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ABSTRACT A novel technique for the analysis of fluorescence fluctuation experiments is introduced. Fluorescence cumulant
analysis (FCA) exploits the factorial cumulants of the photon counts and resolves heterogeneous samples based on differences
in brightness. A simple analytical model connects the cumulants of the photon counts with the brightness e and the number of
molecules N in the optical observation volume for each fluorescent species. To provide the tools for a rigorous error analysis of
FCA, expressions for the variance of factorial cumulants are developed and tested. We compare theory with experiment by
analyzing dye mixtures and simple fluorophore solutions with FCA. A comparison of FCA with photon-counting histogram (PCH)
analysis, a related technique, shows that both methods give identical results within experimental uncertainty. Both FCA and
PCH are restricted to data sampling times that are short compared to the diffusion time of molecules through the observation
volume of the instrument. But FCA theory, in contrast to PCH, can be extended to treat arbitrary sampling times. Here, we
derive analytical expressions for the second factorial cumulant as a function of the sampling time and demonstrate that the
theory successfully models fluorescence fluctuation data.

INTRODUCTION

Fluorescence fluctuation spectroscopy derives information

about biomolecules by measuring the spontaneous intensity

fluctuations of fluorescent molecules passing through a small

observation volume. Fluorescence fluctuations carry in-

formation about transport properties, chemical reactions, and

the aggregation state of biomolecules, to name just a few.

Statistical analysis techniques are required to unlock the

information that is hidden within the experimentally

observed fluorescence fluctuations. The most widely used

technique, fluorescence correlation spectroscopy (FCS), uses

the autocorrelation function to analyze the temporal fluctua-

tions of the fluorescence. FCS has proven extremely

powerful for characterizing dynamic processes over time-

scales from microseconds to seconds (see Hess et al., 2002;

Medina and Schwille, 2002; Thompson et al., 2002; Van

Craenenbroeck and Engelborghs, 2000, for reviews).

An important aspect of fluorescence fluctuation spectros-

copy is the resolution of heterogeneous mixture of bio-

molecules from analysis of a single measurement. FCS uses

the translational diffusion coefficient to separate between

different types of molecules. However, if the molecules have

similar molecular weights, FCS does not have the sensitivity

to separate them (Meseth et al., 1999). An alternative data

analysis technique, photon-counting histogram (PCH) anal-

ysis, was introduced to overcome this shortcoming of FCS

(Chen et al., 1999; Kask et al., 1999).

PCH analysis exploits information from the probability

distribution of the photon counts instead of using the

autocorrelation function. Thus, PCH and FCS use different

information embedded in the noise. PCH distinguishes

molecular species by differences in their molecular bright-

ness and not by their diffusion coefficient. For example,

assume that two monomeric proteins that are labeled with the

same fluorescent dye associate to form a dimer. The dimer

carries two fluorescent labels and will appear twice as bright

as the monomeric protein. This difference in brightness

between the monomer and the dimer allows PCH to separate

both species. The resolution of binary mixtures by PCH has

been successfully demonstrated (Müller et al., 2000). We

recently improved PCH theory (Hillesheim and Müller,

2003) and used it to probe protein interactions in living cells

(Chen et al., 2003; Müller, 2003).

The idea that there is more information in the fluorescence

fluctuations than used by FCS is not new. Higher order

autocorrelation techniques were pioneered by Palmer and

Thompson (1987, 1989). A similar approach was taken by

Qian and Elson (1990a,b). Both techniques are based on

analysis of the higher moments of the photon counts. These

techniques were introduced to resolve heterogeneous bio-

molecule solutions. However, the potential of this approach

has not been explored. We will demonstrate that moment

analysis is indeed capable of resolving the composition of

heterogeneous mixtures. Moreover, we will show that PCH

and moment analysis are equally powerful methods for

resolving heterogeneous samples. Instead of regular mo-

ments we will use cumulants, which are related to moments

but have properties particularly useful for fluctuation spec-

troscopy.

The reasons for developing fluorescence cumulant

analysis (FCA) are twofold. First, we want to provide an

alternative to PCH analysis. The mathematical description of

FCA is rather straightforward and simple to implement in

software. In contrast, the PCH algorithm is considerably

Submitted December 1, 2003, and accepted for publication February 23,

2004.

Address reprint requests to Joachim D. Müller, University of Minnesota,

School of Physics and Astronomy, 116 Church Street SE, Minneapolis, MN

55455. Tel.: 612-625-4369; Fax: 612:624-4578; E-mail: mueller@physics.

umn.edu.

� 2004 by the Biophysical Society

0006-3495/04/06/3981/12 $2.00 doi: 10.1529/biophysj.103.037887

Biophysical Journal Volume 86 June 2004 3981–3992 3981



more sophisticated. Second, cumulant analysis is more flexi-

ble than PCH. A substantial amount of theory on cumulants

is available. Applying this theory allows the evaluation of

cumulants for arbitrary data sampling times. This will allow

the expansion of FCA theory to arbitrary sampling times,

which will increase the signal statistics of the technique.

Here, we will concentrate on the second factorial cumulant of

the photon counts and derive expressions for its dependence

on the data sampling time. PCH analysis, in contrast to FCA,

is restricted to sampling times that are short compared to

the diffusion time through the observation volume of the

instrument.

We introduce a simple model that expresses cumulants as

functions of the brightness e and the number of molecules N
for each fluorescent species present. In addition, we formulate

and experimentally verify a mathematical model for the

statistical error of experimental cumulants. FCA is based on

fitting experimental cumulants to theoretical models. Anal-

ysis of simple dye mixtures by FCA demonstrates that our

theory successfully models the experimental data.

