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ABSTRACT It is widely accepted that the binding constant of a receptor and ligand can be written as a two-body integral
involving the interaction energy of the receptor and the ligand. Interestingly, however, three different theories of binding in the
literature dictate three distinct integrals. The present study uses theory, as well as simulations of binding experiments, to test the
validity of the three integrals. When binding is measured by a signal that detects the ligand in the binding site, the most accurate
results are obtained by an integral of the Boltzmann factor, where the bound complex is defined in terms of an exclusive binding
region. A novel prediction of this approach, that expanding a ligand can increase its binding constant, is borne out by the
simulations. The simulations also show that abnormal binding isotherms can be obtained when the region over which the signal
is detected deviates markedly from the exclusion zone. Interestingly, the binding constant measured by equilibrium dialysis,
rather than by monitoring a localized signal, can yield a binding constant that differs from that obtained from a signal
measurement, and that is matched best by the integral of the Mayer factor.

INTRODUCTION

The noncovalent binding of molecules in solution is of

fundamental importance in biology, playing a key role in

such basic processes as metabolism, regulation, and

immunity. Noncovalent binding is of interest in chemistry

too, where it may be exploited in chemical detection,

separations, and the self-assembly of supramolecular

structures. Thus, it is perhaps unexpected that the funda-

mental theory of noncovalent association is still in question.

It is widely accepted that, given the potential of mean force

acting between two molecules, the binding constant can be

evaluated as an integral over the position of one molecule

relative to the other; but at least three different forms of this

integral have been espoused in recent publications (see

below). The present article addresses this problem by

a combination of theory and simulation.

It is useful to begin by reviewing the standpoint of the

experimentalist, because it is experiment that provides the

evidence for binding and yields the measured affinity that

theory attempts to explain or predict. Perhaps the most

common method of measuring a binding constant is to

monitor a signal that is thought to be proportional to the

concentration of the noncovalent complex; that is, by

obtaining a binding isotherm. The signal may be spectro-

scopic, calorimetric, or—as in the measurement of enzyme

inhibition by a bound ligand—functional. The value of the

binding constant is then determined by fitting a theoretical

curve to the experimental data. (Measuring the signal for

a single concentration of R and L is rarely adequate because

the signal’s upper and lower baselines must be determined

for a given value of the signal to be interpreted in terms of the

extent of binding.) The theoretical form of the binding

isotherm is obtained by considering the association of

a receptor R and a ligand L to form the complex RL. The
equilibrium constant for this reaction, the binding constant,

may be written as

K[
gRLCRLC�
gRCRgLCL

� �
eq

; (1)

where CX and gX indicate, respectively, the concentration

and activity coefficient of species X, C� is the standard

concentration expressed in the same units as the other

concentrations, and the subscript eq indicates a quantity

evaluated under equilibrium conditions. It is often assumed

that the activity coefficients are near 1, so these terms are

frequently not written explicitly. (Note that K is free of units

when C� is correctly included in its definition.) The binding

isotherm gives the fraction of the receptor with bound ligand,

r, as

r[
CRL

CR 1CRL

¼ KCL

11KCL

: (2)

With luck, an experimental isotherm will match this

theoretical curve-fitting, in which case the binding constant

K can be extracted via curve-fitting. If the experimental

isotherm diverges significantly from the theoretical ideal,

then it is appropriate to ask whether equilibrium dimerization

is truly occurring and whether the signal being monitored is

suitable.

In another experimental technique, equilibrium dialysis,

a macromolecule at known concentration is trapped within

a dialysis bag that is permeable to a smaller ligand. The
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ligand is allowed to equilibrate across the membrane, and the

concentrations of ligand inside and outside the bag are

measured. The excess concentration of ligand inside the bag

is attributed to binding and hence is equated with the

concentration of the complex, enabling evaluation of K. The
value of K can be obtained from a full-fledged binding

isotherm or, at least in principle, from a single measurement

at a well-chosen ligand concentration.

The theoretician’s challenge is to account for measured

affinity data and ultimately to predict binding affinities to

useful accuracy. The first requisite for accomplishing this is

an energy model that accurately and efficiently provides the

energy of the system as a function of its configuration.

Developing such a model is highly nontrivial and will

continue to be a subject of research in many labs, but it is not

the focus of the present study. We address instead the second

requisite, a theory or formula that says how to use an energy

model to compute a binding affinity that can legitimately be

compared with experiment. Three major competing theories

are considered.

In one theory, K is evaluated as the integral of the Mayer

factor over all space (Hill, 1986) (equivalent to the second

virial coefficient),

KMayer ¼ C�
Z

ðe�bW � 1Þdr; (3)

where W is the potential of mean force between the two

molecules. Thus, Groot focuses on the compressibility of

a mixture of receptors and ligands to show that the binding

constant is the integral over all space of the receptor-ligand

correlation function, and notes that this quantity goes to

the Mayer integral in the limit where receptor-receptor and

ligand-ligand interactions are negligible (Groot, 1992). Dill

reaches the same result via analysis of the equilibrium

dialysis experiment (Stigter and Dill, 1996). An appealing

feature of the Mayer integral is that there is little difficulty in

defining what is meant by the complex: the integral extends

over all space, yet is finite because the Mayer factor goes to

zero at long range (which applies so long as the potential of

mean force decays with the receptor-ligand distance rRL
more sharply than rRL

�3). On the other hand, this theory

yields the somewhat odd result that KMayer falls as the steric

bulk of the receptor and ligand increase, because the Mayer

factor equals �1 in the region where the ligand overlaps the

receptor. Indeed, the binding constant can become negative

if the overlap region is large enough. This result seems

wrong, at least when affinity is measured via a signal as

discussed above, because increasing the extent of steric

overlap by itself should not reduce the fraction of receptor

with ligand in the binding site. However, in the context of

equilibrium dialysis, the result may be correct: increasing the

amount of steric overlap will indeed reduce the number of

ligands in the dialysis bag and thus decrease the apparent

affinity of the receptor for the ligand. In fact, it has been

pointed out that the equilibrium dialysis experiment could

yield a negative binding constant (van Holde, 1971). One

might say that the equilibrium dialysis experiment provides

a global assessment of the interactions—both attractive and

repulsive—of the receptor with the ligand, whereas the

signal technique provides a local assessment of the affinity of

a specific region of the receptor for the ligand.

