, since negative feedback caused a greater

increase in limit cycle cases than could be accounted from by

the decrease in bistable cases (Tables 2 and 3).

Among the simplified CDK regulation models, Model A

(Fig. 1 B) used for Xenopus oocytes by Tyson and

colleagues (Marlovits et al., 1998) and Model C (Fig. 1

D) proposed by Solomon (Solomon et al., 1990; Solomon

and Kaldis, 1998) closely agree with the full model (Fig. 1

A). However, Model B (Fig. 1 C) used by Tyson and

colleagues in their cell cycle models of yeast (Chen et al.,

2000; Novak and Tyson, 1997; Tyson and Novak, 2001)

and other cell cycle models (Ciliberto et al., 2003; Ciliberto

and Tyson, 2000) differed substantially from the full

scheme. In their cell cycle models, bistability is mainly

caused by the positive feedback between CDK and APC-

CDH1 (Tyson and Novak, 2001) rather than by CDK

phosphorylation and dephosphorylation. Although this does

not affect the ability of negative feedback to turn the

dynamics into a hysteresis loop, it is biologically important

to pinpoint the exact molecular mechanism responsible for

the occurrence of bistability.

Robustness of cell cycle dynamics

Biological signaling networks are often too complex for

intuition alone to be of much help in understanding their

underlying mechanisms. Mathematical modeling can play

an essential role in providing a systematic approach for

analyzing this complexity. However, as mathematical

models become progressively more complex, as needed to

faithfully represent the biological complexity, the ability to

analyze their range of dynamical behaviors systematically

also becomes increasingly more challenging. In addition,

experimental values of many of the rate constants in the

signaling network have not been determined, and even when

they have been measured, they often differ substantially

under different experimental conditions and between spe-

cies. To compensate for this uncertainty in the biologically

correct values of rate constants, we randomly selected

parameter values from a predefined biologically plausible

range to identify different dynamics. This method allowed us

to explore a large parameter space to identify the range of

possible dynamics in the CDK signaling network. We found

that combining multiple feedback loops caused bistability

and limit cycle dynamics to occur over a progressively larger

parameter space, but only rarely caused complex dynamics.

Bistability (with no negative feedback) and limit cycles (with

negative feedback present) were the prevailing dynamics,

whereas complex oscillations were rare. This suggests that

the cell cycle network can couple together multiple signaling

components with positive or negative feedback pathways

without destabilizing the network by inducing complex

dynamics. That is, bistability and limit cycles are robust

dynamical behaviors in this model. Robustness is critically

important in complex biological systems (Barkai and

Leibler, 1997; Carlson and Doyle, 2002; Hasty et al.,

2001; Kitano, 2002), to ensure that the cell’s essential

biological functions are preserved in the face of external

perturbations or defects.

SUMMARY

Our findings support the hypothesis that multisite phos-

phorylation of proteins is a critical biological mechanism

underlying the ultrasensitive response required to generate

dynamics in the cell cycle, and probably in other complex

biological signaling networks as well. An important im-

plication is that feedback loops based on multisite phos-

phorylation may be key therapeutic targets for influencing

network dynamics in complex biological systems. In addition,

using a random search strategy, we have shown that in the

case of the cell cycle network, many dynamically active

subsystems can be combined without destabilizing network

dynamics, and may actually enhance robustness.

APPENDIX

The mathematical models are formulated according to the signaling

pathways shown in Figs. 1 and 2. We used the law of mass action for

biochemical reactions to write the differential equations (Keener and Sneyd,

1998). All models share the same differential equations for CDC25, wee1,

and CAK. The parameter ranges that were used for our simulations are

shown in Table 4. The variables and rate constants in all the equations are

labeled in Figs. 1 and 2, unless otherwise specified below.

TABLE 4 Assigned intervals for parameters in the model

Parameter Range Parameter Range

ks;cyc 0–40 ku1 0–10

kd1 0–1 az1 0–1

k1 0–10 az2 0–1

k2 0–1 aw1 0–1

kpp 0–1 aw2 0–1

kd2 0–1 ah1 0–1

kd3 0–1 ah2 0–1

kd1u 0–10 bz1 0–10

kd2u 0–10 bz2 0–10

kd3u 0–10 bw1 0–10

ks;cdc25 0–40 bw2 0–10

k�Z1 0–100 bh1 0–10

k�Z2 0–100 bh2 0–10

ks;wee1 0–10 a0 0–0.15

k�w1 0–100 a1 0–1

k�w2 0–100 b1 0–1

ks;cak 0–40 b2 0–0.25

k�h1 0–100 g0 0–0.03

k�h2 0–100 g1 0–1

Fixed constants

kd;cdc25 ¼ 1/3 kd;wee1 ¼ 1/3 kd;cak ¼ 1/3 c0 ¼ 200

t ¼ 20 a2 ¼ 1 b0 ¼ 1 g2 ¼ 1
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Differential equations for the full model

