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ABSTRACT Fluorescence recovery after photobleaching (FRAP) is now widely used to investigate binding interactions in live
cells. Although various idealized solutions have been identified for the reaction-diffusion equations that govern FRAP, there has
been no comprehensive analysis or systematic approach to serve as a guide for extracting binding information from an arbitrary
FRAP curve. Here we present a complete solution to the FRAP reaction-diffusion equations for either single or multiple
independent binding interactions, and then relate our solution to the various idealized cases. This yields a coherent approach to
extract binding information from FRAP data which we have applied to the question of transcription factor mobility in the nucleus.
We show that within the nucleus, the glucocorticoid receptor is transiently bound to a single state, with each molecule binding
on average 65 sites per second. This rapid sampling is likely to be important in finding a specific promoter target sequence.
Further we show that this predominant binding state is not the nuclear matrix, as some studies have suggested. We illustrate
how our analysis provides several self-consistency checks on a FRAP fit. We also define constraints on what can be estimated
from FRAP data, show that diffusion should play a key role in many FRAP recoveries, and provide tools to test its contribution.
Overall our approach establishes a more general framework to assess the role of diffusion, the number of binding states, and
the binding constants underlying a FRAP recovery.

INTRODUCTION

The past few years have witnessed a dramatic increase in the

application of fluorescence recovery after photobleaching

(i.e., FRAP; reviewed in Meyvis et al., 1999; White and

Stelzer, 1999; Reits and Neefjes, 2001; Houtsmuller and

Vermeulen, 2001). Upon their development in the 70’s,

photobleaching techniques attracted a small cadre of

biophysicists who utilized these methods primarily to

determine diffusion constants of biomolecules in membranes

(Liebman and Entine, 1974; Poo and Cone, 1974; Edidin

et al., 1976; Schlessinger et al., 1976). Recently, with the

advent of GFP fusion protein technology, the number of

published FRAP experiments has skyrocketed. With this

increase in FRAP studies has come an assortment of

interpretations of FRAP data beyond measurement of

diffusion constants. Indeed most recent FRAP experiments

seek to infer something about how the GFP-tagged protein

interacts with binding sites within the cell (e.g., McNally

et al., 2000; Phair and Misteli, 2000). Toward this end, much

of the current analysis is qualitative, assessing simply

whether FRAP recovery curves are slower or faster after

specific cellular perturbations (e.g., Dou et al., 2002). Faster

or slower recoveries, respectively, are presumed to reflect

weaker or tighter binding. In other cases, conclusions are

drawn about the shape of a single recovery curve and how it

may reflect underlying biological processes. For example,

curves with a shoulder have been analyzed as containing fast

and slow components that could correspond to diffusion and

binding, or to two different binding states (Tardy et al., 1995;

Kimura et al., 2002; Dundr et al., 2002; Carrero et al., 2003).

More sophisticated quantitative analyses have also been

performed to obtain rate constants for binding (Thompson

et al., 1981; Kaufman and Jain, 1990; Berk et al., 1997;

Bulinski et al., 2001; Coscoy et al., 2002; Dundr et al.,

2002), although a number of these have examined regimes

where the reaction dominates, presuming that diffusion can

be safely ignored. Other attempts to simplify the full

reaction-diffusion model have provided approximate sol-

utions that allow the estimation of the binding rate constants

but have yet to characterize the appropriateness of the

assumptions made and the quality of the estimates (e.g.,

Carrero et al., 2003).

What is missing from this large compendium of

experimental data and interpretive approaches is a com-

prehensive, analytical treatment of FRAP that provides

a straightforward and consistent set of guidelines for how

to analyze and interpret photobleaching data when binding

interactions are present. This is a prerequisite if FRAP is to

become a reliable and widely used approach to understand-

ing and quantifying binding mechanisms within a cell.

Various special cases of FRAP with binding have been

considered previously, such as when diffusion dominates or

when binding dominates (Kaufman and Jain, 1990, 1991;

Bulinski et al., 2001), but the full spectrum of behaviors has

not been characterized. The same system of equations that

describes FRAP forms the theoretical basis of fluorescence

correlation spectroscopy, where similar idealized models

have also been utilized to determine binding rates (Elson and
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Magde, 1974; Elson, 1985, 2001). The connections among

this disparate set of results are lacking, so no synthesis is

available of all predicted FRAP recoveries in the presence of

binding.

Here we present a detailed analysis of the simplest realistic

case of binding that can be analyzed by FRAP, namely

a single binding interaction in the presence of cellular

diffusion, and also show how this can be extended to cases

with multiple, independent binding interactions. Our goal is

to provide a thorough, mathematically rigorous foundation

for extracting binding information from FRAP recovery

data. As such, we include an extensive Appendix describing

in detail the mathematics underlying our analysis. In the

main body of the text, we outline the key assumptions

leading to the derivation of the FRAP model, and highlight

the principal results and conclusions of our analysis.

As an example of the method’s biological utility, we apply

it to the problem of transcription factor mobility in the

nucleus. In recent years, FRAP experiments have revealed

that most nuclear proteins, including transcription factors,

are highly mobile. Although transient binding interactions

are presumed to influence the FRAP recovery of a transcrip-

tion factor (Misteli, 2001), little is known about what these

binding interactions are. Some evidence suggests that one

class of transcription factors, the steroid hormone receptors,

are bound to the nuclear matrix, an insoluble nuclear

compartment devoid of DNA. These conclusions are derived

from experiments in which either cellular ATP levels have

been depleted (Stenoien et al., 2001) or proteasome activity

has been inhibited (Stenoien et al., 2001; Deroo et al., 2002;

Schaaf and Cidlowski, 2003) in cells containing GFP-tagged

steroid hormone receptors. In either case, slower FRAP

recoveries result, and extraction procedures demonstrate

association of the steroid hormone receptor with the nuclear

matrix (Tang and DeFranco, 1996). This has led to the

suggestion that these receptors are normally bound to the

nuclear matrix, and that their dissociation is promoted by

energy and proteasome activity.

An alternative view is that these inhibition conditions

induce an abnormal association with the nuclear matrix.

Some investigators have suggested that the nuclear matrix is

itself an artifact of the extraction conditions used to identify

it (Pederson, 2000). An untreated cell examined by FRAP

offers the opportunity to assess nuclear matrix binding

without any perturbation of the system. More generally, it is

of considerable interest to identify how many different

binding states for a transcription factor are present in the

nucleus of a normal cell and what the percent occupancy of

each state is. This information is required as a starting point

to understand nuclear mobility and its regulation. Mobility

rate must play a key role in determining the search time

required for a transcription factor to find its specific promoter

amid a multitude of other binding sites in the nucleus.

Here we have applied our theory for FRAP recovery to

nuclear mobility of a GFP-tagged glucocorticoid receptor

(GFP-GR) in nuclei of both normal and ATP-depleted cells.

Our results indicate that GFP-GR diffuses from one binding

site to the next with an average time of ;13 ms per binding

event. Our analysis also suggests that in normal cells nuclear

matrix binding at best accounts for a small fraction of bound

GFP-GR with most GFP-GR molecules (;90%) binding to

a heretofore unidentified state.

More generally, our theoretical treatment provides several

important insights for all biological FRAP analyses. First, we

have defined constraints on what can be estimated from

FRAP data. We show in several cases how the data enable

evaluation only of the ratio of certain parameters, not their

individual values. This is critical information for purely

computational analyses, where such mathematical limita-

tions may go unappreciated and lead to poor estimates of

the individual parameters. Second, we have clarified the

contribution of diffusion, binding, and the number of binding

states to a FRAP recovery. We show that fast and slow

components of a FRAP curve may sometimes represent

weak and tight binding states, but that in many cases this is

not true. Finally, we have found that diffusion will typically

have to be incorporated in the analysis of many biological

FRAP recoveries, even in very slow recoveries that last

much longer than the recovery time for free diffusion.

Ignoring this contribution will lead to erroneous conclusions.

METHODS

Cell lines

Mouse adenocarcinoma cell line 3617 was used for most

experiments. The cells stably express GFP-GR under the

control of a tetracycline-off system (Walker et al., 1999). For

control experiments with GFP-only containing cells, the

parental cell line (3134 cells) was transfected with a GFP

plasmid (pEGFPC1, Clontech, Palo Alto, CA). Cells were

grown and prepared for fluorescence imaging as previously

described (Müller et al., 2001).

ATP depletion

The ATP-depletion conditions were similar to those used

previously for GR (Tang and DeFranco, 1996), except

adapted for microscopy. Cells were treated with 10 mM

sodium azide (Sigma, St. Louis, MO) in glucose-minus-

DMEM supplemented with 6 mM 2-deoxyglucose (Sigma)

for 60 min and then brought to the microscope for FRAP

experiments for up to 30 min longer.

Quantification of GFP-GR associated with the
nuclear matrix

The nuclear matrix extraction procedure was similar to that

previously described by Fey et al. (1986), adapted for

visualization by fluorescence microscopy with a subsequent
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fixation step. Briefly, cells were treated with cytoskeleton

buffer for 10 min at 4�C, extracted with 250 mM ammonium

sulfate at 4�C for 5 min, and digested with DNase I for 30

min at room temperature. Cells were then fixed with 2%

paraformaldehyde and examined by fluorescence micros-

copy on a Leica DMRA microscope (Leica, Exton, PA)

equipped with a Photometrics Sensys charge-coupled device

camera (Photometrics, Tucson, AZ) and images of nuclei

recorded. Total nuclear fluorescence was measured with

Metamorph software (Universal Imaging, Downingtown,

PA).

FRAP protocol

FRAP experiments were performed on a Zeiss 510 confocal

microscope (Carl Zeiss, Thornwood, NY) with either a 253/

0.8 NA dry objective for GFP-only cells, or a 1003/1.3 NA

oil-immersion objective for GFP-GR cells. Cells were kept at

37�C using an air-stream stage incubator (Nevtek, Burns-

ville, VA). Bleaching was performed with a circular spot

using the 488- and 514-nm lines from a 40-mW argon laser

operating at 75% laser power. A single iteration was used for

the bleach pulse, which lasted 0.8–40 ms depending on the

bleach spot size. Fluorescence recovery was monitored at

low laser intensity (0.2% of a 40-mW laser) at 0.8–40-ms

intervals, depending on the experiment.

FRAP data manipulation

Approximately 10 separate FRAPs were performed and then

averaged to generate a single FRAP curve. The temporal

resolution was kept constant while measuring recovery, but

this led to a very large number of closely spaced points in the

second, slower phase of the recovery curve. To alleviate this,

we averaged 10–30 adjacent points in this slower part of the

curve. This generated roughly equally spaced points along

the recovery curve and therefore avoided overly weighting

the slower phase of the curve during fitting.

FRAP fitting

The model equations were programmed in Matlab (The Math

Works, Natick, MA). The Matlab routine nlinfit was used to

fit the models to experimental data. Using simulated FRAP

curves, we found that nlinfit reliably converged to the correct

fit for recoveries exhibiting either effective diffusion or

reaction dominant behavior. In contrast, fits to simulated full

model data often failed if the initial guess for one of the

parameters was far from the true value. As a result, full

model fits with real data were always performed by first

sampling a grid of all possible k�on and koff values in 100.1

increments on a log scale to find the pair that yielded the

smallest sum of residuals between the full model prediction

and the experimental data. Then this (k�on; koff) pair was used
as the initial guess in the nlinfit routine.
We reduced the number of fitted parameters in all full

model fits by substituting a value for the free-diffusion

constant Df. This value for GFP-GR (9.2 mm2/s) was

estimated from the measured value for GFP only (15.0 mm2/

s) by correcting for the additional mass of GR (94 kD for GR

vs. 27 kD for GFP). Since Df a M�1/3, where M is mass, the

predicted Df for GFP-GR is ;60% of that for GFP alone.

Error analysis

We report all errors here as 95% confidence intervals. For all

parameters estimated in the fit, the confidence intervals were

directly produced by the nlinfit routine. Some of the

estimates reported here depend not only on these fitted

parameters, but also on the bleach spot size. Confidence

intervals for the bleach spot size were determined from at

least 10 measurements of the apparent spot size either in

fixed cells for the smaller bleach spot, or in live cells for the

larger bleach spots by measurement immediately (;9 ms)

after the bleach.