An alternative theoretical approach involves viewing the

bound complex, the free receptor, and the free ligand, as

three distinct chemical species. From this perspective,

the binding constant should be computed as the ratio of the

partition function of the complex to the product of the

partition functions of the free molecules. This approach is

widely used to compute covalent binding constants, as

exemplified by the treatment of the reaction 2H�H2 in

many physical chemistry textbooks, and there is no obvious

reason why it should not be applicable to noncovalent
binding as well. Assuming classical statistical thermody-

namics where the spacing of quantized energy levels is

assumed to be much smaller than thermal energy, as was also

done for the other two theories of binding considered in this

article, the binding constant in this approach is simply the

integral of the Boltzmann factor for the potential of mean

force of the receptor and ligand (Chandler, 1979; Shoup and

Szabo, 1982; Jorgensen, 1989; Gilson et al., 1997):

KBoltzmann ¼ C�
Z
e
�bW

dr: (4)

(The Appendix reviews how this expression can be obtained

for the reaction 2H�H2, starting from the usual trans-

lational, rotational, and vibrational partition functions.)

However, this approach poses a problem that is particularly

noticeable in the case of noncovalent binding: the Boltzmann

factor does not go to zero asW goes to zero at long range, so

KBoltzmann is at risk of becoming infinite. Thus, to apply this

formula, one must define the domain of integration, in effect

establishing the receptor-ligand distance at which the

receptor and ligand no longer form a complex. When the

potential of mean force has a deep and circumscribed energy

well, any definition of the complex that encompasses the

energy well and does not extend much further will give

reasonable results (Gilson et al., 1997). However, for a weak

and/or long-ranged interaction potential, the definition of the

complex matters and it is difficult to decide where to draw

the line. Thus, for the association of two amides in water, the

binding constant computed with this formula was found to

vary 1200-fold as the integration range varied by 2 Å

(Jorgensen, 1989). Two relatively clear definitions of the

complex have been proposed. One suggests that, when

binding is detected via a signal, the Boltzmann integral

should range over those conformations in which the signal is

detected (Gilson et al., 1997; Luo and Sharp, 2002). Another

suggests that the integral extend outward from the base of the

energy well to the �1 kT isopotential contour, so that

24 Mihailescu and Gilson

Biophysical Journal 87(1) 23–36



the ligand is considered ‘‘bound’’ when its attraction to the

receptor exceeds thermal energy (Luo and Sharp, 2002).

However, neither of these suggestions has been validated by

comprehensive theory or by comparison with simulated

binding experiments. It may also be tempting to argue that

the very idea of a ligand-receptor complex is an artificial

construct. Thus, the Boltzmann integral has been incorpo-

rated into theories of ion-pairing to explain deviations from

Debye-Hückel theory (Bjerrum, 1926; Prue, 1969; Justice

and Justice, 1976). In this context, the distance at which

two ions cease being a ‘‘pair’’ can be chosen based upon

theoretical convenience (Justice and Justice, 1976). How-

ever, for pairwise noncovalent binding, the definition of the

bound complex cannot be arbitrary because even a weak

binding interaction can generate a perfectly reasonable

isotherm that fits the chemical equilibrium model and thus

yields a single distinct value of the binding constant. Thus, it

would appear, as previously pointed out (Groot, 1992), that

nature knows how to define the complex, even if we do not.

A third theoretical approach, pioneered by Andersen

(1973) and further developed by Hoye and Olaussen (1980),

and Wertheim (1984), explicitly accounts for a solution of

ligands and receptors, rather than limiting attention to a single

ligand and receptor as in the two theories discussed above.

Central to this theory is an exclusive, or saturating, energy

model; that is, one where a receptor and ligand do not attract

other receptors or ligands once they have paired off.

Exclusivity is essential for dimerization: if each receptor

could bind multiple ligands and each ligand could bind

multiple receptors, then one would see polymerization or

even a phase change, rather than dimerization. In what will

here be called the Andersen theory, cluster expansions are

used to show that an exclusive interaction potential leads to

formation of ligand-receptor dimers, and that the concentra-

tion of dimers is related to the concentrations of free ligands

and free receptors by a binding equilibrium. The binding

constant is computed by separating the interaction potential

into two parts: a short-ranged, repulsive partWR and a softer,

longer-ranged, attractive part WA. The binding constant is

then given by

KAndersen ¼ C�
Z
e
�bWRðe�bWA � 1Þdr: (5)

(Hoye and Olaussen use this same approach, but their

formula for K has the form of the Mayer integral because

their RL interaction potential includes no steric contribution.)

This formula appears to have two practical advantages. First,

because the term e�bWA � 1 goes to zero at long range, there

seems to be no need for the geometric definition of the

complex that is required to obtain a finite value of KBoltzmann.

Second, the term e�bWR brings the integrand to zero in the

steric overlap region, so steric overlap does not affect the

binding constant. Thus, the Andersen formula combines

some of the advantages of the Mayer and Boltzmann

formulae above. On the other hand, there is a new ambiguity

because it is not always clear how W is to be separated into

WR and WA. It also is not clear how to handle an attractive

potential with a long-ranged component that extends beyond

the zone in which binding is exclusive. Finally, this theory,

like the Mayer theory, predicts that the binding constant goes

to zero as the depth of the attractive energy well goes to zero,

even though it is clearly possible to observe ‘‘complexes,’’

as defined by a spectroscopic signal, even if the attractive

potential goes to zero. Accordingly, Jackson and co-workers

note that the number of ligand-receptor complexes from this

theory will not correspond exactly to the number obtained by

a count of ligand-receptor pairs that are within bonding

distance (Jackson et al., 1988).

In summary, pairwise noncovalent binding is more subtle

than it initially might appear, and there is still no generally

accepted theory for this fundamental phenomenon. From

a practical standpoint, although the differences among the

three theories diminish for small, tight-binding molecules,

there are receptor-ligand systems that bind weakly enough

for the theories to differ significantly, so the question of

which theory to use is important if one wishes to develop

quantitative models of weak binding. This article therefore

seeks to further elucidate the theoretical basis of pairwise

noncovalent binding. The central approach is to compare

theory with simulations designed to mimic actual experi-

mental measurements. Two types of experiments are con-

sidered: 1) spectroscopic detection of binding to generate an

isotherm that is fitted to a theoretical isotherm, and 2) equi-

librium dialysis. To our knowledge, this article represents the

first direct comparison of the three theories discussed above.