MATERIALS AND METHODS

Instrumentation

Our homebuilt two-photon microscope uses a mode-locked Ti:sapphire laser

(Tsunami, Spectra-Physics, Mountain View, CA) pumped by an intracavity

doubled Nd:YVO4 laser (Millennia V, Spectra-Physics) as source for two-

photon excitation. The laser light passes through a beam expander and enters

the modified fluorescence turret of an Axiovert 200 microscope (Carl Zeiss,

Thornwood, NY). A 633 Plan Apochromat oil immersion objective (NA ¼
1.4) was used to focus the light and to collect the fluorescence. For all

measurements, an excitation wavelength of 780 nm was used and the

average power after the objective was on the order of 6 mW. Under our

experimental conditions, no photobleaching was detected for any of the

samples measured. Photon counts were detected with an avalanche

photodiode (SPCM-AQ-14, PerkinElmer, Dumberry, Québec, Canada).

The output of the avalanche photodiode unit, which produces transistor-

transistor logic pulses, was directly connected to a data acquisition card (ISS,

Champaign, IL). The data acquisition card records the complete sequence of

photon counts to computer memory. The data were sampled either at

400 kHz or at 50 kHz. Analysis of the data was performed with programs

written for IDL version 5.4 (Research Systems, Boulder, CO).

Sample preparation

Rhodamine 110, Alexa 488, 3-cyano-7-hydroxycoumarin, and fluorescein

were purchased from Molecular Probes (Eugene, OR). All dyes were

dissolved in 50 mM Tris[hydroxymethy]amino-methane (Sigma, MO) at

a pH of 8.5. Dye concentrations were determined by absorption measure-

ments using the extinction coefficients provided by Molecular Probes.

Samples for the microscope were prepared by diluting the stock solutions to

the desired concentration.

Data analysis

Autocorrelation functions were calculated from the recorded photon counts

by software. Photon-counting histogram (PCH) analysis of data was

performed as previously described (Müller et al., 2000). PCH determines

two parameters for each fluorescent species, the molecular brightness e and

the average number of molecules in the excitation volume N. The molecular

brightness e is measured in photon counts per sampling time. We used

Mathematica (Version 4.1, Wolfram Research, Champaign, IL) and the

statistical software package MathStatica (Mathstatica, Sydney, Australia) for

deriving the analytical expressions for cumulant analysis. After converting

the expressions into computer code, programs written in the IDL language

were used for data analysis and for nonlinear least-squares fitting of factorial

cumulants. The confidence interval of fit parameters was either determined

from the covariance matrix or by F-test analysis (Bevington and Robinson,

1992).

THEORY

Theory of photon detection

Mandel’s formula relates the probability distribution function (pdf) p(W) of

the integrated light intensityW absorbed by the detector with the pdf p(k) of

the photon counts k (Mandel, 1958),

pðkÞ ¼
Z N

0

Poiðk;hWÞpðWÞdW; (1)

where Poi(k,x) is the Poisson distribution with an average photon count of x.

The parameter h describes the sensitivity of the photo detector, and the

intensity I(t) is integrated over the acquisition sampling time T,

WðtÞ ¼
Z t1T=2

t�T=2

Iðt#Þdt#: (2)

To simplify the equations, we will set h ¼ 1. With this definition, intensity I

is measured in photon counts per second (cps), and the integrated intensityW

is expressed in units of photon counts. Because of the finite detection

sampling time T, we always observe intensity fluctuations of the collected

light averaged over the sampling time T. However, if the timescale of the

intensity fluctuations is longer than the sampling time T, then the integrated

intensity fluctuations track the intensity variations. We will assume that the

sampling time T is chosen short enough, so that the fluctuations in W track

the intensity fluctuations of interest. This allows us to simplify Eq. 2,

WðtÞ ¼ IðtÞT: (3)

With this assumption it is possible to calculate the pdf of fluorescence

fluctuation experiments for a variety of point spread functions (PSF; Chen

et al., 1999). PCH analysis compares the experimentally determined photon-

counting histograms with the pdf p(k) of a model. Because PCH theory has

been derived under the assumption that Eq. 3 is valid, PCH is only correct

for data sampling times T that are short compared to the diffusion time tD of

molecules through the observation volume. Essentially, the particle is

assumed to be stationary (or frozen) during the short sampling period T. The

integrated fluorescence intensity of the fluorescent particle only depends on

its location r(t) within the PSF,

WðtÞ ¼ ePSFðr~ðtÞÞ: (4)

The function PSFðr~Þ is the normalized PSF of the instrument (Chen et al.,

1999). The parameter e is the brightness of the molecule and depends on the

sampling time T,

e ¼ lT; (5)

where l is the photon-count rate of a single molecule.
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Mandel’s formula also relates moments of the integrated intensity with

moments of the photon counts. The moment-generating function (mgf)

QW(s) of the integrated intensities is equal to the factorial mgf Qf
kðsÞ of the

photon counts (Saleh, 1978), QWðsÞ ¼ Qf
kðsÞ. Taking the logarithm of the

mgf defines the corresponding cumulant-generating function (cgf). There-

fore, the cgf Qc
WðsÞ of the integrated intensity is identical to the factorial cgf

Qcf
k ðsÞ of the photon counts, Qc

WðsÞ ¼ Qcf
k ðsÞ. Consequently, the rth

integrated intensity cumulants value, kr, is equal to the r
th factorial cumulant

k[r] of the photon counts

k̂kr ¼ k½r�: (6)

Cumulants are particularly convenient for describing statistically indepen-

dent variables. Cumulants of the sum of statistically independent variables

are simply given by the sum of the cumulants of the individual variables (van

Kampen, 1981). The same relationship holds for factorial cumulants. For

this reason, fluorescence intensity cumulants scale with the number of

molecules in the observation volume, and the corresponding cumulant for

a mixture of species is simply given by the sum of the cumulants of each

species. All cumulants can be expressed as linear combinations of regular

moments (Kendall and Stuart, 1977a). To construct explicit expressions for

cumulants in terms of moments, one must derive them from the cgf. For

example, the first three cumulants are given by the mean, the variance, and

the third central moment, respectively.