For pure or effective diffusion fits, the error in the bleach

spot size could be directly incorporated into the final estimate

using the formula for tD (Eq. 8) or k*on/koff (Eq. 9) and the

rules for convolution of errors. For full model fits, the bleach

spot size enters as a term in the Laplace transform (Eq. 6),

which is then inverted before fitting. Thus to estimate the

impact of the bleach spot size error for full model fits, we

produced estimates of k*on and koff using values for the bleach
spot size at the endpoints of its 95% confidence interval. The

resultant range in k*on and koff values was much larger than

the 95% confidence interval computed by the nlinfit routine,
an error based solely on the noise in the FRAP recovery data.

Thus the error in the bleach spot size contributed more

significantly, and so for this full model case, errors on k*on
and koff values were taken as the endpoints produced from

the bleach spot size errors.

MODEL

General equation: diffusion plus binding

We outline first the general equations underlying FRAP for a single binding

reaction. Our nomenclature for the reaction is

F1 S�
koff

kon
C; (1)

where F represents free proteins, S represents vacant binding sites, C
represents bound [FS] complexes, and kon and koff are the on- and off-rates,

respectively. The equations for FRAP describing the preceding binding

reaction must also incorporate diffusion. The most general case is a set of

three coupled reaction-diffusion equations where f ¼ [F], s ¼ [S], and c ¼
[C],
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@f

@t
¼ Df=

2
f � konfs1 koffc

@s

@t
¼ Ds=

2
s� konfs1 koffc

@c

@t
¼ Dc=

2
c1 konfs� koffc: (2)

Here =2 is the Laplacian operator and D represents the diffusion coefficient

for each of the three species. The remaining terms reflect the standard

chemical kinetics for the binding reaction in Eq. 1.

These equations can be simplified considerably by two assumptions that

are applicable in many biological situations. The first simplifying

assumption is that the biological system has reached equilibrium before

photobleaching. For GFP fusion proteins, this means that the total amount of

both GFP fusion protein and its binding sites remains constant over the time

course of the fluorescence recovery. This is reasonable since most biological

FRAPs recover on a timescale of seconds to several minutes, whereas GFP-

fusion protein expression changes over a time course of hours, and is

typically at a constant level by the time the FRAP experiment is performed.

Therefore we assume equilibrium, and denote the corresponding equilibrium

concentrations of F, S, and C by Feq, Seq, and Ceq. Although the act of

bleaching changes the number of visible free and complexed molecules (F or

C), it does not change the number of free binding sites. Therefore s ¼ Seq is

a constant throughout the photobleaching recovery. This eliminates the

second equation in Eq. 2, and also enables us to replace the variable s in the

remaining two equations with a constant Seq. As a result, we can define

a pseudo-first-order rate constant given by konSeq ¼ k*on. In what follows, we

refer to this value as the pseudo-on rate.

The second simplifying assumption is that the binding sites are part of

a large, relatively immobile complex, at least on the time- and length-scale of

the FRAP measurement. This is a widely used approximation for FRAPs of,

for example, either cytoskeletal or DNA binding proteins (Bulinski et al.,

2001; Coscoy et al., 2002; Dundr et al., 2002). Ignoring diffusion of the

bound complex results in Dc ¼ 0 in the expressions in Eq. 2.

With these two assumptions, the expressions in Eq. 2 reduce to

@f

@t
¼ Df=

2f � k�on f 1 koffc

@c

@t
¼ k

�
on f � koffc: (3)

Before the bleach, as noted above, the system is at equilibrium, and F and C

have achieved steady-state values, Feq and Ceq, so that the ratio of free/

bound molecules is determined by

df

dt
¼ dc

dt
¼ 0 0 k

�
on Feq ¼ koffCeq or

Feq

Ceq

¼ koff
k
�
on

: (4)

Total equilibrium, as given above, is not altered by photobleaching, but the

equilibrium for bleached and unbleached molecules is disturbed. Specifi-

cally, at the site of bleaching, the concentration of fluorescent molecules is

significantly reduced, and so the return to equilibrium concentrations of

fluorescence will be governed by the expressions in Eq. 3. Thus in what

follows, f and c represent the concentration of fluorescent molecules after

a photobleach that occurs at t ¼ 0. The measured FRAP recovery data is the

sum of free and bound fluorescence, averaged over the bleach spot: frap(t)¼
avg(f(t)) 1 avg(c(t)).

In what follows, we presume that the experimental data can be

normalized such that the FRAP recovery ranges from 0 to 1. This

normalization is acceptable if individual FRAP curves are analyzed one cell

at a time. Typically, however, curves frommultiple cells must be averaged to

obtain smooth data, and in these circumstances care is required in pooling

data. It is critical that cells of comparable fluorescent intensities be averaged

if the data are subsequently normalized. Otherwise, different cells will have

different levels of expressed fusion proteins, yielding different fractions of

bound and free molecules in each cell. This in turn will lead to different

FRAP recoveries if binding interactions are present, a feature that can in fact

be exploited to obtain evidence for such interactions (Icenogle and Elson,

1983; Safranyos et al., 1987).

The final height of the FRAP recovery equals the sum of the equilibrium

concentrations Feq 1 Ceq, and so normalization to 1 sets Feq 1 Ceq ¼ 1

(which presumes that the bleach spot is small relative to the total cell

volume, otherwise some measurable fraction of fluorescence will be lost

after the bleach). Combining the preceding equality with Eq. 4 yields the

following relationships for the equilibrium concentrations:

Feq ¼
koff

k
�
on 1 koff

and Ceq ¼
k
�
on

k
�
on 1 koff

: (5)

We derive our solutions to the expressions in Eq. 3 for the case of a circular

bleach spot. Circular bleach spots are now feasible and widely used in FRAP

experiments performed on current scanning confocal microscopes. We also

presume that there is a homogeneous distribution of fluorescence in the cell,

and that the bleach spot is small relative to the size of the fluorescent

compartment. Our model cannot be directly applied to rectangular bleach

spots. Nor should it be applied to complicated cellular geometries such as

endoplasmic reticulum, or to any highly heterogeneous distribution of

fluorescence.

Finally, we adopt the convention of previous theoretical FRAP analyses

and assume for simplicity two-dimensional diffusion in the plane of focus.

This assumption is appropriate when the bleaching area forms a near-

cylindrical shape through the cell, as occurs for a circular bleach spot of

reasonable diameter. In this case, axial terms disappear from the Laplacian

(=2) in the expressions in Eq. 3 and only the radial component remains.

Analysis of the full reaction-diffusion equations

A strategy for obtaining a solution to the full reaction-diffusion system (Eq.

3) is to perform a Laplace transform. By analogy with the heat conduction

problem between two concentric cylinders (Carslaw and Jaeger, 1959),

a solution involving Bessel functions can be devised. Starting from the

expressions in Eq. 3, we derive in the Appendix the general solution for the

FRAP recovery within a circular bleach spot. We show there that the average

of the Laplace transform of the fluorescent intensity within the bleach spot is

given by

frapðpÞ ¼ 1

p
� Feq

p
ð1� 2K1ðqwÞI1ðqwÞÞ

3 11
k
�
on

p1 koff

� �
� Ceq

p1 koff
; (6)

where q depends on k*on, koff, and Df (see Eq. 15 in the Appendix), w is the

radius of the bleach spot, I1 and K1 are modified Bessel functions of the first

and second kind, and p is the Laplace variable that inverts to yield time. Thus

the inverse transform of Eq. 6 can be computed numerically to yield the

predicted FRAP recovery as a function of time. The numerical inversion

requires ;1 s with the Matlab routine invlap.m (Hollenbeck, 1998) running

on a PC. This permits ready evaluation of how the predicted recovery

depends on each of the parameters associated with the FRAP model.

This full model describes all possible behaviors of a FRAP recovery for

a single binding reaction in the presence of diffusion. Therefore the model

can be used to fit any FRAP recovery that involves a single binding reaction.

In previous theoretical analyses of FRAP, three simplified cases of our full

model solution have been considered. We refer to these as pure-diffusion
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dominant, effective diffusion, and reaction dominant behaviors. The pure-

diffusion dominant solution is well understood and appreciated. The

effective diffusion solution is also well understood, but virtually unknown in

most of the FRAP community. The reaction dominant solution is not widely

known, nor has it been completely developed. In what follows, we wish to

determine when the full model is adequately described by one of these

simplified scenarios. As a precursor, we explain each of these simplified

scenarios and for each, either review or develop the complete solution for the

FRAP recovery.

Pure-diffusion dominant

A first simplifying scenario arises when most of the fluorescent molecules

are free. Under these conditions, FRAP measures primarily free diffusion of

the fluorescently tagged molecule. For this free fraction, binding can be

ignored and the expressions in Eq. 3 reduce to the diffusion equation,

@f

@t
¼ Df=

2
f : (7)

The FRAP response for free diffusion has been extensively analyzed

(Axelrod et al., 1976). For a circular bleach spot a closed form solution exists

involving modified Bessel functions (Soumpasis, 1983) as

frapðtÞ ¼ f ðtÞ ¼ e
�tD

2t I0

� tD

2t

�
1 I1

� tD

2t

�h i
;

where

tD ¼ w2
=Df : (8)

Thus when binding is almost nonexistent and most molecules are free, the

FRAP recovery curve should be fit by one parameter tD in Eq. 8, thereby

determining the diffusion constant Df.

Although solutions for the case of pure diffusion are well known, the

relationship of the fitted diffusion constant to the molecular diffusion process

underlying it is less clear. The complex geometry of cellular compartments

and subcellular space influences the measured macroscopic diffusion

constant (Feder et al., 1996; Siggia et al., 2000). For our purposes, the

pure-diffusion constant measured by FRAP of a nonbinding protein, such as

GFP unfused to a target protein, is sufficient to account for the contribution

of diffusive processes in the FRAP recovery. Knowledge of this

macroscopic diffusion behavior then enables us to extract the binding

information contained in a FRAP recovery curve for a protein that both

diffuses and binds.

Effective diffusion

The second simplified case for the expressions in Eq. 3 arises when the

reaction process is much faster than diffusion. This implies that at any

location within the bleach spot, the binding reaction rapidly achieves a local

equilibrium. Under these conditions, Crank (1975) has shown that reaction-

diffusion equations reduce to a simple diffusion equation but with a different

diffusion constant, known as the effective diffusion constant, Deff. (Note the

same term has been used by some authors to refer to diffusion in the cellular

milieu—White and Stelzer, 1999; Siggia et al., 2000; Carrero et al.,

2003—and this may or may not relate to the effective diffusion defined by

Crank.) Here, we use the term effective diffusion to mean the slowed

diffusion due to binding with

Deff ¼
Df

11 ðk�on=koffÞ
� � ; (9)

where Df is the diffusion constant of the molecule in the absence of binding,

and the off- and pseudo-on rates are as defined above. Note that the ratio of

k�on=koff is the pseudo-equilibrium constant, which is the ratio of bound/free

molecules (Eq. 4). Df can be determined by first measuring FRAP recoveries

for GFP. The diffusion constant of the GFP fusion protein can then be

calculated by allowing for its extra mass relative to GFP alone, and using the

fact that, in the simplest scenario, D a M�1=3 (see Methods). Thus,

determination of Deff yields k
�
on=koff :

Since effective diffusion is governed by the standard diffusion equation,

Deff can be determined by fitting the FRAP recovery curve with the diffusion

model (Eq. 8). The fit will yield a value for tD as

tD ¼ w
2
=Deff : (10)

This gives an estimate for Deff, and therefore the ratio k�on=koff from Eq. 9.

Note that the previous case, pure-diffusion dominant, is a subset of effective

diffusion in which the binding is very weak, and so Deff ¼ Df. For practical

reasons, we have distinguished pure-diffusion dominant from effective

diffusion because pure-diffusion dominant behavior provides no useable

information about binding, whereas effective diffusion does.