The article is organized as follows. The Theory section

presents a novel combinatorial theory of binding which

shows that exclusive binary associations lead directly to the

standard binding isotherms associated with Eq. 1 and

indicates that, when binding is measured via a signal, the

binding constant is an integral of the Boltzmann factor

(KBoltzmann), whereas when binding is measured by equilib-

rium dialysis, the binding constant is the integral of the

Mayer factor (KMayer). Methods describes Monte Carlo

simulations used to test the theories of binding discussed

above, and Results and Discussion compares the simulation

results with theory.

THEORY

The theory of Andersen (1973), Hoye and Olaussen (1980), and Wertheim

(1984) hinges on a recognition of the importance, for pairwise binding, of

exclusivity in the interaction between the receptor and the ligand. Pairwise

exclusivity is a requirement for the formation of dimers, as opposed to higher

order multimers or even a phase transition, as concentration increases.

Exclusivity also provides an intuitively satisfying explanation of the fact that

the binding constant can be written as an integral involving only one ligand

and one receptor, rather than requiring an integral over all ligands and

receptors because exclusivity implies that, when a ligand and a receptor

interact attractively, they are effectively isolated from the other molecules in

the system. However, this theoretical approach has not been used to directly
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address the actual methods used to measure binding affinity; i.e.,

measurement via a spectroscopic signal or equilibrium dialysis.

Here, we describe a simplified theory built on the basic insight that binary

binding requires an exclusive, attractive interaction between two molecular

species. When a signal is used to measure binding, the theory yields

a standard binding isotherm with a binding constant that equals the integral

of the Boltzmann factor. When equilibrium dialysis is used to measure

binding, however, the Mayer factor is obtained.

Measurement of binding via a
spectroscopic signal

Consider a one-dimensional box of length L that contains NR receptors and

NL ligands, with concentrations CR ¼ NR/L and CL ¼ NL/L, respectively.
Only pairwise interactions are considered to exist. The molecules can have

two orientations; that is, each molecule can be viewed as having an arrow

that points in either the positive or negative direction. Each receptor has

a steric part of length RH which entirely excludes ligand, and an attractive

part of length RA that can be occupied by at most one ligand; hence, this part

is called the exclusion zone. When a ligand is in a receptor’s exclusion zone,

the ligand-receptor interaction energy is either 0 or e, where e , 0,

depending upon the relative orientations of the receptor and the ligand. We

first consider the case where the ligand-receptor energy is e only when the

ligand and receptor are oriented toward each other. Ligand-ligand

interactions are treated as point-like and the receptors are treated as fixed

in position and orientation, a model that is appropriate when the receptors are

dilute. The receptors’ contribution to the partition function is constant and

can therefore be set aside. The system is diagrammed in Fig. 1.

The partition function can be written as a sum of the contributions made

by states with different numbers n ¼ [1, min(NL, NR)] of ligands bound to

receptors,

QðNLÞ ¼
2
NL

NL!
+

minðNR ;NLÞ

n¼0

NR!NL!

ðNR � nÞ!ðNL � nÞ!n!

3 ðL0ÞNL�n q

2

� �n

(6)

q[RAðe�be
1 1Þ; (7)

where L0 is the free volume accessible to the ligands L0 ¼ L – NR(RH 1 RA),

q is the partition function of one ligand in the energy well of one receptor,

and factors of the de Broglie wave length that will cancel in the final results

have been omitted. The partition function in Eq. 6 can be rewritten in the

compact form

QðNLÞ ¼
2
NL

NL!
11

q

2

d

dx

� �NR

x
NL jx¼L0

; (8)

which can then be used to obtain the following expression for the semigrand

canonical partition function in L,

QðmLÞ[ +
N

NL¼0

QðNLÞebNLmL ¼ 11
q

2
z

� �NR

e
L0z; (9)

where mL is the chemical potential of the ligand, and z is the activity,

z[ 2ebmL ; the factor of 2 resulting from the two possible orientations of the

ligand can adopt. Note that the concentration of the free, point-like ligand in

a reservoir in equilibrium with this system will be CL
reservoir ¼ z.

This system is monitored by a signal that turns on when a ligand is in

a receptor’s exclusion zone, independent of their relative orientation; thus,

the signal is generated even if the ligand does not interact favorably with the

receptor. This model corresponds to a signal, such as fluorescent resonance

energy transfer, which is insensitive to conformational details. If the signal

produced by one ligand in one exclusion zone is s0, then the signal per unit

length s (signal density) is proportional to the concentration of ligands in

exclusion zones. From Eq. 9,

s ¼ s0
L
q
d

dq
lnðQÞ ¼ s0CR

q

2
z

11
q

2
z
; (10)

and the limiting signal density at high ligand concentration is

smax ¼ s0CR: (11)

Thus, an experimentalist monitoring the signal density as a function of the

activity of ligand, z, would find the fractional occupancy of receptors by

ligands, r, to be

r ¼ s

smax

¼
q

2
z

11
q

2
z
: (12)

This expression has the functional form expected for a binary binding

isotherm (Eq. 2) and thus permits the apparent binding constant K to be

identified with Boltzmann integral q/2:

K ¼ q

2
¼ 1

2
RAðe�be

1 1Þ: (13)

Here, the factor of 1
2
results from the ligand’s loss of orientational freedom

upon binding, and corresponds to the factor of 1=8p2 in three-dimensional

binding theory (Gilson et al., 1997).