Cumulants of fluorescence
fluctuation spectroscopy

In fluorescence fluctuation experiments we measure the fluorescence signal

from a small illuminated volume. We define an effective observation volume

VPSF by

VPSF ¼
Z
V

PSFðr~Þdr3; (7)

where PSFðr~Þ is the normalized PSF with PSFð0Þ ¼ 1. The average number

of molecules N in the observation volume VPSF is proportional to its molar

concentration c,

N ¼ cNAVPSF; (8)

where NA is Avogadro’s number.

We show in Appendix A that the rth cumulant of the integrated

fluorescence intensity kr of diffusing molecules with brightness e is given by

k̂kr ¼ gre
r
N: (9)

The coefficients gr are defined as by Chen et al. (1999) and Thompson

(1991),

gr ¼
R
V
ðPSFðr~ÞÞrdr3R
V
PSFðr~Þdr3

: (10)

The first two cumulants for a single species are given by

k½1� ¼ k̂k1 ¼ eN

k½2� ¼ k̂k2 ¼ g2e
2
N
: ð11Þ

The cumulants for a mixture of s independent species are given by the sum

of the cumulants of each species,

k½1� ¼ +s

i¼1
eiNi

k½2� ¼ g2+
s

i¼1
e2i Ni

k½3� ¼ gr+
s

i¼1
eriNi

; ð12Þ

where ei and Ni are the brightness and number of molecules of species i.

Please note that we will often refer in the manuscript to factorial cumulants

and regular cumulants simply as cumulants.

Calculation of cumulants and their variances

The factorial cumulants of the photon counts k[r] are calculated from the

moments of the recorded photon counts. We express factorial cumulants in

terms of raw and central moments using moment conversion equations

(Kendall and Stuart, 1977a; Rose and Smith, 2002a). The program

MathStatica was used for deriving the conversion expressions, which we

implemented into our data analysis software. The explicit equations for the

first four factorial cumulants in terms of moments of photon counts are

k½1� ¼ Ækæ

k½2� ¼ ÆDk2æ� Ækæ

k½3� ¼ ÆDk3æ� 3ÆDk2æ1 2Ækæ

k½4� ¼ ÆDk4æ� 6ÆDk3æ� 3ÆDk2æ2 1 11ÆDk2æ� 6Ækæ

: ð13Þ

Expressions of factorial cumulants up to order 10 in terms of moments are

also easily constructed using published moment conversion tables (Kendall

and Stuart, 1977a).

The standard deviation s½k½r�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½k½r��

p
characterizes the experimen-

tal uncertainty of factorial cumulants k[r] calculated from the raw data.

Appendix B shows the steps used for determining the variance Var½k½r�� of
the factorial cumulants. Following this approach, we determined expressions

for the variance of the factorial cumulants up to the 10th order with the

software package MathStatica. The variance of the first three factorial

cumulants expressed in terms of cumulants is given by

Var½k½1�� ¼
1

n
k2

Var½k½2�� ¼
1

n
ðk212k

2

2�2k31k4Þ

Var½k½3�� ¼
1

n
ð18k2

216k
3

2�12k319k
2

3

113k41k2ð4�36k319k4Þ�6k51k6Þ

: ð14Þ

The variance of the factorial cumulants is inversely proportional to the

number of data points n sampled as shown in the Appendix. Expressions of

the variance for higher order cumulants are of simple polynomial form, but

too lengthy to be shown here. We report the variance of the forth and fifth

factorial cumulant in Appendix B. We implemented an algorithm into

software that determines the variance of the factorial cumulants up to order

10. The algorithm works in two steps. First, we determine the cumulants of

the photon counts from the regular photon-count moments using moment-

conversion equations (Kendall and Stuart, 1977a). In the second step, we use

the cumulants to calculate the variance of the factorial cumulants (see Eq. 14

and Appendix B). We also introduce the relative error sr½k½r�� ¼
s½k½r��=k½r� and the relative variance Varr½k½r�� ¼ Var½k½r��=k2½r�, which we

will use later for describing the statistical uncertainty of fluorescence

cumulants.

To perform error analysis we first determine the experimental factorial

cumulants k[r] from the moments of the photon counts (see Eq. 13). A
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physical model that specifies the brightness and number of molecules for

each species determines the theoretical cumulants k[r] according to Eqs. 11

and 12. A nonlinear least-squares optimization program is used for fitting the

experimentally determined factorial cumulants k[r] to the theoretical

cumulants k[r]. The reduced X2
n of the fit is given by

X2

n ¼ +
r0

r¼1

ðk½r� �k½r�Þ2

Var½k½r��

,
ðr0�pÞ: (15)

The value of r0 is the number of cumulants used in the fit and p is the number

of free fitting parameters of the model.

Rebinning of cumulants

Earlier we made the approximation that the data sampling time T is short

compared to the characteristic diffusion time of molecules through the

observation volume. Now we abandon this approximation and work out the

statistics of cumulants for arbitrary data sampling times T. We will restrict

ourselves to treating the first two cumulants ~kk1 and ~kk2. Calculating the first

cumulant is trivial,

~kk1ðTÞ¼ ÆWæT¼
Z t1T=2

t�T=2

Iðt#Þdt#
* +

¼ ÆIæT¼lTN¼ eN:

(16)

We exchanged the order of averaging and integration and used the fact that

the fluorescence intensity is a stationary process. The first cumulant, which is

the average integrated intensity ÆWæT, is simply proportional to the sampling

time, as expected.