The differential equations governing the regulation of cyclin and CDK are

(according to Fig. 1 A):

dy

dt
¼ ks;cyc � ðkd1 1 kd1uuÞy1 k1x1 � k2yc

dx

dt
¼ kcakx1 � kppx1 kcdc25x3 � kwee1x � ðkd3 1 kd3uuÞx

dx1

dt
¼ k2yc� k1x1 1 kppx � kcakx1 1 kcdc25x2

� kwee1x1 � ðkd2 1 kd2uuÞx1

dx2

dt
¼ kwee1x1 � kcdc25x2 1 kppx3 � kcakx2 1 kcdc25x4

� kmyt1x2 � ðkd2 1 kd2uuÞx2

dx3

dt
¼ kwee1x � kcdc25x3 1 kcakx2 � kppx3 1 kcdc25x5

� kmyt1x3 � ðkd2 1 kd2uuÞx3

dx4

dt
¼ kmyt1x2 � kcdc25x4 1 kppx5 � kcakx4 � ðkd2 1 kd2uuÞx4

dx5

dt
¼ kmyt1x3 � kcdc25x5 1 kcakx4 � kppx5 � ðkd2 1 kd2uuÞx5

c ¼ c0 � x � x1 � x2 � x3 � x4 � x5; (A)

where c is the free CDK and c0 the total CDK concentrations. The

differential equations for CDC25’s phosphorylation and dephosphorylation

are (according to Fig. 2 A):

dz0

dt
¼ ks;cdc25 � kd;cdc25z0 1 k

�
z1z1 � k

1

z1 z0

..

.

dzn

dt
¼ k1

zn zn�1 � k�znzn 1 k�zn1 1zn1 1 � k1

zn1 1zn � kd;cdc25zn

..

.

dzN

dt
¼ k

1

zNzN�1 � k
�
zNzN � kd;cdc25zN; (B)

where k1
zn ¼ azn 1 bznx is the rate constant for CDC25 phosphorylation

catalyzed by active cyclin-CDK(x), k�zn is the rate constant for de-

phosphorylation, and zn is the n-step phosphorylated CDC25. The

differential equations for wee1’s phosphorylation and dephosphorylation

are similar to the differential equations for CDC25, which are (according to

Fig. 2 B):

dw0

dt
¼ ks;wee1 � kd;wee1w0 1 k

�
w1w1 � k

1

w1w0

..

.

dwn

dt
¼ k

1

wnwn�1 � k
�
wnwn 1 k

�
wn1 1wn1 1

� k
1

wn1 1wn � kd;wee1wn

..

.

dwN

dt
¼ k

1

wNwN�1 � k
�
wNwN � kd;wee1wN; (C)

where k1
wn ¼ awn 1 bwnx is the rate constant of wee1 phosphorylation

catalyzed by active cyclin-CDK(x), k�wn is the dephosphorylation rate

constant, and wn is the n-step phosphorylated wee1. Similarly, the different

equations for CAK are (according to Fig. 2 C):

dh0

dt
¼ ks;cak � kd;cakh0 1 k

�
h1h1 � k

1

h1 h0

..

.

dhn

dt
¼ k

1

hn hn�1 � k
�
hnhn 1 k

�
hn1 1hn1 1 � k

1

hn1 1hn

� kd;cakhn

..

.

dhN

dt
¼ k

1

hNhN�1 � k
�
hNhN � kd;cakhN; (D)

where k1
hn ¼ ahn 1 bhnx is the rate constant for CAK phosphorylation

catalyzed by active cyclin-CDK(x), k�hn is the rate constant for CAK

dephosphorylation, and hn is the n-site phosphorylated CAK.

Since we are not interested in multistep phosphorylation in the negative

feedback loop, we model the negative feedback phenomenologically and use

the differential equation we used previously (Qu et al., 2003a):

du

dt
¼ ð x2

x
2
1K

2

M

� uÞ=t; (E)

where KM is Michaelis-Menton constant and t the time delay.

Differential equations for Model A

The differential equations for Model A are:

dy

dt
¼ ks;cyc � ðkd1 1 kd1uuÞy1 k1x1 � k2yc

dx

dt
¼ kCAKx1 � kppx1 kcdc25x3 � kWee1x � ðkd3 1 kd3uuÞx

dx1

dt
¼ k2yc� k1x1 1 kppx � kcakx1 1 kcdc25x2 � kwee1x1

� ðkd2 1 kd2uuÞx1

dx2

dt
¼ kwee1x1 � kcdc25x2 1 kppx3 � kcakx2 � ðkd2 1 kd2uuÞx2

dx3

dt
¼ kwee1x � kcdc25x3 1 kcakx2 � kppx3 � ðkd2 1 kd2uuÞx3

c ¼ c0 � x � x1 � x2 � x3: (F)

Differential equations for Model B

The differential equations for Model B are:

dy

dt
¼ ks;cyc � ðkd1 1 kd1uuÞy1 k1x � k2yc

dx

dt
¼ k2yc� k1x1 kcdc25x1 � kwee1x � ðkd3 1 kd3uuÞx

dx1

dt
¼ kwee1x � kcdc25x1 � ðkd2 1 kd2uuÞx1

c ¼ c0 � x � x1: (G)
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Differential equations for Model C

The differential equations for Model C are:

dy

dt
¼ ks;cyc � ðkd1 1 kd1uÞy1 k1x1 � k2yc

dx

dt
¼ kcdc25x1 � kwee1x � ðkd3 1 kd3uuÞx

dx1

dt
¼ k2yc� k1x1 � kcdc25x1 1 kwee1x � ðkd2 1 kd2uuÞx1

c ¼ c0 � x � x1: (H)
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