Reaction dominant

The third simplified scenario arises when diffusion is very fast compared

both to binding and to the timescale of the FRAP measurement. Free

molecules instantly equilibrate after the bleach, so that diffusion is not

detected in the FRAP recovery. Unlike the pure and effective diffusion

scenarios, a complete solution has not been developed for the case where the

binding reaction dominates. Previously, Bulinski et al. (2001) demonstrated

analytically that the rate constant for FRAP recovery is identical to the

dissociation rate constant, koff. We have extended the analysis to enable the

estimation of both k*on and koff from the FRAP recovery curve. As shown in

detail in the Appendix, we find the following solution, which describes the

total fluorescence recovery, f(t)1c(t), over time:

frapðtÞ ¼ 1� Ceqe
�koff t: (11)

Ceq depends only on the off- and pseudo-on rates (Eq. 5), so the fit to the

FRAP recovery in the reaction dominant case yields k*on and koff.

A surprising result of the preceding analysis is that the rate of FRAP

recovery depends only on the off-rate. A similar result has been obtained in

a less general context by Bulinski et al. (2001) and in a Fourier space

analysis by Kaufman and Jain (1991). In all cases, the pseudo-on rate

disappears from the exponential term for FRAP recovery because of the

well-mixed assumption.

RESULTS OF SIMULATION AND
MATHEMATICAL ANALYSIS

Evaluation of (k*on, koff) parameter space for the
full reaction-diffusion equations

Given solutions for the full model and the three idealized

cases of this model, we now investigate when these

simplifications hold. Four parameters influence the solution

to the general FRAP recovery as given by Eq. 6. These are

the free diffusion constant (Df), the size of the bleach spot

(w), the pseudo-on rate (k*on), and the off-rate (koff). Two of

these four parameters are fairly similar from one laboratory

to the next, namely the diffusion constant and the bleach spot

size. Measured values for the cellular diffusion of free GFP
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range from;15–40 mm2/s (Swaminathan et al., 1997; Arrio-

Dupont et al., 2000; Coscoy et al., 2002), and in most FRAP

experiments, the bleach spot size is on the order of 1 mm in

diameter. On the other hand, reported values for binding-

association and binding-dissociation rate constants can vary

over a much larger range (;106-fold). Thus to investigate

the range of behaviors exhibited by the full model (Eq. 6), we

set the diffusion constantDf equal to 30 mm
2/s and the bleach

spot radius to 0.5 mm, and then varied the off- and pseudo-on

rates over a 1010-fold range. Since w2/Df defines the

timescale of the recovery, choosing particular values for w
andDf does not prevent us from observing the entire range of

behavior of this system.

To identify values of the rate constants where the idealized

cases hold (i.e., pure-diffusion dominant, effective diffusion,

or reaction dominant), we used the full model to compute

a FRAP recovery for a particular value of (k*on, koff). We then

used each of the three idealized models to generate

a predicted FRAP recovery curve by substituting (k*on, koff)
into the equations for the idealized cases. The degree of fit

between the full model and each idealized model was

assessed. Depending on the particular values of (k*on, koff),
four outcomes were obtained: The full model was well fit by

both pure and effective diffusion (Fig. 1 A); or it was fit only
by effective diffusion (Fig. 1 B); or it was fit only by reaction
dominant (Fig. 1 C); or it was fit by none of these

simplifications (Fig. 1 D). This indicates that for particular
values of (k*on, koff) the idealized models can accurately

predict the FRAP recovery of a single binding reaction.

To determine the range of rate-constant values over which

a particular idealized behavior was observed, we systemat-

ically varied k*on and koff and compared full model recoveries

to recoveries for the idealized cases. Since we wanted to

compare curves over the full range of the FRAP recovery, we

first used the full model to determine the time required to

reach 99% recovery for each (k*on, koff). The goodness of fit
of each idealized case to the full model was quantified by

computing the sum of residuals between the model curves at

200 equally spaced time points over the full range of

recovery to 99%. For each comparison of the full model to an

idealized model, a contour plot was constructed for the sum

of residuals as a function of (k*on, koff) (Fig. 2, A–C). These
contour plots define the shapes of the regions where the

different idealizations hold. Larger residuals indicate pro-

gressively less accurate fits of the idealized models.

To define the boundary of each idealized domain, we

estimated a threshold value for the sum of residuals at which

the fits began to fail. By examining a number of fits like those

in Fig. 1, we established a threshold of 1 for the sum of

residuals beyond which the curves were obviously different.

Superimposing the contour line corresponding to 1 from

each of the three idealized cases (Fig. 2, A–C) produced a

simplified map of the (k*on, koff) parameter space (Fig. 2 D).
We also characterized the rate-constant parameter space

using two practical features easily assayed in FRAP

experiments. These are the dependence on bleach spot size

and the time required for full recovery. A dependence on

bleach spot size is an experimental approach to assess

whether diffusion contributes to the FRAP recovery. Using

the full model we simulated this experiment by generating

FRAP curves with the radius of the bleach spot set to either

1 mm or 2 mm. For the larger spot size, the time for 99%

recovery was determined. Then over this time span, the

recovery curves for the two spot sizes were calculated. The

difference between the two curves was measured at 200

equally spaced time points, and the sum of the residuals

plotted as a contour plot in (k*on, koff) parameter space (Fig.

3 A). The region with low residuals corresponds to the

domain where the recovery is independent of bleach spot

size, and therefore independent of diffusion. As expected,

this region is the reaction dominant regime where diffusion is

presumed to be so rapid that it can be neglected. Observe,

however, that the majority of the rate-constant parameter

space is dependent on bleach spot size. This shows that

diffusion plays a role in most recoveries, at least in the

absence of constraints on the values for the off- and

pseudo-on rates.

As a second practical result, we plotted the distribution of

FRAP recovery times as a function of the off- and pseudo-on

rates (Fig. 3 B). The recovery time was the time required for

the full model to achieve 99% recovery. Typical FRAP

recoveries studied experimentally vary anywhere from

seconds to several minutes, and in a few cases up to several

hours. These time ranges span the reaction dominant, full

model, or effective diffusion domains, suggesting that any of

these behaviors could be represented in actual FRAP

experiments. Of particular practical interest is the fact that

arbitrarily long recoveries exist in the full model and

effective diffusion regimes. This is a counterintuitive result

because diffusion by itself occurs on a much faster timescale,

yet in these regimes diffusion contributes throughout the

long recovery and cannot be ignored. Therefore a long

recovery time is not sufficient grounds to accept a reaction

dominant model.

The contour plot of recovery times (Fig. 3 B) also provides
some additional insights into the three idealized domains of

pure-diffusion dominant, effective diffusion, and reaction

dominant. The pure-diffusion dominant regime corresponds

approximately to the domain with recovery times of,1 s. In

this case binding is so weak that it does not slow down the

FRAP recovery. The effective diffusion regime corresponds

approximately to the region where the contour lines for

recovery times are parallel with slope equal to 1. This

follows from the fact that the effective diffusion constant

depends only on the ratio of k*on/koff (see Eq. 9), so constant

values of this ratio yield the same recovery time. This

generates a family of lines with slope 1 in the log/log rate-

constant parameter space. Finally the reaction dominant

domain corresponds approximately to the region where the

contour lines for recovery times are parallel and vertical.
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Here the reaction dominant idealization results in a FRAP

recovery rate that depends only on the off-rate (Eq. 11), so

for constant koff, the recovery time is the same.

A simplified view of rate-constant
parameter space

The basic geometry of the rate-constant parameter space

determined above can be explained with a few rules. The

boundaries dividing the four separate regions of parameter

space can be approximated by three lines (Fig. 3 C). The
pure-diffusion dominant regime occurs when the ratio of

bound to free molecules is ;1% or less. From Eq. 4,

Ceq=Feq ¼ k�on=koff ¼ 0:010logðk�onÞ ¼ logðkoffÞ� 2: Hence

the border of the pure-diffusion dominant regime in log/log

parameter space is approximated by a line of slope 1 and

y-intercept of �2 (red line in Fig. 3 C). As noted above, the

pure-diffusion dominant regime is actually a subdomain of

effective diffusion. Therefore the practical effective diffusion

regime is bounded on the right by the pure-diffusion

dominant regime, and approximately defined by the remain-

ing region above the line log (k*on) ¼ 3 (green line in Fig. 3

C). Similarly, the reaction dominant regime is bounded

below by the pure-diffusion dominant regime, and approx-

imately defined by the remaining region below the line log

(k*on) ¼ 0 (orange line in Fig. 3 C). The remaining domain

requires the full model (Eq. 6). The exact location of the

boundaries between these regimes is dependent upon the

applicable values of w and Df (Fig. 3 D).

FIGURE 1 Model-predicted FRAP recovery curves. The FRAP recovery predicted by each idealized model is compared to that predicted by the full model

(Df ¼ 30 mm2/s, w¼ 0.5 mm). Domains are identified where the full model is well fit by an idealized model (A–C), but this is not always the case (D). (A) With

very weak binding, the pure-diffusion dominant model (red line) provides a good fit (sum of residuals¼ 0.08) to the full model (bold black line). Note that the

effective diffusion model result is obscured by the pure-diffusion dominant curve and also provides a good fit; pure-diffusion dominant is a particular case of

the effective diffusion model, namelyDeff¼Df. The reaction dominant model (orange line) provides a very poor fit. (B) With a high k�on; the effective diffusion
model (green line) alone provides a reasonable fit to the full model (sum of residuals ¼ 0.89). (C) With low k�on and low koff, the reaction dominant model

(orange line) provides a good fit with the full model (sum of residuals ¼ 0.66). (D) For certain values of k�on and koff, none of the idealized models result in

a good fit to the full model (pure-diffusion dominant sum of residuals ¼ 16.6; effective diffusion sum of residuals ¼ 8.30; and reaction dominant sum of

residuals ¼ 8.54).
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These boundaries as defined empirically clarify apparently

conflicting theoretical approximations of reaction-diffusion

equations reported in the literature. Crank (1975) concludes

that boundaries between different regimes depend on the

magnitude of koff. Kaufman and Jain (1990) assert that the

boundaries depend on the magnitude of k*on. Elson and co-

workers conclude that the sum of k*on 1 koff is critical (Elson
and Magde, 1974; Elson and Reidler, 1979). All of these

constraints can be applied to explain subregimes of our rate-

constant parameter space, but they cannot account for the

complete parameter space. Rather our rules detailed above

provide the simplest explanation, namely that for a large free

pool (Ceq/Feq # 0.01), pure diffusion dominates, otherwise

the magnitude of k*on partitions the remainder of the space

into reaction dominant, full model, or effective diffusion.

To confirm these empirical observations, we show

mathematically in the Appendix that our full model solution

reduces to each of the idealized cases by applying the

constraints outlined in Fig. 3 C. Namely, the full model (Eq.

6) simplifies to:

1. The pure-diffusion dominant model (Eq. 8) when the free

pool is large ððk�on=koffÞ � 1Þ;
2. The effective-diffusion model (Eqs. 8–10) when the

pseudo-on rate is large compared to the characteristic

diffusion time ððk�onw2=DfÞ � 1Þ; and
3. The reaction-dominant model (Eq. 11) when the pseudo-

on rate is small compared to the characteristic diffusion

time ððk�onw2=DfÞ � 1Þ and Ceq is significantly large

ððkoff=k�onÞ& 1Þ:

See Derivation of Idealized Solutions from the Full Model in

the Appendix for the derivations.