Now, let us calculate the second cumulant, which equals the variance,

~kk2ðTÞ¼ ÆDW2æ¼
Z T=2

�T=2

Z T=2

�T=2

ÆDIðt1ÞDIðt2Þædt1dt2: (17)

The integrand ÆDI(t1)DI(t2)æ is proportional to the intensity autocorrelation

function,

gðtÞ¼ ÆDIðt1ÞDIðt2Þæ
ÆIæ2

¼ gð0Þf ðtÞ: (18)

The correlation function only depends on the time difference, t ¼ t2–t1,

because we are dealing with a stationary process. The autocorrelation

function is the product of its amplitude g(0) with a time-dependent factor

f(t), which is model-dependent. The fluctuation amplitude is inversely

proportional to the number of particles in the observation volume,

gð0Þ¼g2

N
: (19)

With these definitions Eq. 17 can be rewritten as

~kk2¼g2l
2
N

Z T

�T

ðT�jtjÞf ðtÞdt: (20)

Here, we transformed the double integral using the fact that the process is

stationary. Let us define the binning factor B2(T),

B2ðTÞ¼
Z T

�T

ðT�jtjÞf ðtÞdt: (21)

The second cumulant can now be written as

~kk2¼g2l
2
NB2 ðTÞ: (22)

The function B2(T) describes the dependence of the second cumulant on the

data sampling time T. The correlation function of a diffusing species with

a two-dimensional Gaussian PSF is given by

f2DGðtÞ¼ ð11t=tDÞ�1
; (23)

where tD is the average diffusion time through the observation volume. The

function B2 for this model is analytically given by

Bð2DGÞ
2 ðTÞ¼�2tD T1ðT1tDÞLog

tD

T1tD

� �
: (24)

The correlation function of a diffusing species with a three-dimensional

Gaussian PSF is given by

f3DGðtÞ¼ 11
t

tD

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

t

r
2
tD

r� ��1

; (25)

with r ¼ z0/v0, the ratio of the axial to the radial beam waist of the PSF. The

function B2 for this model is

B
ð3DGÞ
2 ðTÞ¼ 4rt2D

s

�
rs�s

ffiffiffiffiffiffiffiffiffiffi
r
2
1x

p
�ð11xÞ

3 Log
ðr� sÞðs1

ffiffiffiffiffiffiffiffiffiffiffi
r
2
1x

p
Þffiffiffiffiffiffiffiffiffiffi

11x
p

" #!
:

(26)

We introduced the dimensionless sample time, x ¼ T/tD, and the parameter

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p
.

The influence of finite sampling times on the second moment and

correlation functions is well known. The triangular averaging effect of finite

sampling times was first considered after the introduction of the multiple tau

correlation technique (Schätzel, 1987). The influence of binning for

diffusion in the presence of a three-dimensional Gaussian beam profile

has been previously treated, and a correction factor that is essentially

identical to the binning function B2(T) shown in Eq. 26 has been introduced

(Palo et al., 2000).

RESULTS AND DISCUSSION

Resolving species with cumulants

A single fluorescent species is characterized by two

parameters, the molecular brightness e and the average

number of molecules N. Each cumulant contains unique

information not present in cumulants of a different order. In

other words, the first two cumulants are sufficient to

determine the brightness and average number of molecules
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in the observation volume. Because analysis of a single

species is straightforward, let us consider two species, which

is the first nontrivial case. For a binary mixture four

cumulants are required to resolve the brightness and average

number of molecules for each species. The parameters for

a binary mixture can be found analytically by solving the

quartic equation that can be constructed from the first four

cumulants (Eq. 12). A binary dye mixture of coumarin

and rhodamine was mixed in a 70%:30% (v/v) ratio and

subsequently measured as outlined in Materials and

Methods. Solving the quartic equation leads to the brightness

and particle concentration of each species (see Table 1).

Analyzing the same data with PCH gives a reduced x2 of 1.2

for a fit of the experimental histogram to a two-species model

(Fig. 1). Comparison of the parameters determined from

PCH analysis with the results from the cumulant calculation

shows very good agreement (Table 1).

This experiment demonstrates that two species can be

successfully resolved from the first four cumulants. Re-

solving two species from a single measurement by analysis

of photon-count moments has been attempted previously but

was not successful (Palmer and Thompson, 1989; Qian and

Elson, 1990a). The failure was attributed to insufficient

signal statistics. This example illustrates a serious shortcom-

ing of the cumulant approach. Because error analysis of

photon-count moments and cumulants was not available, the

signal/noise ratio of the experimental data is unknown. We

cannot tell if the quality of the data is sufficient to resolve

two species. What is worse, even if only a single species is

present, calculation of the first four cumulants will still yield

parameters for the nonexisting second species. Without error

analysis for fluorescence cumulants, we cannot distinguish

between different models, nor judge their quality. The

advantage of PCH lies in the fact that it provides error

analysis. A nonlinear least-squares fit of the experimental

histogram assuming a single species leads to a reduced x2 of

217 (data not shown), clearly rejecting the single-species

model. To develop a practical analysis tool for cumulants, we

need to formulate a theory for the experimental uncertainty

of factorial cumulants.

Variance of cumulants

Weoutlined the theory of error analysis of factorial cumulants

in the Theory section. The derivation of the variance of the

cumulants is solely based on statistics and therefore valid not

only for photon counts but for any random data in general.We

used this fact to test ourmodel and its implementation into our

analysis software.We generated 100 sets (with 106 data points

in each set) of Poisson distributed random data to generate

sampling statistics. To characterize the sampling statistics of

the factorial cumulants, we determined the expectation value

of a factorial cumulant and its variance directly from the 100

sets of data. Fig. 2 a shows the expectation value of the

sampling factorial cumulants. Note, that all factorial cumu-

lants k[r] with r. 1 vanish for a Poissonian probability distri-

bution function.We also calculate the variance of the factorial

cumulants of a single data set by using our theory based on the

sampling moments-of-moments technique (Kendall and

Stuart, 1977b). Fig. 2 b compares the variance based on the

statistics of the 100 simulated data sets with the theoretical

variance. The results of both methods are identical and

confirm the theoretical approach.

We used the same approach to compare the variances of

experimental data. A rhodamine 110 solution was measured

for 80 s and the data set was divided into 500 equally sized

records. We calculated the sampling variance of the first five

cumulants from the 500 records (see triangle in Fig. 3) and

compared it with the variance predicted from theory based on

the experimental data of a single record (see diamond in Fig.
3). Again, both methods lead to the same result. Because

each record contains data taken over the short time period of

0.16 s, we randomly shuffled the data sequence by computer

before analysis to destroy the residual correlations between

the data of adjacent records.