In a real system, there is no guarantee that the conformations in which the

signal is generated will coincide exactly with the exclusion zone. To

examine the consequences of a mismatch between these two regions, we

now consider the case in which signal is detected only when the ligand

interacts favorably with a receptor: it must be within an exclusion zone and

oriented correctly. In this case, the signal density becomes

s ¼ s0
L
qa

d

dqa
lnðQÞ ¼ s0CR

qa
2
z

11
q

2
z
¼ smax

q

2
z

11
q

2
z
; (14)

FIGURE 1 Diagram of one-dimensional system treated in the Theory section. Three receptors are shown as elongated rectangles with a black steric

exclusion zone and a clear exclusion zone, and an arrow to indicate orientation; two are oriented to the right, and one to the left. Three ligands are also shown as

hatched rectangles of finite size, although the theory treats them as particles of zero size. Two ligands are oriented to the left and one to the right, and one is

bound to the leftmost receptor.
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where qa [ RAe
�be ¼ q – RA, and the maximal signal density smax is given

by

smax ¼ s0CR

qa
q
: (15)

Interestingly, although the signal now registers only a fraction of the ligands

within exclusion zones, the apparent binding constant is unchanged at q=2;

the integral of the Boltzmann factor over the entire exclusion zone.

However, the apparent strength of the signal is reduced by the factor qa=q;

i.e., by the probability that a ligand in the exclusion zone is oriented so as to

generate signal. Other modifications of the signal clearly will yield

analogous results so long as the signal is confined to the exclusion zone.

The present analysis shows that exclusive binding suffices to reproduce

the standard binding isotherm and furthermore identifies the binding

constant with the integral of the Boltzmann factor over the exclusion zone.

This result supports the validity of viewing the bound complex as a separate

chemical species with its own chemical potential that is computable as

a Boltzmann integral. Moreover, the apparent chemical potential of the

complex equals the integral of the Boltzmann factor over the exclusion zone,

so long as the signal used to detect binding turns on for every ligand position

in the exclusion zone. However, it is not necessary for the signal to turn on

for every orientation of the ligand. The simulations described in Results

show furthermore that if the signal does not yield the expected value of the

affinity, the full isotherm will show a marked deviation from ideality.

Although the present model is set in one dimension, it can be extended in

a straightforward way to higher dimensions, where it still yields the result

that the binding constant is the integral of the Boltzmann factor for the ligand

in the exclusion zone,

K ¼ C�
N

Z
exclusion zone

e
�bW

dr; (16)

whereW is the receptor-ligand potential of mean force, and r is the position
of the ligand with respect to the receptor; the factor of 1=N is a normalization

constant for the rotational degrees of freedom that equals 2 for the one

dimensional case, 2p for two dimensions, and 8p2 for the three dimensional

case; and the factor of standard concentration, C� ¼ 1 mol/liter ¼
1 molecule/1660 Å3, has been added for completeness (Gilson et al., 1997).

Proposed definition of the exclusion zone

The chief weakness of the theory presented above is that its exclusion

regions are artificially simple. In reality, a ligand moving away from the

energy minimum and out into solution might continue to feel an attractive

potential even as it left room for a second ligand to occupy the binding site.

We suggest that it is natural to define the exclusion zone—i.e., the domain

over which the Boltzmann constant should be integrated—as the region that

includes the local energy minimum associated with the binding site and

that is extended until the two molecules, R1 and L1, move far enough apart

that a second receptor or ligand, R2 or L2, can interact more strongly with

either L1 or R1, respectively. If the integral is carried out in a coordinate

system rooted in R1, then the integral extends over all positions, orientations,

and conformations of L1 for which the R1–L1 interaction is stronger than any
R1–L2 or L1–R2 interaction. This definition makes sense intuitively because

once another ligand, say, has room to interact more strongly with R1 than L1,

it is the second ligand that will qualify as bound, so the integral for L1
should terminate at that limit.

Measurement of binding by equilibrium dialysis

In equilibrium dialysis, the concentration of receptor-ligand complexes is

measured as the difference between the total concentration of ligand in the

dialysis bag and the concentration of ligand in a receptor-free reservoir at

equilibrium with the system. The combinatorial theory of binding introduced

above may be applied to this experiment as follows. The concentration of

ligand in the reservoir, CL
reservoir¼ z, as noted above; and Eq. 9 can be used to

derive the total concentration of ligand in the bag CL, the concentration of

ligand-receptor complexes CRL, and the concentration of free receptor CR
0, as

CL ¼ 1

L
z
@

@z
lnðQÞ ¼ CR

z
q

2

11 z
q

2

1
L0

L
z (17)

CRL ¼ CL � z ¼ CRz

q

2

11 z
q

2

� ðRH 1RAÞ

0
@

1
A (18)

C0

R ¼ CR � CRL ¼ CR

1

11 z
q

2

1CRzðRH 1RAÞ:

Hence,

Kdialysis ¼
CRL

C
0

R z
(19)

¼ q

2
� ðRH 1RAÞ

� � 1�
z
q

2

11 z
q

2

11 zðRH 1RAÞ 11 z
q

2

� �

0
BBBBBBB@

1
CCCCCCCA
: (20)

The quantity ðq=2Þ � ðRH 1RAÞ is KMayer for the R–L interaction potential

in this system, and the quantity by which KMayer is multiplied in Eq. 20 goes

to 1 as the ligand is dilute; that is when the activity of the ligand, z, goes

to zero. This result suggests that the binding constant derived from an

equilibrium dialysis experiment differs from that obtained by monitoring

a signal, and that it asymptotically approaches the Mayer integral as ligand

becomes dilute. These results are consistent with the simulation results

described below.

BINDING SIMULATIONS

Metropolis Monte Carlo simulations of rigid model receptors R and ligands

L are used here to test theories of binding. The R–L interaction potentials are

designed so that only one ligand at a time can interact strongly with a given

receptor, except as otherwise noted; this prevents the formation of

aggregates larger than dimers (Andersen, 1973; Hoye and Olaussen, 1980;

Wertheim, 1984). Most of the simulations are carried out in two dimensions

with simple interaction potentials that consist of hard-core R–R and L–L

interactions and an R–L interaction that combines a hard-core interaction

with a local energy well. Several additional simulations are done for a three-

dimensional system that includes a 6–12 Lennard-Jones potential in the R–R,

R–L, and L–L interactions, along with a smoothly varying r�3 interaction

with a distance cutoff. The simulations model the measurement of binding

by a signal and by equilibrium dialysis.
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For signal-based measurements, a signal is considered to turn on when

the ligand occupies a specified zone in or near the receptor’s binding site, and

the average signal strength is computed for various ligand concentrations.