In the Appendix, we also examine mathematically the

transition between the pure-diffusion dominant regime and

FIGURE 2 Contour plots of model fits. For each idealized model, a contour plot of the sum of residuals between the idealized model and the full model

demonstrates the degree of fit as a function of k�on and koff (Df ¼ 30 mm2/s, w ¼ 0.5 mm). (A) The pure-diffusion dominant model results in a good fit (i.e., the

sum of residuals becomes small) as k�on becomes small relative to koff (lower-right corner). (B) The effective diffusion model domain is made up of the pure-

diffusion dominant regime plus the area with large values of k�on: (C) The reaction dominant model matches the full model when both k�on and koff are small

(lower-left corner). (D) Superimposing the contour lines of the sum of residuals equal to 1 from parts A–C reveals the domains for each idealized model, as well

as a region where none of the idealized models fit (full model only).
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the reaction dominant regime, as well as the transition

between the reaction dominant regime and the effective

diffusion regime. The crossover from pure-diffusion dom-

inant to reaction dominant occurs in the lower half of the

plot in Fig. 3 C, namely for ðk�onw2=DfÞ � 1: With this

constraint, we show in the Appendix that the full model

solution can be simplified to the sum of two terms, one

representing the pure-diffusion component, multiplied by the

size of the free pool, plus a second representing the reaction

component, multiplied by the size of the bound pool (see Eq.

41 and its derivation in the Appendix). Thus in this domain

of (k*on, koff) parameter space, the FRAP recovery curve is

always the sum of two independent processes, diffusion plus

reaction, each of which contributes to the total recovery

based on both the size of the free and bound pools and on the

characteristic times for recovery w2/Df and 1/koff. Typically,
one process dominates, and this leads to the zones we have

called either pure-diffusion dominant or reaction dominant.

We see a sharp transition between these zones in Fig. 3 C
because we used 99% recovery as an arbitrary threshold for

full recovery. When the free pool falls below 99%, then the

bound pool with its typically much slower recovery

timescale of 1/koff becomes a significant component of the

recovery to 99% of final fluorescence. As a result, recovery

times slow suddenly upon crossover to the reaction dominant

regime.

FIGURE 3 Practical observations from FRAP simulations. (A) A simulated test for bleach spot size dependence revealed a low sum of residuals between full

model predictions when both k�on and koff were small (Df¼ 30 mm2/s, w1¼ 1 mm, and w2¼ 2 mm). This corresponds well with the reaction dominant regime in

Fig 2 D, the only domain independent of diffusion. (B) The contour plot shows the time (t99) predicted by the full model for FRAP recovery to 99% of original

fluorescence (Df¼ 30 mm2/s, w¼ 0.5 mm). The contour lines of the sum of residuals equal to 1 for the idealized models (Fig. 2D; colored lines) are overlaid on

top of the recovery times (black lines). Recovery times for typical FRAP experiments are generally between 1 and 1000 s, indicating that reaction dominant,

effective diffusion, or full model behavior are all possible. (C) The boundaries between the idealized model domains can be approximated by three lines (see

text; bold lines in figure), which are superimposed on the sum-of-residuals-equal-to-1 contour lines for each idealized model (Df¼ 30 mm2/s and w¼ 0.5 mm).

(D) The precise locations of the idealized model domains are dependent upon the bleach spot size and cellular-diffusion constant of the fluorescently labeled

protein. This contour plot shows how the idealized model domains shift as the bleach spot radius, w, and diffusion constant, Df, are changed (dash-dot line,

Df ¼ 35 mm2/s, w ¼ 0.4 mm; solid line, Df ¼ 30 mm2/s, w ¼ 0.5 mm; and dashed line, Df ¼ 25 mm2/s, w ¼ 0.6 mm. The w2/Df values have units of s).
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The crossover from reaction dominant to effective dif-

fusion occurs in the left half of the plot of Fig. 3 C, where
k�onw

2=Df goes from small to large. This transition is also

analyzed mathematically in the Appendix. A simplified

solution can be obtained when the free fraction, Feq, is small

(ðkoff=k�onÞ � 1). This leads to a reduced model equation

which depends on only two parameters, koff and the ratio

Df=k
�
on (Eq. 43). We call this the hybrid model and show in

the Appendix that it involves a somewhat complicated

combination of reaction-like and diffusion-like terms (Eq.

46). Thus in this regime, reaction and diffusion are coupled

and not separable. For large k�onw
2=Df ; the hybrid model

reduces to effective diffusion, whereas for small k�onw
2=Df it

reduces to reaction dominant (see Appendix). The signifi-

cance of this hybrid model is that it occupies a large portion

of our full model domain (see Fig. 8 in Appendix), and

therefore in this region the full model is capable of predicting

only the ratio Df=k
�
on; rather than unique values for each

parameter. Additionally, the complex combination of re-

action and diffusion terms in the hybrid model solution

indicates that in this regime, it is inappropriate to expect or

assign fast and slow components to the FRAP recovery, as is

often attempted in the analysis of FRAP results (Kimura

et al., 2002). Rather, it should be recognized that both the

hybrid model (Eq. 46) and the effective diffusion solution

(Eqs. 8–10) may appear by eye to contain two separate

recovery phases, despite the fact that they cannot be

separated into discrete reaction and diffusion processes.

Extension to two (or more) independent
binding states

Many biological binding interactions involve more than

a single binding state. Thus it is of interest to generalize the

preceding findings. In the Appendix, we develop the full

model Laplace transform solution for two independent

binding states, and also derive closed form solutions for

each of the three idealized cases (pure-diffusion dominant,

effective diffusion, reaction dominant) for two independent

binding states. The resultant equations are natural extensions

of the one-binding-state model, and it is therefore clear how

to extend them further to three or more independent binding

states. Thus our analysis presented in the Appendix provides

a guide for how complete solutions can be obtained for an

arbitrary number of independent binding states.

Based on these model equations, we have performed

a detailed analysis of the two-binding-state system. As

detailed in the Appendix, we show that the same three

idealized cases are still good approximations to the full

model under certain conditions. This means in particular that

in the presence of significant binding interactions, either the

two-state effective diffusion model or the two-state reaction

dominant model will provide excellent fits for some FRAP

recoveries. Thus the model equations we derive for these

scenarios will find practical application. We also show once

again that there is a domain in rate-constant parameter space

in which only the full model solution is valid, and so our

complete Laplace transform solution for two binding states

will also find practical application.

By an extensive exploration of rate-constant parameter

space for the two-binding-state model, we find that the full

model domain is larger compared to the one-state model (see

discussion in the Appendix). The increase in size of the full

model domain occurs at the expense of the reaction dominant

and effective diffusion domains. We show that these regions

shrink because full model behavior typically results

whenever binding reactions from different regimes are

combined (Fig. 4). For example, if one binding state has

rate constants characteristic of effective diffusion (for the

one-state model), and the other state has rate constants

characteristic of reaction dominant (for the one-state model),

the combination will typically produce full model behavior

for the two-state model. As this is generally true for any

combination of reactions drawn from different regimes, the

full model regime becomes progressively larger as the

number of binding states increases.

The significance of a larger full model domain is that

the complete Laplace transform solution will be required

more often as the number of binding states increases. In

addition, since the full model domain incorporates

diffusion, the likelihood that diffusion is required for

fitting the FRAP recovery increases with the number of

binding states.

Expected FRAP behaviors

Given the description of rate-constant parameter space for

the one-binding-state model (Fig. 3 C), and the rules

described above and in the Appendix for the two- (or more)

binding-state models, it is of interest to estimate which types

of behavior typical biological FRAPs should exhibit. In the

absence of binding interactions, the FRAP recovery of the

fusion protein reflects the pure-diffusion scenario, with

a recovery rate very similar to that of GFP alone (differing

only in proportion to the added mass of the fusion protein).

In cases where significant differences exist between the

recovery of the fusion protein and GFP alone, binding

interactions are implicated. Considering typical ranges for

the binding rate constants provides some feel for the

likelihood of possible FRAP outcomes. Typical off-rates

range from ;101 s�1 for nonspecific DNA binding to

;10�6 s�1 for many types of specific binding. Thus most

biological FRAPs should occupy the left half of Fig. 3 C
where reaction dominant, full model, or effective diffusion

should occur.

To see which of these behaviors are possible or likely, on-

rates must be considered. The diffusion-limited on-rate is

;106 M�1 s�1, although this is not an absolute upper bound.

Typical on-rates range from 102–108 M�1 s�1. It is the

pseudo-on rate, namely the product of the on-rate with the
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equilibrium concentration of bound sites, that determines

location in the rate-constant parameter space of Fig. 3 C.
Thus for diffusion-limited on-rates (;106 M�1 s�1), a 1-mM

concentration of bound sites will yield pseudo-on rates of

;103 s�1 or effective diffusion behavior, whereas a 1-mM

concentration of bound sites will yield pseudo-on rates of

100 s�1 near the boundary between the full model and

reaction dominant. Thus the reaction dominant regime can be

entered by a combination of slower on-rates and low

concentrations of binding sites. Considering a specific case,

DNA binding in a mammalian nucleus of;5-mm radius and

6 3 109 basepairs of DNA, the concentration of basepair

sites is;20 mM. Others have estimated the concentration of

DNA in the nucleus as high as ;100 mM (Lieberman and

Nordeen, 1997). In this latter case, the smallest possible

value for k*on is 101 s�1, altogether eliminating reaction-

dominant as a possible behavior. However, this value for

DNA concentration is probably an upper limit, since the

number of available sites might well be reduced by

constraints that limit access to some subset of sites.

Nevertheless, these rough calculations suggest that many

FRAPs should exhibit behavior that depends on diffusion

either via the full model or effective diffusion. This is

underscored by the analysis of models with two or more

FIGURE 4 Model-predicted FRAP recovery curves for two binding reactions. (A, D, and G) Matching domains: When both individual reactions exhibit the

same idealized behavior, then the FRAP recovery predicted by the two-reaction full model (bold black line) is fit by the two-reaction model of that idealized

behavior (colored lines). For example in A, given that k�1on and k1off place one reaction in the single-reaction effective diffusion domain, and that k�2on and k2off
place the other reaction in the single-reaction effective diffusion domain, the two-reaction full model FRAP recovery is well fit by the two-reaction effective

diffusion model (see Eq. 59). (B, E, and H) Different domains: When the individual reactions do not exhibit the same idealized behavior, then none of the two-

reaction idealized models will match the FRAP recovery predicted by the full two-reaction model. In this case, the full two-reaction model is required (Eq. 55).

(C and F) Exceptions to the rule: When either the equilibrium concentration or the time for recovery is much greater for one of the reactions than the other, then

the two-reaction full model result will be fit by the two-reaction idealized model of the reaction with the larger concentration or longer time. (Df ¼ 30 mm2/s,

w ¼ 0.5 mm. ED, effective diffusion model; RD, reaction dominant model; and FM, full model.)
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FIGURE 5 Control GFP-GR results. (A) The FRAP recovery of GFP (n, n¼ 12) is well fit by the pure-diffusion dominant model (solid line), withDf¼ 15.0

mm2/s (w¼ 2.7 mm). In this and all other figures, the error bars represent the 95% confidence interval of each data point. For clarity not all error bars are shown
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binding states which indicate that the domain occupied by

the full model increases (see the preceding section). In sum,

reaction dominant, effective diffusion, and full model

behavior are all possible outcomes of FRAP experiments,

but the latter two behaviors with their dependence on dif-

fusion should be more common than currently appreciated.

EXPERIMENTAL RESULTS AND DISCUSSION

To test the utility of the preceding theoretical development,

we applied the method to the problem of transcription factor

mobility. We first evaluated our experimental protocol for

FRAP using mouse adenocarcinoma cells transfected with

GFP only. The average recovery was well fit by Eq. 8 for

pure-diffusion dominant behavior (Fig. 5A) yielding a cellular
diffusion constantDf for GFP of 15.0mm

2/s, within the range

observed in other studies (Swaminathan et al., 1997; Arrio-

Dupont et al., 2000; Coscoy et al., 2002). The good fit and

accurate determination of Df demonstrate that our FRAP

protocol satisfies the basic assumptions of our model.

We next performed FRAPs of a GFP-tagged glucocorti-

coid receptor within nuclei of mouse adenocarcinoma cells.

This cell line contains a stably expressed GFP-GR yielding

rather similar expression levels from cell to cell. To enable

valid normalization of data, cells of comparable intensity

were selected for all photobleaching experiments. Within

each nucleus, the distribution of GFP-GR is also rather

uniform, except within nucleoli where it is largely absent

(see Fig. 7 A). To reduce boundary effects from nucleoli or

the nuclear membrane, FRAP measurements of GFP-GR

were at sites as far away from these structures as feasible.