FIGURE 1 The PCH function of a binary mixture of rhodamine and

coumarin ()) is plotted together with an error bar (6s) for each data point.

A fit of the data to a two-species model (solid line) leads to a good

description of the experimental histogram. The fit parameters are shown in

Table 1.

TABLE 1 Analysis of a binary dye mixture

e1 N1 e2 N2 xy
2

Cumulants 0.618 0.088 2.076 0.039 —

PCH 0:6171 0:11
�0:11 0:0881 0:004

�0:002 2:0751 0:088
�0:075 0:0391 0:006

�0:006 1.2

FCA 0:6411 0:09
�0:09 0:0881 0:003

�0:002 2:0911 0:060
�0:056 0:0381 0:004

�0:004 0.8

Data of a binary dye mixture of coumarin and rhodamine (70%:30% v/v)

are analyzed by three different methods: 1), The brightness and the number

of molecules of each species are directly computed from the first four

factorial cumulants of the photon counts. 2), PCH analysis is used to

resolve the binary mixture from the photon-counting histogram. 3), FCA is

used to fit the first four factorial cumulants of the photon counts to a two-

species model (Eq. 12). The uncertainty of the fit parameters was

determined by F-test analysis using a 68% confidence interval.
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Fluorescence cumulant analysis

FCA is based on fitting fluorescence cumulants to theoretical

models (Eq. 12). The experimental error s½k½r�� is calculated
from the data (Eqs. 14 and 38), and the quality of the fit is

judged by its reduced x2 (Eq. 15). FCA was tested by

analyzing data from a fluorescent dye solution (rhodamine

110) taken with a sampling frequency of 50 kHz. A plot of

the relative error sr in Fig. 4 a reveals that the first four

cumulants are statistically significant. A cumulant is

considered statistically significant as long as its relative

error is ,1. We fit the four cumulants to a single-species

model and recover fit parameters of e ¼ 3.88 and N ¼ 0.73.

Fig. 4 b shows the experimental factorial cumulants and their

standard deviation together with the fit. The reduced x2 of

the fit is 1.4, which corresponds to a good description of the

data by the single-species model.

Now we reanalyze the 70%:30% (v/v) binary dye mixture

of rhodamine and coumarin by FCA (see Table 1). First, we

look at the relative error sr to determine the number of

significant cumulants. The data set contains six significant

cumulants (Fig. 5 a). A single-species fit of the first six

cumulants leads to a reduced x2 of 236 (data not shown),

clearly indicating the need for a different model. A fit of the

data to a two-species model describes the experimental

cumulants (Fig. 5 b) and results in a reduced x2 of 0.8. The

brightness and average number of molecules of both species

are shown in Table 1.

Comparison of FCA with PCH

We analyze both a single-species and a two-species sample

with PCH and FCA and compare the results. The first sample

is a simple rhodamine 110 solution and the second sample is

the 70%:30% (v/v) binary mixture of rhodamine 110 and

coumarin from Fig. 5. The best-fit parameters are determined

by nonlinear-least-squares fitting, and their experimental

uncertainty is determined by F-statistics. The reduced x2 for

a large number of fits, where one of the parameters is

systematically varied, has a minimum if the parameter value

equals the best-fit value. We use F-statistics to determine

from the x2 function the 68% confidence interval of the fitted

parameter, which corresponds to its standard deviation.

FIGURE 2 Error analysis of factorial cumulants. A computer

generated 100 sets of Poisson distributed random data with 106 data

points in each set. The sampling average (n) and variance ()) of

the factorial cumulants are shown in a and b. The variance ()) was

also determined by our theory from a single data set. Both

theoretical and experimental variances of the factorial cumulants are

in agreement.

3986 Müller

Biophysical Journal 86(6) 3981–3992



Fig. 6, a and b, show the fit results together with the uncertain-

ties in fit parameters for both samples. The uncertainties of

the fit parameters are also reported in Table 1.

The best-fit parameters of both analysis methods are

identical within experimental uncertainty. In addition, the

standard deviation determined by both techniques is very

similar. We have analyzed a large number of data sets and

have always found that both analysis techniques give

identical results. We conclude that PCH and FCA are

equivalent techniques. The absolute brightness values

recovered from analysis of the binary dye mixture are con-

sistent with measurements of the brightness of the individual

dyes using the same excitation conditions (e1 ¼ 0.62 for

coumarin and e2 ¼ 2.08 for rhodamine, data not shown). The

ratio of the experimental number of molecules is also

consistent with the 70%/30% nature of the prepared binary

sample.

Rebinning of cumulants

We will examine the theory of the rebinned second cumulant

~kk½2�ðTÞ by experiment. For convenience, we define the

following function,

eðTÞ[ ~kk½2�ðTÞ
g2 ~kk½1�ðTÞ

¼ l
B2ðTÞ
T

: (27)

The function e(T) is identical to the molecular brightness at

short binning times T. We took data of a rhodamine sample

with a sampling frequency of 400 kHz. The brightness

function e(T) is shown in Fig. 7 as a function of the bin time

T. The data of Fig. 7 are generated as follows: The computer

records the photon counts with a sampling time of 2.5 ms and

bins the original data by consecutive factors of two. Each

binning step simply adds two adjacent photon counts

together. This process is equivalent to taking the data with

a twice-longer sampling time T for each binning step. The

intensity cumulants ~kk½2�ðTÞ and ~kk½1�ðTÞ are calculated after

each step, and the brightness e(T) is graphed as a function of

the binning time T. The data in Fig. 7, which are proportional
to the molecular brightness, initially increase linearly at short

sampling times. This is the regime where PCH theory is

correct. At larger sampling times the slope decreases, be-

cause molecules are starting to diffuse out of the observation

volume. Our theory considers both the brightness and the

FIGURE 3 Error analysis of factorial cumulants. A rhodamine 110

sample was measured for 80 s and subsequently divided into 500 records of

equal size. The sampling variance (n) of the factorial cumulants was

determined from the statistics of the 500 records. In addition, the variance

was determined from theory based on the data of a single record ()). Both

theoretical and experimental determination of the variance of the factorial

cumulants give the same result.