The resulting graphs of signal strength as a function of ligand concentration

are fitted to a standard binding isotherm to extract an ‘‘experimental value’’

of the binding constant Kisotherm. The activity of L is controlled by dividing

the simulation region into two parts. Receptors are allowed to occupy only

the main part, but the ligands are allowed to equilibrate between the main

part and a reservoir region in which the ligands are treated as ideal gas

particles, ensuring that their activity coefficient in this region is unity. The

activity of L is adjusted by adjusting the total number of ligands, and in some

cases by imposing a uniform potential field in the reservoir region. The

activity coefficients of the receptors and the receptor-ligand complexes are

expected to be about equal and thus to cancel, to good approximation.

This expectation was validated by computing several binding constants

under very dilute conditions that gave good agreement with binding

constants obtained under the conditions described above.

To speed the calculations, some simulations include only a single

receptor fixed in position. The validity of this approach was demonstrated

by comparisons with two-dimensional simulations for four mobile recep-

tors. One set of simulations involved four mobile receptors in a box of size

40 u 3 40 u. For well depths –0.1 and –0.5 kcal/mol, isotherms were gen-

erated by carrying out simulations inwhich the total number of ligands started

at 240 and decreased in steps of 12, with 4 3 106 Monte Carlo steps per

particle; for well depths of –1.0 and –2.0 kcal/mol, the total number of

ligands decreased from 160 in steps of 8, with 5 3 106 Monte Carlo steps

per particle. The other simulations involved a single receptor fixed at the

center of a box of size 20 u 3 20 u. For well depths –0.1 and –0.5 kcal/mol,

the total number of ligands decreased from 60 in steps of 3, with 3 3 106

Monte Carlo steps per particle; for well depths of –1.0 and –2.0 kcal/mol, the

total number of ligands decreased from 40 in steps of 2, with 5 3 106 Monte

Carlo steps per particle. The signal strength was plotted versus the activity of

L and binding constants were extracted from these isotherms by data fitting.

As shown in Table 1, the binding constants from the single-receptor

simulations agree well with those from the multiple-receptor simulations.

For simulations of equilibrium dialysis, the system is divided into

a ‘‘dialysis bag’’ containing both R and L, and a reservoir that only L can

enter and in which L retains its L–L interactions. The equilibrated

concentrations of L inside and outside the bag are used to compute the

number of bound complexes and hence the binding constant. The dialysis

bag contains two receptors, and 10 ligands are allowed to equilibrate

between this region and the ligand reservoir of equal size outside the dialysis

bag, where L–L interactions in the reservoir are the same as in the dialysis

bag. The number of Monte Carlo steps is 5 3 107 per particle and the

dialysis bags range in size from 20 u 3 20 u to 120 u 3 120 u. A single

simulation suffices to calculate a binding constant by this method, and

simulations over the range of ligand concentrations agree with each other to

within ;10%. The reported results are for the most dilute systems.

All energies are expressed in kcal/mol, but the distance units (u) used

here are arbitrary, especially for the two-dimensional simulations. For the

three-dimensional simulations, the distance units can be assigned specific

values so that binding constants can be computed with respect to the

standard concentration of 1 mol/liter.

Two-dimensional simulations

Square-well ligand-receptor interaction potentials

Here the R–R and L–L pairs interact as pure hard disks with radii of 3 u and

1.5 u. The R–L pair has a hard-disk interaction which turns on below a R–L

distance of 4.5 u, and which is modified by a wedge-shaped binding site.

Simulations are reported for well depths e of 20.1 to 24.0 kcal/mol . Two

forms of binding site are considered, as diagrammed in Fig. 2:

Potential A. When the R–L axis is within 6a, where a 5 30�, of
a receptor axis defining the binding site, the interaction energy E #

0 instead of being repulsive. It is zero except when the center-to-

center distance rRL satisfies 1.5 u, rRL , 2.5 u, in which case E5 e

, 0.

Potential B. When the R–L axis is within 6a, where a 5 19.5�, of
a receptor axis defining the binding site, the interaction energy E #

0 instead of being repulsive. The ligand also possesses an axis, and

the interaction energy E 5 e , 0 only when 2.5 u , rRL , 4.5 u and

the orientation of the ligand is within 690� of the binding site axis.

Except as otherwise noted, the binding signal is considered to be detected

when the ligand lies within the angular region of the wedge-shaped binding

site defined by a and has 1 u , rRL , 4 u for Potential A and 2 u , rRL ,
5 u for Potential B. For Potential B, where the ligand possesses an

orientational degree of freedom, the signal is independent of the ligand’s

orientation except as otherwise noted. Note that the R–L interaction potential

is such that at most one ligand can occupy either of these signal zones, so the

signal zones conform closely to the exclusion zones. To examine the

consequence of a signal zone that deviates markedly from the exclusion

zone, results are also presented for Potential A with a signal zone having the

same angular range, but the smaller radial range 2 u, rRL , 3 u. It is worth
emphasizing that the signal zones play no role in the equilibrium dialysis

simulations.

Funnel-like ligand-receptor interaction potentials

As discussed in Results, the square-well potentials are too simple to allow

some questions to be addressed. Therefore, additional simulations are

reported with funnel-like receptor-ligand potentials constructed as nested

square-wells. The receptor-ligand interaction is pure hard-sphere except

when the ligand lies within a wedge-shaped binding site defined around

a receptor axis. The interaction energy is as follows: 0 if the ligand lies in the

630� wedge unless it lies in a deeper part of the well; 22 if 1.5 u , rRL ,

2.5 u unless it lies in a deeper part of the well;24 if 1.7 u, rRL , 2.3 u and

TABLE 1 Comparison of binding constants from binding

isotherms for simulations with one fixed receptor (Kisotherm(1))

and with four mobile receptors (Kisotherm(4)), for Potential A

and Potential B described in Two-Dimensional Simulations

Potential A Potential B

e Kisotherm(1) Kisotherm(4) Kisotherm(1) Kisotherm(4)

�0.1 8.8 8.9 10.5 9.9

�0.5 11.2 10.9 13.4 12.2

�1.0 17.9 17.0 21.2 18.8

�2.0 74.8 63.0 85.2 67.9

e: depth of the potential energy well (kcal/mol).