This satisfies the requirements of our model for a homoge-

neous distribution of fluorescence without complex cellular

geometries.

We first performed FRAPs of GFP-GR using a 1.1-mm-

radius circular bleach spot, and asked which of the four

regimes (see Fig. 3 C) best described the recovery. The pure-
diffusion regime was eliminated because the GFP-GR

recovery was significantly slower than the prediction for

pure diffusion (Fig. 5 B) based on the expected mass of GFP-

GR (see Methods). This indicates the presence of binding

interactions. To determine if the recovery was in the reaction

dominant regime, cell nuclei were bleached with two

different bleach spot sizes, and significantly different

recoveries were detected (Fig. 5 C). This indicates that

diffusion contributes measurably to the GFP-GR recovery,

and eliminates the reaction dominant regime where no

dependence on bleach spot size should be observed (see Fig.

3 A). Consistent with this, the recovery was poorly fit with

a single-binding-state reaction dominant model (Fig. 5 D).
Together these results rule out reaction dominant behavior

for the GFP-GR recovery, and implicate one of the diffusion-

dependent models, namely effective diffusion or the full

model.

Both effective diffusion and the full model yielded good,

mutually consistent fits (Fig. 5 E). The full model fit

predicted rate constants k*on ¼ 500 s�1 and koff ¼ 86.4 s�1.

As a consistency check, we determined in which regime

these rate constants were located (see Fig. 3 C). This was

done by using the predicted k�on from the full model fit to

calculate k�onw
2=Df (see the rules defining domains in Fig. 3

D). The computed value of 65 was �1, thereby placing the

full model fit in the effective diffusion regime. Since the full

model encompasses all simplified regimes, we expect it to

agree with the effective diffusion model when this simplified

scenario holds. As further proof of self consistency, we

found that the predicted rate constants from the full model

yielded a ratio of k�on=koff ¼ 5:86 1:1 which was similar to

that predicted directly from the effective diffusion fit, namely

k�on=koff ¼ 6:06 0:3: Thus we conclude that the GFP-GR

FRAP recovery exhibits effective diffusion when the spot

size radius is 1.1 mm.

As Eqs. 9 and 59 show, the same effective diffusion fit

may represent one or several different binding states. To

assess the number of GFP-GR binding states, we attempted

to shift the FRAP recovery from the effective diffusion

regime to the full model regime, where the number of

binding states can be directly determined. Regime bound-

aries (Fig. 3 D) are inversely proportional to w2/D. Therefore
a sufficiently small bleach spot size (w) should shift the

boundary for the full model upward such that it eventually

for early time points. (B) The pure-diffusion dominant model (solid line) was simulated using Eq. 8 with w ¼ 1.1 mm and Df ¼ 9.2 mm2/s, which is the

predicted diffusion constant for GFP-GR in the nucleus based on the measured diffusion constant for GFP and the size difference between GFP and GFP-GR.

The observed FRAP recovery of GFP-GR (n, n ¼ 10) was significantly slower, indicating the presence of binding interactions. (C) FRAP of GFP-GR with

different bleach spot sizes reveals a dependence on spot size and, therefore, diffusion (n¼ 10 in each case). (D) Consistent with the dependence on spot size and

diffusion, the reaction dominant idealized model (solid line) provides a poor fit to the GFP-GR FRAP recovery (w¼ 1.1 mm). (E) The FRAP recovery of GFP-

GR (w ¼ 1.1 mm) is well fit by the effective diffusion model (dashed line, obscured by FM fit curve), with Deff ¼ 1.3 mm2/s. This yields an estimate of the

pseudo-equilibrium constant, k�on/koff ¼ 6.0, via Eq. 9, with Df ¼ 9.2 mm2/s. The full model (solid line) also provides a good fit to the data, with a similar value

of the pseudo-equilibrium constant (k�on/koff ¼ 5.8) calculated from the full model estimates of k�on ¼ 500 s�1 and koff ¼ 86.4 s�1. (F) With the bleach spot size

reduced to 0.5 mm, the effective diffusion (dashed line) and full model (solid line) provide reasonably good fits. However, the full model fit yields a clear

improvement in the sum of residuals (see Table 1), in contrast to the larger-spot-size experiment where the sum of residuals does not change appreciably

between the effective diffusion and full model fits (see Table 1 and E). The smaller spot size has therefore moved the FRAP recovery to the boundary between

effective diffusion and the full model, enabling independent estimates of k�on ¼ 400 s�1 and koff ¼ 78.6 s�1. These estimates yield k�on/koff ¼ 5.1, which is in

reasonable agreement with that found in the larger-spot-size experiment shown in E.
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encompasses (k*on, koff) for GFP-GR. In an attempt to achieve

this, we reduced our bleach spot size to 0.5 mm and then

remeasured FRAP recoveries. Both the effective diffusion

and full model now yielded reasonably good fits to these data

(Fig. 5 F), but the full model fit yielded a clear improvement

in the sum of residuals (Table 1). This is in contrast to the

larger spot size examined first (1.1 mm), where the sum of

residuals did not change appreciably between the effective

diffusion and full model fits (Table 1). For the smaller spot

size, the difference in the sum of residuals between the full

model and effective diffusion fits equaled 0.5 (summed over

64 data points). This placed the recovery in the boundary

zone between these two regimes, which we earlier defined

operationally as a sum of residuals equal to 1 (but summed

over 200 data points, see Fig. 3 C). Very little additional

improvement in the sum of residuals was seen with a two-

state full model compared to a one-state full model (Table 1),

suggesting that normally GFP-GR in the nucleus occupies

predominantly one binding state. The one-binding state full

model fit for the smaller spot size also yielded independent

estimates for k*on and koff. Their ratio (5.16 1.1) was in good

agreement with that obtained directly via the effective

diffusion fit (using Eqs. 9 and 10) for the larger spot size (6.0

6 0.34). This agreement for different spot sizes is a satisfying

confirmation of the experimental and modeling protocols.

The preceding fits illustrate several key points about GFP-

GR binding within nuclei. First, they suggest that there is

predominantly one binding state for GFP-GR, since the

one-binding-state full model yielded a satisfactory fit that

was little improved by adding a second state. Second, by

using the fitted pseudo-equilibrium binding constant

k�on=koff ¼ 6:0 for this predominant binding state, we can

calculate, using Eq. 5, that 14% of GFP-GR is free whereas

86% is bound. Before this analysis, it was not appreciated

that such a large fraction of GFP-GR is bound in the nucleus.

Since GFP-GR is probably overexpressed approximately

five times relative to endogenous GR levels (unpublished

observations), this suggests that there must be many binding

sites of this predominant state within the nucleus. Third, the

transient nature of this binding was also not appreciated. The

effective diffusion fit for the larger spot size indicates that on

average a GFP-GR molecule undergoes multiple binding

interactions within the 1.1-mm-radius bleach spot during the

FRAP recovery. The average binding time per site is given

by tb ¼ ð1=koffÞ or 12.7 ms and the average time for

diffusion to the next site is given by td ¼ ð1=k�onÞ or 2.5 ms

(Berg, 1986). These parameters underscore the rapid

mobility of GFP-GR, indicating that on average each GFP-

GR molecule samples ;65 binding sites in 1 s. This rapid

sampling of sites is likely to be important in the ability of

GFP-GR to find and bind its specific DNA target site for

transcription initiation.

Based on previous studies, this bound state of GFP-GR

should reflect association with the nuclear matrix (Tang and

DeFranco, 1996). Since release of GR from the matrix is

thought to require ATP (Tang and DeFranco, 1996),

a depletion in ATP levels should lead to a smaller koff value
as measured from a fit to the FRAP recovery.

To analyze this hypothesis we performed FRAPs on cells

depleted of ATP via sodium azide treatment (Tang and

DeFranco, 1996). Consistent with previous observations of

reduced mobility of a steroid receptor after ATP depletion

(Stenoien et al., 2001), we observed a sharp decrease in the

rate of FRAP recovery (Fig. 6 A). However, in contrast to the
simple prediction that ATP depletion decreases koff, we

observed that the FRAP recovery could no longer be

described by any of the one-binding-state models (Fig. 6

B). This result also eliminated all multiple-state effective

diffusion models, since the effective diffusion fit is un-

changed by the number of binding states (see Eqs. 9 and 59).

Therefore we explored reaction dominant or full models

with two binding states to account for the GFP-GR recovery

after azide treatment. To distinguish between these, we

assessed diffusion’s role by bleaching with different spot

sizes (Fig. 6 C). We again found differences in recovery,

suggesting that a reaction dominant model was once more

inappropriate. Indeed, although such a two-state reaction

dominant model yielded a good fit (data not shown), the

predicted rate constants for the first of the two reactions was

not in the reaction dominant regime, but rather in the full

model regime ððk�1onw2=DfÞ � 0:5; see Fig. 3 D). This

inappropriate location of rate constants invalidates the fit.

This fact and the dependence on bleach spot size ruled out

a two-binding-state reaction dominant model.

Together these results pointed to a two-state full model for

the FRAP recovery after ATP depletion. We found indeed

that such a model fit the data very well (Fig. 6 D), as judged
by two different but complementary approaches. We first

tested a simplified form of this two-state full model in which

the first reaction lies in the effective diffusion regime and the

second reaction exhibits reaction dominant behavior relative

to the effective diffusion constant of the first reaction (see

Appendix section Reduction of Full Two-Binding-State

Model to Reduced Two-State Model). Such FRAP recov-

eries can be separated into two largely independent phases.

TABLE 1 Summary of model fits to large and small bleach spot

FRAPs in control cells

Model fit

Large spot

size (w ¼ 1.1 mm)

Small spot

size (w ¼ 0.5 mm)

S Residuals S Residuals

RD 1.78 3.80

ED 0.75 2.41

FM 0.73 1.91

Two-state FM 0.73 1.90

The FRAP of GFP-GR with spot size 1.1 mm is well fit by the effective

diffusion model; no additional improvement is gained with the full model.

However, when the bleach spot size is reduced to 0.5 mm, the full model

significantly reduces the sum of residuals, indicating an improved fit. In

neither case does the two-state full model provide significant improvement.
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The first, relatively faster phase arises due to effective

diffusion of the first binding state, whereas the second, much

slower phase arises due to reaction dominant behavior of the

second binding state. The FRAP recovery mimics a one-state

reaction dominant recovery, except that the diffusive phase is

no longer instantaneous because it is governed by a slowed

effective diffusion constant established by the first binding

state. We refer to this simplified two-state model as the

reduced two-state model because it depends on only three

parameters instead of four (k�1on=k1off ; k
�
2on; k2off ).

This reduced two-state model yielded good fits to the

experimental data (Fig. 6 D). We also tried the two-state full

model, and obtained equally good fits (data not shown).

Either approach yielded very similar predicted parameters,

k�1on=k1off ¼ 6:0; and k�2on ¼ 0:024 s�1; k2off ¼ 0:0044 s�1:
These parameters are self-consistent:

1. The two-state full model predicts parameters k�1on and

k1off that are in the effective-diffusion regime ððk�1onw2=
DfÞ � 130 � 1Þ; and whose ratio agrees with the ratio

directly predicted by the simplified two-state model

ððk�1on ¼ 999:8 s�1=koff ¼ 168:8 s�1Þ ¼ 5:9Þ:
2. The rate constants of the second reaction are in the

reaction-dominant regime determined by D1eff of the first

reaction (k�2onw
2=D1eff � 0:02 � 1), which is the pri-

mary requirement for the reduced two-state model.

Given the good fit, its self-consistency, and the dependence

on bleach spot size, we conclude that the GFP-GR recovery

FIGURE 6 Sodium azide GFP-GR results. (A) Treatment with sodium azide (n) dramatically slows the FRAP recovery of GFP-GR (w ¼ 1.1 mm, n ¼ 10).