FIGURE 4 FCA analysis of a rhodamine 110 sample. (a) The relative

error sr of the experimental factorial cumulants k[r] up to order r ¼ 5. The

first four cumulants are statistically significant (sr , 1). (b) The

experimental cumulants ()) are plotted together with an error bar (6s)

for each data point. A fit of the data to a single-species model (solid line)

leads to a good description of the experimental histogram. The reduced x2 of

the fit is 1.4, and the fit parameters are e ¼ 3.88 and N ¼ 0.73.
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diffusion time, and thus incorporates aspects of FCS and

PCH. This allows us to exploit the brightness at large binning

times, where signal statistics is excellent, together with

the diffusion time, which determines the shape of the plot in

Fig. 7.

A fit of e(T) to a theoretical model assuming a two-

dimensional Gaussian excitation profile (Eq. 24) fails to

describe the data (Fig. 7). However, a fit of e(T) to a three-

dimensional Gaussian model (Eq. 26) describes the exper-

imental data well. The fit determines the molecular photon-

count rate (l¼ 265 kcps), the diffusion time (tD ¼ 18.8 ms),

and the aspect ratio of the laser beam profile (r ¼ 5.4). The

aspect ratio recovered from the fit is close to 5, which is the

value expected for approximating a two-photon Gaussian-

Lorentzian beam profile by a three-dimensional Gaussian

function (Müller et al., 2003).

DISCUSSION

We introduced a new data analysis technique, factorial

cumulant analysis (FCA). Analysis of data by FCA and PCH

leads to identical results (Fig. 6). Thus, PCH and FCA are

equivalent tools for resolving mixtures of fluorescent

molecules from their differences in brightness. This is not

surprising, because PCH and FCA are, from a purely mathe-

matical point of view, related. The probability distribution

function (pdf) and the cumulant generating function (cgf)

contain the same information and can be transformed into

one another.

However, there are practical differences between the two

techniques. Modeling of PCH functions is complex, whereas

FCA analysis offers simple analytical equations that con-

vert models into cumulants (Eq. 12). Thus, implementing

FIGURE 5 FCA analysis of a binary mixture of rhodamine and coumarin.

(a) The relative error sr of the experimental factorial cumulants k[r] up to

order r ¼ 7. The first six cumulants are statistically significant (sr , 1). (b)
The experimental cumulants ()) are plotted together with their error bars

(6s). A fit of the data to a two-species model (solid line) leads to a good

description of the experimental histogram. The reduced x2 of the fit is 0.8,

and the fit parameters are shown in Table 1.

FIGURE 6 Comparison between FCA and PCH. (a) Data of a fluorescent

dye solution are analyzed by PCH and FCA. The best-fit parameters for the

brightness and the number of molecules are shown together with their 68%

confidence interval (FCA analysis, solid lines; PCH analysis, dotted lines).
(b) Data of a binary-dye mixture of rhodamine and coumarin analyzed by

PCH and FCA. The best-fit parameters for the brightness and the number of

molecules of each species are shown together with their 68% confidence

interval (FCA analysis, solid lines; PCH analysis, dotted lines).
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algorithms into software is much easier for FCA than it is for

PCH.

An advantage of PCH is that although modeling is

complex, error analysis is straightforward. Because error

analysis for cumulants did not exist, we developed it for

factorial photon-count cumulants. Its theory is considerably

more complex than that for PCH and requires advanced

statistical methods. We constructed analytical solutions for

the variance of factorial cumulants up to order 10. The

expressions for the first three variances are given in Eq. 14.

Although the expressions become lengthy for higher orders,

they are given by simple polynomials and are easily im-

plemented into software. Error analysis of factorial cumu-

lants up to order 10 is more than sufficient for fluorescence

fluctuation experiments. The number of statistically signif-

icant cumulants of our experiments has always been less than

eight even for very bright dyes measured at low concen-

trations.

Each fluorescent species requires two cumulants for the

determination of its brightness and its number of molecules.

In other words, 2n statistically significant cumulants are

necessary for resolving a mixture of n species. But how

many experimental factorial cumulants of a given data set are

reliable? FCA provides a straightforward way to answer this

question by evaluating the relative error of the experimental

cumulants. The relative error of the cumulants increases as

a function of its order (see Fig. 5 a). Only values with

a relative error of ,1 are acceptable for data analysis. This

provides a very convenient check to see if the statistical

accuracy of the data is sufficient for resolving species. For

example, Fig. 8 shows the relative error of the factorial

cumulants for a mixture of rhodamine 110 and coumarin at

20 times the concentration as was used for the data presented

in Fig. 6 and measured for 30 s. Only the first three

cumulants are statistically significant. In other words, the

statistics of the data is not sufficient for resolving two

species. This result is in agreement with a previous study,

where we showed that an increase in concentration or

a decrease in data acquisition time results in less signal/noise

(Müller et al., 2000). It is important to note that PCH does

not offer a direct criterion for judging the resolvability of

species. Adjacent values of the pdf p(k) do not provide

information independent from one another, and the total

FIGURE 7 Binning of cumulants. Data of a rhodamine sample are

successively rebinned by factors of two. The function e(T) ()) is calculated

from the first two rebinned factorial cumulants (Eq. 27). A fit of the function

e assuming a two-dimensional Gaussian beam profile cannot reproduce the

experimental data (dashed line). A fit to a model with a three-dimensional

Gaussian beam profile describes the data within experimental error (solid

line).