FIGURE 2 Diagram of Potential A (left) and Potential B between receptor

and ligand, as a function of position of the center of the disk-shaped ligand.

Steric zones are dark and attractive zones are demarcated by arcs. For

Potential B, the ligand feels the attractive potential only when it is oriented to

within 690� of the axis of the binding site.
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|u|, 9� unless the ligand lies in the deepest part of the well; and26 if 1.97 u

, rRL , 2.03 u and |u| , 1�, where u is the angular position of the ligand

relative to the binding site axis. Two sizes of ligand are considered, a small

ligand with radius 0.1 u, and a large ligand with radius 3 u. It should be

emphasized that the radius of the ligand does not influence the spatial extent

of the energy well seen by the ligand within the wedge-shaped binding site.

It only affects the purely repulsive receptor-ligand interactions outside this

angular zone and, importantly, interactions with other ligands. Therefore, the

Boltzmann integral for the small ligand over the exclusion zone of the large

ligand essentially equals the Boltzmann integral of the large ligand over the

same region, and vice versa. It should also be noted that the exclusion zone

of the small ligand, which corresponds approximately to the 26 kcal/mol

part of the energy well, is much smaller than that of the large ligand, which

includes the entire energy well.

Several different signal zones are considered for the funnel-like energy

wells. Initially, the signal zones correspond closely to the exclusion zones of

the respective ligands. (See Proposed Definition of the Exclusion Zone.)

Further simulations are then done for the large ligand using the small

ligand’s signal zone, and vice versa. Finally, simulations of the large ligand

are carried out with a signal zone having the same angular extent as the

exclusion zone, but extending over only 0 u , rRL , 1.7 u.

Three-dimensional simulations

Simulations of three-dimensional systems in which receptors and ligands

interact with van der Waals and dipole-dipole-like forces are included as

a more realistic test of the theories considered here. The R–R, L–L, and R–L

interactions are hard-core in nature for distances ,5.0, 3.0, and 4.0 u,
respectively, but the hard-core interactions are supplemented with a Lennard-

Jones interaction ELJ50:09ðð1:2=ðrRL24ÞÞ122ð1:2=ðrRL24ÞÞ6Þ. The R–L

interaction is modified by a wedge-like cutout to form a binding site with

a 645� aperture extending as close as 1.0 u to the center of the receptor.

Thus, the R–L interaction is hard-core at a distance closer than 1 u in the

binding site, but beyond this offset the ligand feels a Lennard-Jones

interaction ELJ50:09ðð1:2=ðrRL21ÞÞ122ð1:2=ðrRL21ÞÞ6Þ and a dipole-di-

pole-like potential that depends on the angle uRL between the R–L axis and

the binding-site axis:

Edipole5
eelec

ðrRL21Þ3
cosðuRLÞ: (21)

Here eelec determines the strength of the interaction, and simulations are

reported for values of24.1,25.1, and27.7 kcal–u3/mol. This interaction is

cut off by setting Edipole to 0 for RRL . 6.5 u. These potentials are of interest

because the interactions are smoothly varying and include a nonexclusive

attractive component, notably the trench-like Lennard-Jones energy well

that surrounds the receptor. The exclusion zone, as defined in Proposed

Definition of the Exclusion Zone, corresponds approximately to the region

where 1 u , rRL , 5 u within the wedge-like cutout.

The binding isotherm simulations are run in a 20 u 3 20 u 3 20 u box

containing one receptor and from 0 to 100 ligands, in steps of five ligands.

The main simulation box is in equilibrium with a 20 u 3 20 u 3 5 u

reservoir that does not admit receptors and where the ligands are treated as

ideal gas particles. In some cases, the chemical potential of ligands in the

reservoir is modified by imposition of a uniform potential in the range of25

to 0 kcal/mol. Simulations are equilibrated with 106 Monte Carlo steps per

molecule in the system, and data are gathered with 107 steps per molecule. A

signal is considered to be detected when the ligand-receptor distance is

between 1 u and 6 u, and when the angular position of the ligand is within the

binding site’s angular boundaries.

The equilibrium dialysis simulations use a dialysis bag of dimensions 50

u 3 50 u 3 50 u that contains two receptors, and 10 ligands are

equilibrated between the bag and a reservoir of equal size in which the

ligands interact as in the bag. The simulations are run for 5 3 108 Monte

Carlo steps per particle.

Data fitting

Binding constants are extracted from simulated isotherms by fitting

computed signal strengths to the standard binding isotherm. The program

Mathematica is used to minimize the root mean-square deviation between

the data and the ideal curve. In accord with experimental practice, a separate

upper asymptote is fitted to each isotherm. The curve-fitting uses data from

5% to 90% of the apparent saturation value, except for a few of the weakest

binding cases where the fit extends to 80% saturation because it is difficult to

reach sufficiently high concentrations.

Evaluation of binding integrals

The simulations described above provide the ‘‘experimental’’ binding

constants to which the theories discussed in the Introduction are compared.

The theoretical binding constants are computed by integration of the Mayer

factor, the Boltzmann factor, and the Andersen integrand, for the various

R–L interaction potentials. The Mayer and Andersen integrals are eval-

uated analytically for the two-dimensional systems. For Potential A, the

Andersen integral is the Mayer factor multiplied by the area of the energy

well,

KAnderson5aðR2

max2R
2

minÞðe
�be

21Þ: (22)

For Potential B, the form is the same but because the potential goes to

0 for half of the possible ligand orientations, a factor of 1
2
appears,

KAndersen5
a

2
ðR2

max2R2

minÞðe
2be

21Þ; (23)

where Rmin and Rmax are the minimum and maximum extent of the attractive

well. The Mayer integrals are the same except that the area of the area of

hard-core interaction is subtracted,

KMayer5KAnderson2ðp2aÞR2
; (24)

where R is the hard-core diameter of the R–L interaction. Similar formulae

apply to the funnel-shaped interaction potentials.

For the three-dimensional systems, the Mayer integral is evaluated

numerically by positioning the ligand on a polar grid around the receptor.