(B) None of the single-reaction models provide a good fit to GFP-GR recovery after azide treatment. This indicates that more than one type of binding state is

necessary to account for the FRAP results after azide treatment. (C) FRAPs of GFP-GR after azide treatment with different bleach spot sizes reveal

a dependence on spot size and, therefore, diffusion (n¼ 10 in each case). (D) The reduced two-state full model (Eq. 65) consisting of an effective diffusion state

plus a reaction dominant state yields a good fit (solid line) to the data (k�1on/k1off ¼ 6.0, k�2on ¼ 0.024 s�1, and k2off ¼ 0.0043 s�1). The parameter estimates are

consistent with an effective diffusion plus reaction dominant scenario. The fit was also confirmed by a fit of the full two-state model, which yields the same

parameter estimates.

FRAP Analysis of Binding Reactions 3487

Biophysical Journal 86(6) 3473–3495



after ATP depletion is governed by this reduced two-state

model. The significance of this fit is that it suggests that after

ATP depletion there are two binding states for GFP-GR.

Using the expressions in Eq. 54 (see Appendix), we can

calculate the fraction of GFP-GR in each of these two binding

states. We find that 48% is bound in the first state exhibiting

effective diffusion behavior, and 44% is bound in the second

state exhibiting reaction dominant behavior. Thus sizable

fractions of GFP-GR are present in both of these states,

compared to normal cells where the FRAP recovery

predicted only a single, predominant binding state. This

suggests therefore that at least one new binding state and

possibly two new states (if the original state is lost) arise after

ATP depletion.

In fact, our data suggest that the original binding state is not

lost after ATP depletion. The first binding state detected in

FRAP recoveries after ATP depletion exhibited effective

diffusion behavior with a pseudo-equilibrium binding

constant of k�1on=k1off ¼ 6:0: This is identical to the original

k�on=koff characterizing the effective diffusion behavior of the
predominant binding state in control cells (Table 2).

However, in control cells, 86% of GFP-GR molecules are

bound at sites exhibiting this pseudo-equilibrium constant

whereas, after ATP depletion, only 48% of molecules are still

bound in this state. This drop after ATP depletion is a result of

the 44% of GFP-GR molecules now in a second, tightly

bound state. The simplest interpretation therefore is that ATP

depletion induces a second state and leaves the first state

relatively unchanged (Table 2).

This second state has the properties of the nuclear matrix.

Its predicted off-rate (k2off¼ 0.0044 s�1) after ATP depletion

is quite slow, consistent with biochemical analyses showing

that after ATP depletion, GR is tightly bound to the nuclear

matrix (Tang and DeFranco, 1996). If this second state is the

nuclear matrix, then the FRAP fit predicts that 44% of GFP-

GR molecules should be associated with it after ATP

depletion. To test this prediction, we subjected cells to ATP

depletion followed by nuclear matrix extraction, and then

measured the amount of GFP-GR fluorescence retained in

nuclei (Fig. 7). Remarkably, this value was 40 6 8%, in

good agreement with the value predicted independently from

the FRAP fit (44%). In contrast, only 5 6 1% of GFP-GR

was associated with the matrix fraction in control cells. With

our current FRAP procedure, our FRAP fits did not detect

this second fraction in control cells, perhaps because it is too

small to be detected above the noise. Alternatively, as some

have argued, the process of nuclear-matrix extraction could

induce such an association artifactually (Pederson, 2000).

Our data at this time cannot distinguish between these

possibilities. Nevertheless, it is clear that, at best, only a small

fraction of GFP-GR is associated with the nuclear matrix in

control cells, and that another predominant state exists and

remains to be identified. Overall, our experimental measure-

ments of GFP-GR association with the nuclear matrix and

the predicted fractions obtained from FRAP curves are quite

consistent. These results support both our modeling

approach and the contention that this second state is the

nuclear matrix.

Our analysis therefore suggests that normally, most of the

GR does not associate with the nuclear matrix, but rather

with another, as-yet unidentified binding state. However,

upon ATP depletion, a significant fraction of GR molecules

becomes matrix-associated. The identity of the predominant

binding state in normal cells is at present unknown, but an

attractive possibility is DNA. As Schaaf and Cidlowski

(2003) have argued, there are presumably not enough

specific DNA sites in the genome to bind the large amounts

of GFP-GR expressed in a typical cell line. Indeed our

analysis shows that ;86% of GFP-GR molecules in the cell

associate with sites from this first binding state. One

intriguing hypothesis is that this state reflects GFP-GR

binding to nonspecific DNA sites. In addition to binding

tightly to their promoter sequences, all transcription factors

also exhibit nonspecific DNA binding to all other sequences.

Such nonspecific binding is therefore unavoidable in

a genome containing 109 basepairs. If what we measure by

FRAP is GFP-GR bound to nonspecific DNA sites, then our

data would indicate first that one GFP-GR molecule samples

;65 nonspecific sites per second, and second that the

process measured by the FRAP recovery is in fact the search

for a specific site among nonspecific ones. This is an

interesting possibility worthy of further study.

Regardless of the nature of this binding state, our

application of FRAP models to experimental data has

highlighted several advantages of our approach. One is that

our method allows for three self-consistency checks. The

first is to determine if the recovery depends on bleach spot

size. If a good fit is obtained using a reaction dominant

model, but the recovery depends on bleach spot size, then the

fit is suspect. Also suspect is a good fit obtained with an

effective diffusion or full model, but with no dependence on

bleach spot size. A second self-consistency check is to

determine if the rate constants predicted from the fit actually

lie in the correct regime of parameter space. If they do not,

then once again a good fit becomes suspect. The third self-

consistency check combines the first two: sufficient changes

in bleach spot size will sometimes shift the FRAP recovery

into a different model regime. This can provide an inde-

pendent set of FRAP data to be fit by a different form of the

TABLE 2 Pseudo-equilibrium binding constant estimated by

different experiments

FRAP experiment k�1on/k1off

Control, large bleach spot (ED fit) 6.0 6 0.34

Control, small bleach spot (FM fit) 5.1 6 1.10

Azide (first reaction of two-state FM fit) 6.0 6 0.77

The single binding state measured in GFP-GR control cells appears to be

unchanged after treatment with sodium azide. In each case the pseudo-

equilibrium constant is approximately the same. However, the fit for the

azide case also predicts an additional binding state.
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model. Then the predicted rate constants from each case can

be compared to see if they agree.

In our view, the key advantage of our, or for that matter,

any quantitative approach to FRAP is that it can provide

detailed insight into the meaning of the FRAP recovery. Our

analysis clarifies the roles of diffusion, binding, and the

number of binding states contributing to a FRAP recovery.

Without such a quantitative analysis, it is difficult to infer

very much from just the shape of a FRAP curve. For

example, all of the recoveries generated by our models

exhibit a fast early phase followed by a slower later phase. In

some cases (reaction dominant behavior), this corresponds to

two binding states, one weak and the other tight. In most

cases, however (i.e., effective diffusion and full model), such

curves reflect one or more binding states coupled to

diffusion. Equally difficult to interpret are changes in shape

of a FRAP curve after experimental perturbation. For

example, we found that slower FRAP recoveries after ATP

depletion were not simply a consequence of tighter binding

in the original state. Rather, they reflected the emergence of

a second binding state, which was either absent originally or

present at very low levels. Thus a failure to adequately or

correctly model the FRAP recovery curve will lead to

erroneous conclusions. It is our hope that the set of model

equations described here and the procedure for applying

them will provide a more systematic approach to FRAP

analysis, and enable greater and more accurate insight into

the biological processes underlying a FRAP recovery.

APPENDIX

Laplace transform solution of the
reaction-diffusion equations

Using the change of variables, u ¼ Feq � f and v ¼ Ceq � c, the expressions

in Eq. 3 become

@u

@t
¼ Df=

2u� k�onu1 koffv uð0Þ ¼
�
Feq r#w

0 r.w

@v

@t
¼ k

�
onu� koffv vð0Þ ¼

�
Ceq r#w

0 r.w
: (12)

Taking the Laplace transform �uuðp; rÞ ¼
RN
0

e�ptuðr; tÞdt yields

p�uu ¼ Df=
2�uu� k�on�uu1 koff�vv1 uð0Þ

p�vv ¼ k
�
on
�uu� koff�vv1 vð0Þ: (13)

The second equation can be solved for �vv; yielding

�vv ¼ 1

p1 koff
ðk�on�uu1 vð0ÞÞ: (14)

Substituting this into the first equation in Eq. 13 and rearranging terms yields

=
2
u� q

2
u ¼

��V r#w

0 r.w

where q
2 ¼ p

Df

� �
11

k
�
on

p1 koff

� �
and

V ¼ Feq

Df

11
k
�
on

ðp1 koffÞ

� �
: (15)

FIGURE 7 Nuclear matrix extrac-

tion. (A) Before the nuclear matrix

extraction procedure, cell nuclei appear

bright with GFP-GR fluorescence. (B)

In control cells almost all fluorescence

disappears after nuclear matrix extrac-

tion. (C) In cells treated with sodium

azide the nuclei retain a large amount of

fluorescence after nuclear matrix ex-

traction, indicating that GFP-GR is

immobilized at the matrix under these

conditions. Bar ¼ 10 mm. (D) The

amount of fluorescence lost after nu-

clear matrix extraction was quantified.

In control cells 5% of fluorescence is

retained (n ¼ 99), whereas in azide-

treated cells 40% of fluorescence is

retained (n ¼ 86). The large amount of

fluorescence retained at the nuclear

matrix in azide-treated cells matches

the two-state full model prediction that

44% of GFP-GR in the nucleus is

bound in a second reaction state.
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This equation is of the general form given in Carslaw and Jaeger (1959) for

heat conduction between composite cylinders. Using a strategy comparable

to theirs, a solution is of the form

�uu ¼ V

q
2 � a1I0ðqrÞ r#w

�uu ¼ a2K0ðqrÞ r.w; (16)

where I0 and K0 are modified Bessel functions of the first and second kind.

The constants a1 and a2 are determined by the requirements that �uu and its

first derivative be continuous across the bleach spot boundary at r ¼ w.

Using the relationships between Bessel functions, I#0 ¼ I1 and K#0 ¼ �K1,

the continuity requirement yields

V

q
2 ¼ a1I0ðqwÞ1a2K0ðqwÞ

0 ¼ a1I1ðqwÞ � a2K1ðqwÞ;

which can be solved for a1 and a2. The solution for a1 is

a1 ¼ ðV=q2ÞqwK1ðqwÞ: (17)

Substitution for a1 in the first equation of the expressions in Eq. 16 provides

the solution for �uu within the bleach spot.

Since the FRAP recovery is the sum of the free ( f ¼ Feq � u) and bound

fluorescence (c ¼ Ceq � v), we must compute the Laplace transform for this

sum f1 c¼ 1� u� v. This yields the Laplace transform of the fluorescence

intensity as a function of radial position within the bleach spot as

fluorðp; rÞ ¼ 1

p
� �uu� �vv

¼ 1

p
� �uu 11

k
�
on

p1 koff

� �
� Ceq

p1 koff
r#w; (18)

where Eq. 14 was substituted for �vv with v(0) ¼ Ceq (see Eq. 12).

To obtain the measured FRAP recovery, we must compute the average

fluorescent intensity within the bleach spot. The only term in Eq. 18 that

depends on r is �uu; so it suffices to calculate the average of �uuwithin the bleach
spot and then substitute into Eq. 18:

Avgð�uuÞ ¼ 1

pw
2

Z 2p

0

du

Z w

0

V

q
2 � a1I0ðqrÞ

� 	
r dr: (19)

Using the relationship between Bessel functions, (rI1(r))# ¼ rI0(r), from Eq.

19 we obtain

Avgð�uuÞ ¼ V

q
2 �

2a1

qw

� �
I1ðqwÞ: (20)

Taking the average of Eq. 18 and substituting Eq. 20 for Avg(�uu) yields the
Laplace transform of the FRAP recovery,

frapðpÞ ¼ Avgð fluorðp; rÞÞ

¼ 1

p
� Avgð�uuÞ 11

k
�
on

p1 koff

� �
� Ceq

p1 koff
; (21)

which reduces to

frapðpÞ ¼ 1

p
� Feq

p
ð1� 2K1ðqwÞI1ðqwÞÞ

3 11
k
�
on

p1 koff

� �
� Ceq

p1 koff
: (22)

The actual recovery is obtained by numerical inversion of this transform,

using the Matlab routine invlap.m (Hollenbeck, 1998).