FIGURE 8 The relative error sr ()) of the factorial cumulants k[r] for

a binary mixture of rhodamine and coumarin. Only the first three cumulants

are statistically significant (sr , 1). Thus, the statistics of the data is not

sufficient for resolving two species, because four statistically significant

cumulants are required.

FIGURE 9 Calculation of the relative variance Varr of a binary mixture

for a single data point (n ¼ 1). The calculation is based on the following

parameters, e1 ¼ 2, e2 ¼ 4, and N1 ¼ N2 ¼ 3. A dashed line is drawn

horizontally, so that four cumulants lie below it. The relative variance of the

line is 2 3 106, which corresponds to the number of data points required to

achieve four statistically significant cumulants.
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number of histogram channels does not specify the

resolvability of species.

FCA allows us to determine the necessary data acquisition

time by analyzing the error statistics. For example, assume

that a protein with a brightness of e1 ¼ 2 associates to form

dimers with a brightness of e2 ¼ 4. The data sampling time is

T ¼ 20 ms and the average number of molecules for each

species is expected to be N1¼ N2¼ 3. Howmany data points

are needed to resolve this mixture? We take the parameters,

e1, N1, e2, N2, and calculate the relative variance assuming

a single data point (n ¼ 1) (Fig. 9). The variance and the

relative variance are inversely proportional to the number of

data points n. A minimum of four statistically significant

cumulants is necessary to resolve two species. Since four

cumulants are required for resolving the mixture, a line is

drawn vertically in Fig. 9, so that the first four cumulants are

below the line. The value of the reduced variance

corresponding to that line determines the number of data

points needed to acquire the desired signal statistics, because

the variance is inversely proportional to the number of data

points, Var½k½r�� ¼ 1=nVar½k½r�� (Eq. 41). For example, about

n ¼ 2 3 106 data points are required to resolve the binary

mixture. The total data acquisition time needed is given by

tDAQ ¼ nT.
Another advantage of FCA over PCH is its close

relationship to correlation functions. This relationship allows

the calculation of cumulants for arbitrary sampling times.

We demonstrated this approach for the second integrated

intensity cumulant ~kk2 (Eq. 22). Theory and experimental

data are in very good agreement (Fig. 7). We determine the

molecular photon-count rate, the diffusion time, and the

aspect ratio of the beam profile by fitting the experimental

data. Initially, at short data acquisition times the curve in Fig.

7 has a linear slope, which corresponds to the situation,

where the integrated intensity fluctuations track the intensity

fluctuations and the brightness is proportional to the data

sampling time, e ¼ lT. The slope of the brightness curve

decreases for larger data sampling times, because some

fluorophores diffuse out of the observation volume during

the sampling time, which imposes a limit on the number of

collected photon counts per molecule.

PCH is only correct as long as the sampling time is short

compared to the diffusion time through the observation

volume. Finding an exact solution for PCH for large

sampling times has been difficult. However, there has been

an approach described in the literature that extends histogram

analysis to longer sampling times (Palo et al., 2000). The

model, called FIMDA, is based on an approximation, where

correction factors for the brightness and the number of

molecules are determined from the rebinned second intensity

cumulant. Higher moments are not corrected for in this

model. Cumulant analysis is advantageous because it offers

an exact approach for taking arbitrary sampling times into

account. Here, we only corrected the second cumulant to

illustrate the technique.

CONCLUSIONS AND SUMMARY

This manuscript introduces FCA, a new analysis technique

that extracts information from cumulants of fluorescence

fluctuation data. We describe a simple model that connects

the brightness and number of molecules of fluorescent

species with the factorial cumulants of photon counts. In

addition, we developed error analysis by introducing

equations for the variance of factorial cumulants. Compar-

ison of FCA with PCH shows that both techniques lead to

identical results. Thus, FCA presents an alternative analysis

technique for resolving species through brightness differ-

ences. FCA has some advantages over PCH. A straightfor-

ward mathematical model describes the factorial cumulants

and allows a simple algorithmic implementation. In addition,

calculation of the relative error of cumulants answers the

question whether the signal statistics of the data is sufficient

for resolving heterogeneous samples. The theory of

cumulants also provides an approach for analyzing fluores-

cence fluctuation data taken with arbitrary sampling times.

We derived expressions for the second factorial cumulant for

arbitrary sampling times and demonstrated that theory and

experiment agree. This approach can increase the sensitivity

of FCA in resolving species significantly. The demonstration

and analysis of higher order cumulants with arbitrary

sampling times will be the subject of a separate study.

APPENDIX A

Let us consider for the moment a single, diffusing molecule with brightness

e in a large, but closed volume V. The rth integrated fluorescence intensity

moment for that single molecule ÆWræ(1) is, according to Eq. 4, given by

ÆW ræð1Þ ¼ er
Z
V

ðPSFðr~ÞÞr pðr~Þdr3 ¼ 1

V
gr e

r
VPSF; (28)

where the probability p(r~) to find the molecule at location r~ is given by

p(r~) ¼ 1/V.

The cumulants k̂kr and raw moments mr# are related by Kendall and Stuart

(1977a),

k̂kr ¼m#r1 +
r

m¼2

+
p;p

Ym
i¼1

m#pi
pi!

� �pið�1Þr�1ðr�1Þ!
pi!

; (29)

where the second summation extends over all non-negative p- and r-values,

subject to+ pipi ¼ r and+pi ¼ r. Equation 29 states that the rth integrated

intensity cumulant k̂k
ð1Þ
r of a single molecule is given by the rth raw moment

ÆWræ(1) plus a sum of products of raw moments. Because each integrated

intensity moment ÆWræ(1) is proportional to 1/V, every product of intensity

moments is proportional to 1/Vm, with m $ 2. We insert Eq. 28 into Eq. 29

and express the rth integrated intensity cumulant k̂k
ð1Þ
r as

k̂k
ð1Þ
r ¼ 1

V
gr e

r
VPSF1 +

r�1

m¼2

1

V
mfmðeÞ: (30)

The explicit expression of the functions fm(e) is not of interest here, but can
be explicitly constructed from Eqs. 28 and 29.