The distance rRL is sampled from 1 to 8 u in 560 steps; cos u is sampled from

21 to 1 in 80 steps; and f is sampled from 0 to 2p in 128 steps. The

Andersen integral is not evaluated for the three-dimensional systems

because it is not clear how to separate the smoothly varying interaction

potential into repulsive and attractive parts as required by the theory; see

Introduction.

The integration domain for the Boltzmann integral proposed in Proposed

Definition of the Exclusion Zone is based upon three-body interactions and

is evaluated numerically. The integrals are done by considering two ligands,

L1 and L2, in the presence of a receptor, R1, which is kept fixed. The

Boltzmann factor is integrated over the coordinates of L1, whereas L2
competes with L1 for binding at the energy minimum. In principle, a second

receptor, R2, also competes with R1, but the geometry of the molecules is

such that, as R1 and L1 are separated, a second ligand L2 will always slip in

and compete with L1 before R2 can fit in and compete with R1. Therefore,

only a second ligand is considered in the present calculation. The two

ligands interact either by hard steric interactions (two-dimensional systems)

or Lennard-Jones interactions (three-dimensional systems). The integral

over the coordinates of Ligand 1 is started at the center of the energy well

and is extended until L1 is far enough away from the receptor that L2 can

enter the energy well and find a conformation of lower energy. More

specifically, L1 is initially placed at the center of the energy well of interest

and its position is sampled on expanding circular shells (spherical shells for

three-dimensional systems) around this point. For each position of L1, L2
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samples all positions previously occupied by L1. If L2 can find a point that is

unobstructed by L1 and that has a lower (more stable) energy of interaction

with the receptor than that of L1, then L2 is considered to be bound instead of

L1; otherwise, L1 is considered to be bound, and the Boltzmann factor for its

interaction with the receptor is computed and is added to the running binding

integral. This integral effectively terminates when L1 is far enough away

from the energy well that L2 can always find a position at lower energy than

L1. When the L–L interaction is smoothly varying, L2 is considered to be

obstructed by L1 when the L–L interaction is.10 kcal/mol. Note that a grid

point is considered to contribute to the binding constant if L1 can adopt any

orientation that endows it with lower energy than L2, can attain in any
orientation on any grid point previously occupied by L1.

For Potential A in two dimensions, the ligand positions are sampled at

distances from 0 to 3 u away from the center of the energy well in 120 steps,

with u varying between 0 and 2p in 120 steps. For Potential B, the sampling

is the same except that the orientation of the ligand is also sampled from 0 to

2p in 12 steps. For the funnel-shaped energy wells in two dimensions, the

positions of the small ligand are sampled in 500 radial steps of size 0.0004 u

centered on the energy well at rRL5 2.0 u, and 500 steps in u of size 2p/500.
The positions of the large ligand are sampled with the same u steps but the

radial steps are 0.0004 u for rmin , 0.05, 0.004 for , 0.05 u , rmin , 0.3,

and 0.01 for 0.3 u, rmin , 3 u, where rmin is the distance from the center of

the energy well. For the three-dimensional systems, ligand positions are

sampled at distances from 0 to 4 u away from the energy minimum in 80

steps; cos u is sampled from 21 to 1 in 20 steps; and the azimuthal angle is

sampled from 0 to 2p in 60 steps.

RESULTS

Signal-based measurement of binding in
two dimensions

Square-well potentials

When the signal used to monitor binding conforms

approximately to the exclusion zone defined in Evaluation

of Binding Integrals, the binding isotherms from the

simulations conform quite well to ideal isotherms as shown

in Figs. 3 and 4. The isotherms in these figures can be treated

as experimental data and used to extract binding constants

via curve-fitting. These experimental binding constants can

then be used to test the theories discussed in the Introduction.

The results for the two-dimensional simulations, shown in

Tables 2 and 3, clearly indicate that the Boltzmann integral

over the exclusion zone, KBoltzmann,ex, yields the most

accurate results, whereas the Mayer integral is the least

accurate; however, the agreement among the three theories

improves for strong binding, as expected from the form of

the integrals. It is also of interest to examine KBoltzmann,kT, the

Boltzmann integral over the region where the receptor-ligand

interaction potential is ,–kT. For these simplified potentials

KBoltzmann,kT ¼ KBoltzmann,ex, except when e. –kT, in which
case, erroneously, KBoltzmann,kT ¼ 0.

The binding constants K can be converted into binding

free energies by the expression DG ¼ –RT ln K, and Figs. 5

and 6 graph these energies as a function of the well depth for

the two-dimensional simulations. The agreement between

KBoltzmann and the simulated binding constants is again

apparent, as is the systematic deviation of KAndersen from the

simulation results for weak binding. (Binding free energies

are not shown for the Mayer formula because DG is

mathematically undefined when K , 0.) In considering the

relationship between well-depth and binding free energy, it

should be kept in mind that the present binding free energies

are not referred to an accepted standard concentration

because there is no standard for a two-dimensional system;

because C� is not included explicitly, the standard con-

centration is, in effect, 1 molecule/u2. If a different stan-

dardwereapplied,however, all thebinding free energieswould

merely be shifted by a single offset.

When the signal used to detect binding deviates markedly

from the exclusion zone, nonideal and potentially mislead-

ing binding isotherms can be obtained. For example, the top

graph in Fig. 7, which clearly is not an ideal binding

FIGURE 3 Simulated binding isotherms for Potential A with well-depths

�4, �2, �1.5, �1, �0.5, and �0.1 kcal/mol.

FIGURE 4 Simulated binding isotherms for Potential B with well-depths

�4, �2, �1.5, �1, �0.5, and �0.1 kcal/mol.
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isotherm, is obtained if the signal is assumed to turn on only

when the ligand lies in a 2–3 u distance range from the

receptor. For comparison, the normal isotherm obtained with

the larger original signal zone is presented in the bottom

graph. Note that the value of 17.9 extracted from the normal

isotherm corresponds closely with the Boltzmann integral

over the exclusion zone, 17.1.