Derivation of reaction dominant solution

In the reaction dominant scenario, diffusion occurs so rapidly that it is not

detected in the FRAP recovery. As a consequence, free molecules instantly

equilibrate after the bleach and f¼ Feq, a constant. Thus, the first equation in

the expressions in Eq. 3 disappears and the second equation becomes

dc

dt
¼ k

�
onFeq � koffc: (23)

Note that the first term on the right is a constant, so this is a first-order linear

equation whose general solution is known and in this case given by

cðtÞ ¼ k
�
onFeq=koff

� �
1Ke

�koff t: (24)

By the equilibrium relationship (Eq. 4) the first term simplifies to Ceq. The

constant K is evaluated by the initial condition c(0) ¼ 0, reflecting the fact

that after normalization the concentration of fluorescent molecules in the

bleach zone is zero. This leads to the solution

cðtÞ ¼ Ceqð1� e
�koff tÞ: (25)

The preceding equation yields the behavior for the bound complex of

fluorescent protein. Total fluorescence f(t) 1 c(t) is

frapðtÞ ¼ Feq 1Ceqð1� e
�koff tÞ ¼ 1� Ceqe

�koff t; (26)

where we have used the fact that Feq 1 Ceq ¼ 1.

Note that the preceding equations (unlike those for the full model, pure-

diffusion dominant or effective diffusion) do not depend on the shape of the

bleached region.

Derivation of idealized solutions from
the full model

We show here how the full model solution (Eq. 22) reduces to each of the

idealized scenarios when a particular constraint defined in Fig. 3 C is

applied. For each idealized domain, the general approach is to define

dimensionless variables, scaling space by the bleach spot size w, and scaling

time by the characteristic timescale t for that idealized domain as

t# ¼ t=t; p# ¼ pt; frap#ðp#Þ ¼ frapðpÞ=t: (27)

Reduction of full model to pure-diffusion dominant

For pure-diffusion dominant, the timescale is tD ¼ ðw2=DfÞ; and from Fig.

3 C the constraint is ðk�on=koffÞ � 1:With this constraint applied to Eq. 5, Feq

� 1, Ceq � 0. Also, k�on=ðp1 koffÞ � 1 and therefore from Eq. 15

q2 � ðp=DfÞ and so qw �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pw2=Df

p
; which by Eq. 27 is

ffiffiffiffiffi
p#

p
: By defining

q# ¼
ffiffiffiffiffi
p#

p
; Eq. 22 reduces to

frap#ðp#Þ � 1

p#
� 1

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ ¼

2K1ðq#ÞI1ðq#Þ
p#

;

(28)

in which we recognize Eq. 28 as the product of two entities that have known

inverse Laplace transforms (Crank, 1975),

Fðp#Þ ¼ 2

p#
; Gðp#Þ ¼ K1ðq#ÞI1ðq#Þ (29)
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f ðt#Þ ¼ 2; gðt#Þ ¼ ð2t#Þ�1
e
� 1
2t#I1

1

2t#

� �
; (30)

where f and g are the inverse Laplace transforms of F and G, respectively.
Using the convolution property of the Laplace transform, L�1 Fðp#Þð
Gðp#ÞÞ ¼

R t#
0

f ðt#� TÞgðTÞdT; the inverse Laplace transform of Eq. 28 is

frap#ðt#Þ ¼
Z t#

0

ð2TÞ�1
e
� 1
2TI1

1

2T

� �
dT: (31)

Changing variables via z ¼ 1=2T yields

frap#ðt#Þ ¼
Z 1

2t#

N

ðzÞ�1
e
�z
I1ðzÞdz: (32)

Evaluating this integral and determining the behavior at z ¼ N using Eq.

9.7.1 in Abramowitz and Stegun (1972), we find

frap#ðt#Þ ¼ e�
1
2t# I0

1

2t#

� �
1 I1

1

2t#

� �� �
: (33)

One can check this integral evaluation directly by differentiation,

using dðI0ðzÞÞ=dz ¼ I1ðzÞ and dðI1ðzÞÞ=dz1 I1ðzÞ=z ¼ I0ðzÞ (Watson,

1944). Using the relationships in the expressions in Eq. 27 with

frap#ðt#Þ ¼ frapðtÞ; we can then obtain

frapðtÞ ¼ e
�tD

2t I0
tD

2t

� �
1 I1

tD

2t

� �� �
; (34)

which is precisely Eq. 8, the solution obtained by Soumpasis for a freely

diffusing molecule bleached with a circular spot.

Reduction of full model to effective diffusion

The constraint for effective diffusion from Fig. 3 C is ðk�onw2=DfÞ � 1; and

the appropriate timescale is teff ¼ ðw2=DeffÞ ¼ ðw2=DfÞð11 ðk�on=koffÞÞ:
Simplification of Eq. 22 begins by noting that

p1 koff ¼ koff 11
p

koff

� �
¼ koff 11

p#Df

w2ðk�on 1 koffÞ

� �
� koff :

(35)

After dividing through by teff, the full model solution (Eq. 22) becomes

frap#ðp#Þ � 1

p#
� Feq

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ

3 11
k
�
on

koff

� �
� Ceq

koffteff
: (36)

The last term is negligible because the denominator koffteff ¼ ðw2=DfÞ
ðkoff 1 k�onÞ � 1 by the effective diffusion constraint. Finally, since by Eq.

5, Feqð11 ðk�on=koffÞÞ ¼ 1; Eq. 36 reduces to

frap#ðp#Þ � 1

p#
� 1

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ: (37)

This is identical to Eq. 28, the pure-diffusion dominant solution, and again

by inverse Laplace transformation leads to the Soumpasis equation for

a circular bleach spot (Eq. 8), but now with teff ¼ ðw2=DfÞð11 ðk�on=koffÞÞ:

Reduction of full model to reaction dominant

The constraints for reaction dominant behavior from Fig. 3 C are

ðk�onw2=DfÞ � 1 and ðkoff=k�onÞ& 1 (Ceq 6¼ 0). The appropriate timescale

is tR ¼ 1=koff : Under these conditions, the argument qw for the Bessel

functions in Eq. 22 can be obtained from the relationship

ðqwÞ2 ¼ pw
2

Df

11
k
�
on

p1 koff

� �

¼ k
�
onw

2

Df

� �
p

koff

� �
koff
k
�
on

1
koff

p1 koff

� �

¼ k
�
onw

2

Df

� �
ðp#Þ koff

k
�
on

1
1

p#1 1

� �
� 0: (38)

For qw / 0, K1(qw)I1(qw) � 0.5, and the factor (1�2K1(qw)I1(qw)) in the

second term of Eq. 22 is negligible and so the full model for the reaction

dominant scenario becomes frapðpÞ � ð1=pÞ � ðCeq=ðp1 koffÞÞ: Dividing
by tR yields a solution on the reaction timescale of frap#ðp#Þ ¼ ð1=p#Þ�
ðCeq=ðp#1 1ÞÞ: The inverse transform then yields the reaction dominant

solution Eq. 11.

Transition between the pure-diffusion dominant regime and
reaction dominant regime

To investigate the crossover between the pure-diffusion dominant and

reaction dominant regimes, we evaluate the full model in the lower half of

the plot in Fig. 3 C, namely with ðk�onw2=DfÞ � 1: Scaling Eq. 22 to tD and

using the dimensionless variables of Eq. 27 yields the following equation for

the full model:

frap#ðp#Þ ¼ 1

p#
� Feq

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ

3 11
k
�
ontD

p#1 kofftD

� �
� Ceq

p#1 kofftD
: (39)

Given that k�ontD ¼ ðk�onw2=DfÞ � 1; this reduces to

frap#ðp#Þ � 1

p#
� Feq

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ �

Ceq

p#1 kofftD
;

(40)

which can be rewritten as

frap#ðp#Þ � Feq

1

p#
� 1

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ

� 	

1Ceq

1

p#
� 1

p#1 kofftD

� 	
: (41)

where we recognize the term inside the first brackets as the pure-diffusion

dominant solution, and the term inside the second brackets as a single

exponential solution, corresponding to that obtained in the reaction

dominant case when Ceq ¼ 1 (koff � k*on). Thus for ðk�onw2=DfÞ � 1; the

FRAP recovery is composed of two independent terms, one for pure-

diffusion and one for reaction behavior. The contribution of each term is

determined by the size of Feq and Ceq.

Transition between reaction dominant to effective
diffusion regimes

The crossover between the reaction dominant and effective diffusion

regimes occurs when k�onw
2=Df goes from small to large in the left half of the

plot in Fig. 3 C. If koff � k*on, then we avoid traversing a region where only

the full model is valid. Instead, we find a crossover model somewhat simpler

than the full model, which we refer to as hybrid behavior. Adding the
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expressions in Eq. 12 and using the second expression in Eq. 12 to substitute

for u, we obtain

@ðu1 vÞ
@t

¼ Df

k
�
on

=
2 @v

@t
1 koffv

� �
: (42)

With koff � kon, the free fraction is negligible, and so by Eqs. 5 and 12, u1

v � v, giving

@v

@t
¼ Df

k�on
=

2 @v

@t
1 koffv

� �
; vð0Þ ¼ 1 r#w

0 r.w

� �
: (43)

This hybrid model has one less fitting parameter than the full model, since

Df=k
�
on only appears as a ratio. The significance of this hybrid model is that it

fits the full model well in a large portion of the full-model-only domain (see

Fig. 8), and therefore in this region the full model is capable of predicting

only the ratio Df=k
�
on; rather than unique values for each parameter.

However, since in practiceDf can be determined, both the full model and this

slightly simpler hybrid model will be fit with the same number of

parameters. The Laplace transform of the solution may be obtained directly

as in the first section of the Appendix or from the full model by

approximation as follows.

The dimensionless variables (Eq. 27) can be used, in this case with the

reaction timescale tR ¼ 1=koff : By the penultimate term in Eq. 38 with

koff � k�on; the Bessel function argument in Eq. 22 can be obtained from the

relationship

ðqwÞ2 � w2k�on
Df

p#

p#1 1
: (44)

Letting q# ¼ qw, the full model (Eq. 22) can be rewritten as

frap#ðp#Þ � 1

p#
� Feq

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ

3 11
k
�
on=koff
p#1 1

� �
� Ceq

p#1 1
: (45)

Since koff � k�on and Feq k�on=koff
� �

¼ Ceq � 1; Eq. 45 reduces to

frap#ðp#Þ � 1

p#
� 1

p#1 1

1

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ1 1

� 	
:

(46)

Note that unlike the transition from pure-diffusion dominant to reaction

dominant behavior, the solution in this hybrid diffusion regime cannot be

written as the sum of two independent terms representing diffusion and

reaction, but rather is a more complicated combination of these behaviors.