If there are Ntotal molecules in the sample with volume V, then the

rth intensity cumulant is given by the sum of k̂k
ð1Þ
r over all molecules in the

sample as
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k̂k
ðNtotalÞ
r ¼Ntotal

V
gr e

r
VPSF1 +

r�1

m¼2

Ntotal

V
m fmðeÞ: (31)

The concentration of the sample is given by c ¼ Ntotal=ðNAVÞ. We rewrite

Eq. 31 as

k̂kr ¼ gr e
r
cNAVPSF1 +

r�1

m¼2

1

V
m�1cNA fmðeÞ: (32)

In fluorescence fluctuation experiments we measure fluorescence emerging

from an open excitation volume, which is much smaller than the total sample

volume V. We express the assumption of a very large surrounding volume,

by taking the limit 1/V / 0. Note that the concentration of the sample,

which is an intensive quantity, is unchanged. The rth integrated intensity

cumulant is now given by

k̂kr ¼ gr e
r
N: (33)

In the last step, we used Eq. 8 to express the concentration c in terms of the

average number of molecules N in the PSF volume VPSF, as is customary in

fluorescence fluctuation spectroscopy. This derivation follows very closely

arguments presented by Qian and Elson (1990b) for deriving the first four

cumulants. We extended their argument to cumulants of arbitrary order.

APPENDIX B

Fluorescence fluctuation experiments measure a sequence of photon counts

(k1,k2,. . .kn). Any statistics of the experiment is based on this random sample

of size n. The moments and cumulants of the experimental photon counts are

called sample moments and sample cumulants. Repeated measurements of

a sample produce different sequences of photon counts and therefore slightly

different sample moments. The distribution of the sample moments is

described by the statistics of sampling distributions, which connects

experiment and theory.

The k-statistics of a sample distribution provides an unbiased estimator of

population cumulants (Fisher, 1928). The rth k-statistic kr is the unique, sym-

metric, and unbiased estimator of the rth population cumulant kr, E[kr] ¼ kr.

Factorial cumulants are given by a linear combination of cumulants,

k½r� ¼+
r

i¼1

ciki: (34)

The coefficients Ci may be looked up or calculated from the relationship

between their generating functions (Kendall and Stuart, 1977b). We

construct an unbiased estimator k[r] of factorial cumulants k[r] by replacing

the population cumulants kr with their corresponding k-statistics,

k½r� ¼+
r

i¼1

ci ki: (35)

The expectation value of k[r] is equal to the factorial cumulant, E½k½r�� ¼ k½r�.
To construct explicit expressions of the unbiased estimator k[r], Eq. 35 is

evaluated after expressing k-statistics in terms of power sums sr (Kendall and

Stuart, 1977b),

sr ¼+
n

i¼1

k
r

i ; r¼ 1; 2; . . . : (36)

For example, the unbiased estimator k[2] of the second factorial cumulant is

k½2� ¼
ns2� s

2

1�ðn�1Þs1
nðn�1Þ : (37)

We need to calculate the variance Var½k½r�� of the factorial cumulant

estimator k[r],

Var½k½r�� ¼E½ðk½r� �E½k½r��Þ2�: (38)

Explicit expressions of the variance are obtained from Eq. 38 by converting

k[r] into augmented symmetrics, followed by the application of the

fundamental expectation result (Kendall and Stuart, 1977b; Rose and

Smith, 2002b). We use the software program MathStatica for determining

expressions of the variance. For example, the variance of k[2] expressed in

terms of population cumulants is

Var½k½2�� ¼
k2

n
12

k
2

2

n�1
�2

k3

n
1
k4

n

� �
: (39)

The number of data points n of our experimental data sets tends to be very

large (n is on the order of 106). This allows us to simplify the equations by

formally taking the limit of n / N,

Var½k½r�� ¼ lim
n/N

Var½k½r��n: (40)

The variance function Var½k½r�� expresses the hypothetical variance for

a single data point. The variance for a sample of n data points, where n is

large, is then approximated by

Var½k½r�� ¼
1

n
Var½k½r��: (41)

We calculated the variance of factorial cumulants by the method described.

Explicit expressions of the variance of the first three factorial cumulants are

given in Eq. 14. We also report here the variance of the fourth and fifth

factorial cumulants:

Var½k½4�� ¼ 36k2 1 242k
2

2 1 216k
3

2 1 24k
4

2 � 132k3 � 792k2k3 � 432k
2

2k3 1 456k
2

3 1 144k2k
2

3 1 193k4 1 500k2k4

1 72k
2

2k4 � 360k3k4 1 34k
2

4 � 144k5 � 144k2k5 1 48k3k5 1 58k6 1 16k2k6 � 12k7 1 k8

Var½k½5�� ¼ 576k2 1 5000k
2

2 1 7350k
3

2 1 2400k
4

2 1 120k
5

2 � 2400k3 � 21000k2k3 � 25200k
2

2k3 � 4800k
3

2k3 1 17025k
2

3

1 20700k2k
2

3 1 1800k
2

2k
2

3 � 3600k
3

3 1 4180k4 1 19025k2k4 1 11400k
2

2k4 1 600k
3

2k4 � 23000k3k4

� 12000k2k3k4 1 1500k
2

3k4 1 5500k
2

4 1 850k2k
2

4 � 3980k5 � 9400k2k5 � 2400k
2

2k5 1 7950k3k5 1 1200k2k3k5

� 2400k4k5 1 125k
2

5 1 2273k6 1 2650k2k6 1 200k
2

2k6 � 1400k3k6 1 200k4k6 � 800k7 � 400k2k7 1 100k3k7

1 170k8 1 25k2k8 � 20k9 1 k10: ð42Þ
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The variance of factorial cumulants of higher order are calculated as well,

but the resulting equations are too lengthy to be reported here.
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