One can also observe how the hybrid model (Eq. 46) reduces to either the

reaction dominant case or effective diffusion for small or large values

of k�onw
2=Df ; respectively. With k�onw

2=Df small, q# � 0, yielding

2K1(q#)I1(q#) � 1 and Eq. 46 reduces to the reaction dominant solution

with Ceq ¼ 1,

frap#ðp#Þ ¼ 1

p#
� 1

p#1 1
: (47)

To observe effective diffusion behavior, the initial time variables t and p

must be scaled to the effective diffusion timescale teff ¼ ðw2=DeffÞ
¼ ðw2=DfÞð11 ðk�on=koffÞÞ: Note that in the hybrid model, koff � k�on; so
teff � ðw2k�on=DfkoffÞ: The primed variables in Eq. 46 have already been

scaled by 1/koff, so they need only be scaled by t#A ¼ ðw2k�on=DfÞ to achieve
the effective diffusion timescale t$,

t$ ¼ t#=t#A; p$ ¼ p#t#A; frap$ðp$Þ ¼ frap#ðp#Þ=t#A: (48)

With k�onw
2=Df large, t#A � 1 and the Bessel function argument in Eq. 22

can be obtained via Eq. 44 as

ðqwÞ2 � w
2
k
�
on

Df

p#

p#1 1
¼ p$

p$=t#A 1 1
� p$: (49)

Eq. 46 now becomes

frap$ðp$Þ ¼ 1

p$
� 1

11 p$=t#A

3
1

p$
ð1� 2K1ðq$ÞI1ðq$ÞÞ1 1=t#A

� 	
:

where q$ ¼
ffiffiffiffiffiffi
p$

p
(50)

Again with k�onw
2=Df large, t#A � 1 and Eq. 50 reduces to

frap$ðp$Þ ¼ 1

p$
� 1

p$
ð1� 2K1ðq$ÞI1ðq$ÞÞ

� 	
: (51)

This is the effective diffusion solution operating on the approximate

effective diffusion timescale teff � ðw2k�on=DfkoffÞ:

Two-binding-state model

When a second, independent binding state is present, the chemical rate

equations become

F1 S1 �

k1off

k1on

C1; F1 S2 �

k2off

k2on

C2; (52)

FIGURE 8 Hybrid model results. We have found a simplified model that

depends on only two parameters, Df /k
�
on and koff, which provides a good fit

(sum of residuals ,1) to the full model when koff � k�on (area above solid

line; Df ¼ 30 mm2/s, w ¼ 0.5 mm). This hybrid model describes the

crossover between the reaction and effective diffusion regimes (compare to

Fig. 3 C), and mathematically reduces to either the reaction dominant

equation or the effective diffusion equation with k�on small or k�on large,

respectively. Practically, the hybrid model demonstrates that a large portion

(shaded area) of the previously identified full-model-only zone (see Fig. 3C)
is dependent on only two parameters: Df /k�on and koff. Therefore it is

important that Df be determined before attempting to extract the rate

constants from the full model.
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where subscripts 1 and 2 refer to the different binding states. With the same

assumptions that led to Eq. 3 for the one-state model, the new equations

describing FRAP recovery are

@f

@t
¼ Df=

2
f � k

�
1on f 1 k1offc1 � k

�
2on f 1 k2offc2

@c1
@t

¼ k
�
1on f � k1offc1

@c2
@t

¼ k
�
2on f � k2offc2: (53)

Solving for equilibrium yields the following relationships:

1

Feq

¼ 11
k
�
1on

k1off
1

k
�
2on

k2off

1

C1eq

¼ 11
k1off
k
�
1on

11
k
�
2on

k2off

� �

1

C2eq

¼ 11
k2off
k
�
2on

11
k
�
1on

k1off

� �
: (54)

Laplace transform solution of full
two-binding-state model

In the full reaction diffusion model, the Laplace transform can also be

applied as in the single reaction case, but two changes arise. The expression

for the Laplace transform of the FRAP recovery generalizes to

frapðpÞ ¼ 1

p
� Feq

p
ð1� 2K1ðqwÞI1ðqwÞÞ

3 11
k
�
1on

p1 k1off
1

k
�
2on

p1 k2off

� 	

� C1eq

p1 k1off
� C2eq

p1 k2off
; (55)

with a new formula for the parameter q as

q
2 ¼ p

Df

� �
11

k
�
1on

p1 k1off
1

k
�
2on

p1 k2off

� �
: (56)

Reduction of full two-binding-state model
to pure-diffusion dominant

For the new system (expressions in Eq. 53), the pure-diffusion dominant

scenario is once again trivial. If for both binding states, the off-rates are large

relative to the pseudo-on rates, then by Eq. 54, Feq � 1 and C1eq � C2eq � 0,

so most of the fluorescence will be free and therefore still satisfy the FRAP

for free diffusion (Eq. 8).

Reduction of full two-binding-state model to
effective diffusion

Under conditions where binding in both states is rapid compared to the

diffusion timescale, the effective diffusion scenario holds. Following

Crank’s derivation (Crank, 1975), the expressions in Eq. 53 can be rewritten

for two independent binding reactions as

@f

@t
¼ Df=

2
f � @c1

@t
� @c2

@t
: (57)

In the effective diffusion regime, diffusion drives changes in concentration

within the bleach spot, but at any moment or location, the two binding states

rapidly achieve local equilibrium. At all local equilibria, the last two

relations in the expressions in Eq. 53 imply that c1 ¼ k�1on=k1off
� �

f and
c2 ¼ k�2on=k2off

� �
f : Substitution into the first equation of the expressions in

Eq. 53 yields

@f

@t
¼ Df=

2
f � k

�
1on=k1off

� � @f
@t

� k
�
2on=k2off

� � @f
@t

: (58)

Collecting terms for @f=@t yields the standard diffusion equation, but with

Deff ¼ Df 11
k
�
1on

k1off
1

k
�
2on

k2off

� �
:

�
(59)

Thus, when effective diffusion holds, the resultant FRAP curve will be fit by

the diffusion model (Eq. 8), and the fit will yield an estimate for Deff. This

value will only determine the sum of the two pseudo-equilibrium constants

in Eq. 59, so extracting additional information about specific off- and

pseudo-on rates for each of the binding states will be impossible with FRAP.

Indeed, without experiments to specifically disrupt one state, it will be

impossible to distinguish between a one-state or a multistate model when

effective diffusion holds.

Reduction of full two-binding-state model to
reaction dominant

In a reaction dominant scenario with two binding states, each state yields an

equation like Eq. 23 (see Derivation of Reaction Dominant Solution in

Appendix) that can be solved independently to yield a result like Eq. 11. The

total fluorescence intensity is then the sum of Feq 1 c1(t) 1 c2(t),

frapðtÞ ¼ Feq 1C1eqð1� e
�k1off tÞ1C2eqð1� e

�k2off tÞ
¼ 1� C1eqe

�k1off t � C2eqe
�k2off t; (60)

where the equilibrium concentrations are determined by the expressions in

Eq. 54, and Feq 1 C1eq 1 C2eq ¼ 1. Thus in a well-mixed case of two

binding states, the FRAP recovery should be a sum of two exponentials

requiring a four-parameter fit. The fit yields two off-rates from the combined

FRAP recovery rate, and also yields the pseudo-on rates indirectly by

substitution for C1eq and C2eq from the expressions in Eq. 54.

Reduction of full two-binding-state model to reduced
two-state model

In this scenario, the first reaction lies in the effective diffusion regime

governed by the constraint ðk�1onw2=DfÞ � 1: The second reaction lies

in a reaction dominant regime defined by the effective diffusion constant

D1eff of the first binding reaction and governed by the constraint

ðk�2onw2=D1effÞ � 1: The resultant FRAP resembles a reaction dominant

recovery for a single binding state, but with the diffusive phase of the

recovery determined exclusively by D1eff of the first binding state and the

exponential recovery rate of the reaction phase determined exclusively by

k2off of the second binding state.

The reduction of the two-state model proceeds by analyzing its behavior

on the effective diffusion timescale of the first reaction as

t1eff ¼
w

2

D1eff

¼ w
2

Df

11
k
�
1on

k1off

� �
: (61)

On this timescale, the effective diffusion constraint yields two simplifica-

tions in Eq. 55 for the two-state model. First, by analogy with the argument

in Eq. 35, p 1 k1off � k1off . With this and after dividing Eq. 55 by t1eff, the

two-state model can be rewritten as
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frap#ðp#Þ � 1

p#
� Feq

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ

3 11
k
�
1on

k1off
1

k
�
2ont1eff

p#1 k2offt1eff

� 	

� C1eq

k1offt1eff
� C2eq

p#1 k2offt1eff
: (62)

Second, by the argument leading to Eq. 37, k1offt1eff � 1, so ðC1eq=

k1offt1effÞ � 1: The reaction dominant constraint ðk�2onw2=D1effÞ � 1 is

simply k*2ont1eff � 1, so the term ðk�2ont1effÞ=ðp#1 k2offt1effÞ � 1: Thus Eq.

62 reduces to

frap#ðp#Þ � 1

p#
� Feq

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ

3 11
k�1on
k1off

� 	
� C2eq

p#1 k2offt1eff
: (63)

It can be shown that Feq 11 ðk�1on=k1offÞ
� �

¼ Feq 1C1eq; allowing Eq. 63 to

be rewritten as

frap#ðp#Þ � ðFeq 1C1eqÞ
1

p#
� 1

p#
ð1� 2K1ðq#ÞI1ðq#ÞÞ

� 	

1C2eq

1

p#
� 1

p#1 k2offt1eff

� 	
: (64)

Multiplying through by t1eff and then computing the inverse Laplace

transform yields

frapðtÞ � ðFeq 1C1eqÞ e
�t1eff

2t I0
t1eff

2t

� �
1 I1

t1eff

2t

� �� �h i

1C2eqð1� e
�k2off tÞ: (65)

The first term is a diffusion solution weighted by the fraction of molecules

exhibiting effective diffusion. The second term is a reaction dominant

solution weighted by the fraction of bound molecules in this second binding

state. FRAP data may be fitted directly with this solution which involves

three parameters, k�1on=k1off ; k
�
1on; and k2off. Alternatively, the full model with

one binding state may be used to estimate three pseudo-one-binding state

parameters: D, k�on; and koff. By noting the similarities between Eqs. 64 and

41, and noting that the predicted D corresponds to D1eff, the actual two-

binding-state parameters can be obtained from the following relationships:

k2off ¼ koff, ðk�1on=k1offÞ ¼ ðDf=DÞ � 1; and k�2on ¼ k�onðDf=DÞ:

Analysis of rate-constant parameter space
for the two-binding-state model

Using the preceding equations, it is possible to investigate the behavior of the

two-binding-state full model, and determine when the idealized cases hold.

However, an exhaustive evaluation of this model is complicated because the

rate-constant parameter space is four-dimensional and therefore, difficult to

visualize. In addition, the time required to cycle through all permutations of

the four rate constants becomes prohibitive. Nevertheless we have explored

this parameter space sufficiently to arrive at several conclusions. First, as

with the one-binding-state scenario, the observed FRAP behaviors can be

divided into the same four categories: pure-diffusion dominant, effective

diffusion, reaction dominant, and full model. As with the one-binding-state

model, the full model for two binding states is sometimes very well

approximated by one of the three idealized cases for two binding states,

but for some combinations of rate constants, the full model result is unique

(Fig. 4).

To determine what values of rate constants yield specific behaviors, we

used as a guide the rate-constant parameter space map for the one-binding-

state model. By testing thousands of combinations of rate-constant values,

we identified several rules based on combinations of reactions from the same

or different domains of parameter space defined for the one-binding-state

model. Reactions that lie in the same domain of the one-binding-state model

when combined still yield a reaction in that domain (Fig. 4, first column: A,

D, and G). For example, if each reaction alone is in the effective diffusion

domain of the one-state model, then the combined reaction will also be in

that domain in the two-state model (Fig. 4 A). However, when reactions from
different regimes of the one-state model are combined, then the result is

typically in the full model regime for the two-state model (Fig. 4, second

column: B, E, and H). For example, combining a reaction dominant state

with any other state yields full model behavior (Fig. 4, E and H). Thus the

full model regime occupies a larger domain in the rate-constant parameter

space as the number of reactions is increased.

Exceptions to the preceding rule arise when one of the reactions

dominates either due to its relative concentration or time for recovery (Fig.

4, third column: C and F). For example, if the equilibrium concentration of

binding state 2 is much higher than binding state 1, then most of the FRAP

recovery will be dominated by state 2 and so exhibit the behavior

characteristic of the rate constants for state 2 (Fig. 4 C). Similarly, if the time

for recovery of state 2 is much longer than state 1, then the FRAP recovery

will be reasonably well fit by the idealized model for state 2 (Fig. 4 F). In
essence these limiting cases are not of great biological interest, because the

contribution of one state to the FRAP recovery is small, and so will go

largely unnoticed experimentally. What is of biological significance is the

fact that the same idealized behaviors occur for more than just one binding

state, and that the idealized cases occur less frequently as the number of

binding states is increased and are instead replaced with full model

behavior.

The experimental data were collected in the National Cancer Institute

fluorescence imaging facility. We thank Dr. Tatiana Karpova for expert

technical assistance.
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