It is also of interest to examine the consequences of

a signal that depends upon the orientation of the ligand

relative to the receptor. The analysis in the Theory section

suggests that a signal that extends over the entire exclusion

zone but that turns on only when the ligand is oriented

correctly still yields a binding constant equal to the integral

of the Boltzmann factor over the exclusion zone and all
orientations. This prediction is borne out by the simulations,

as illustrated in Fig. 8, which refers to Potential B. The top

isotherm is obtained when the signal turns on only when the

ligand is oriented to within 630� of the receptor-ligand

FIGURE 5 Calculated binding free energy versus well-depth (kcal/mol)

for Potential A (data in Table 2). d, simulation; s, Boltzmann formula; n,

Andersen model.

TABLE 2 Comparison of binding constants extracted from

simulated isotherms with theoretical binding constants

for Potential A

Theoretical integrals

e Kisotherm KBoltzmann,ex KMayer KAndersen

�0.1 8.8 8.3 �52.4 0.4

�0.2 9.3 8.8 �51.9 0.9

�0.3 9.8 9.3 �51.4 1.4

�0.4 10.4 10.0 �50.7 2.0

�0.5 11.2 10.7 �50.0 2.8

�0.6 12.0 11.6 �49.1 3.7

�0.7 13.3 12.7 �48.0 4.7

�0.8 14.5 13.9 �46.8 6.0

�0.9 16.0 15.4 �45.3 7.5

�1 17.9 17.1 �43.6 9.2

�1.1 20.2 19.2 �41.5 11.3

�1.2 23.0 21.6 �39.1 13.7

�1.3 26.1 24.5 �36.2 16.6

�1.4 29.9 27.9 �32.8 20.0

�1.5 34.4 31.9 �28.8 24.0

�1.6 39.6 36.7 �24.1 28.7

�1.7 46.5 42.3 �18.5 34.3

�1.8 54.3 48.9 �11.9 40.9

�1.9 63.4 56.7 �4.1 48.7

�2 74.8 65.9 5.1 57.9

�4 1780 1690 1630 1680

e: depth of energy well in kcal/mol.

TABLE 3 Comparison of binding constants extracted from

simulated isotherms with theoretical binding constants

for Potential B

Theoretical integrals

e Kisotherm KBoltzmann,ex KMayer KAndersen

�0.1 10.5 7.6 �56.3 0.4

�0.2 11.0 8.1 �55.8 0.9

�0.3 11.7 8.7 �55.2 1.5

�0.4 12.5 9.4 �54.5 2.3

�0.5 13.4 10.2 �53.7 3.1

�0.6 14.6 11.2 �52.7 4.1

�0.7 15.7 12.4 �51.5 5.3

�0.8 17.3 13.8 �50.1 6.6

�0.9 19.0 15.4 �48.5 8.3

�1 21.2 17.3 �46.5 10.2

�1.1 23.6 19.6 �44.3 12.5

�1.2 26.4 22.3 �41.6 15.2

�1.3 30.2 25.5 �38.4 18.4

�1.4 34.4 29.3 �34.6 22.1

�1.5 39.7 33.7 �30.2 26.6

�1.6 45.5 38.9 �24.9 31.8

�1.7 52.9 45.2 �18.7 38.0

�1.8 61.9 52.5 �11.4 45.3

�1.9 72.1 61.1 �2.8 54.0

�2 85.2 71.4 7.4 64.2

�4 1990 1870 1810 1860

e: depth of energy well in kcal/mol. FIGURE 6 Same as previous figure but for Potential B (data in Table 3).
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vector, whereas the bottom isotherm is obtained when the

signal turns on for any orientation of the ligand. The shapes

of the two isotherms are essentially identical; the only

difference is in the level at which the signal saturates, as

predicted by the theory; see Eq. 15. As a consequence, data

fitting yields the same binding constant in both cases.

Funnel-like potentials

The receptor-ligand systems just discussed are too simple

to allow thorough evaluation of the theory in Proposed

Definition of the Exclusion Zone because the attractive

parts of the ligand-receptor binding potentials are square

wells whose spatial extents approximately match the

exclusion zones. The results, therefore, leave open the

possibility that a Boltzmann integral over the entire energy

well may in general be as accurate as a Boltzmann integral

over the exclusion zone. Also, the theory leads to the

novel and testable prediction that a large ligand binds

a receptor more strongly than a small ligand purely as

a consequence of its greater size and hence larger

exclusion zone, but this prediction is not tested by the

simulations presented so far. Additional simulations for

funnel-like receptor-ligand interaction potentials enable

these issues to be addressed.

When the signal zones correspond closely to the exclusion

zones, the simulations yield classical binding isotherms in

which the signal saturates at a level corresponding to one

ligand in the exclusion zone, as shown in Fig. 9, a and d. The
binding constants extracted from these isotherms are 85

and 432 for the large and small ligands, respectively. Thus,

remarkably, the binding constants extracted from these data
by curve-fitting differ, although both ligands possess the
same attractive ligand-receptor interaction potential. This
result confirms our conjecture that the size of the ligand-

ligand exclusion zone influences the apparent binding

constant. However, it may still be of concern that the

difference between these binding constants for the two

ligands may be an artifact of the difference in the extent of

the signal zones, since the signal zones match the exclusion

zones and therefore are of different size for the two ligands.

This possibility is examined by repeating the simulations

with different signal zones, as now described.

First, simulations of the small ligand were carried out in

which the signal zone was extended to match that which had

been used for the large ligand. Note that this larger region

corresponds closely to the overall energy well and hence to

the region in which the attractive receptor-ligand potential is

stronger than the thermal energy, kT. These simulations yield

an isotherm whose shape deviates noticeably from ideal and

whose maximal signal corresponds to occupancy of the

signal zone by .30 ligands (Fig. 9, e and f ). Although it is

clearly risky to extract a binding affinity from this abnor-

mal isotherm, one may nonetheless do so. The result is

a pseudobinding affinity of 4 which paradoxically is weaker
than the value of 85 obtained with the original small signal

zone, even though a larger part of the energy well is now

included in the signal zone. The reason is that including

shallower parts of the well in the signal zone causes the

isotherm to saturate only at high concentration. The con-

tribution to the isotherm of the classical and relatively tight

binding of ligand in the central �6 kcal/mol part of the well

is lost in the much larger signal of the more numerous

ligands that come to occupy the shallower part of the energy

well at higher concentrations. Second, for the large ligand,

the extent of the signal zone was reduced to the exclusion

FIGURE 8 Simulated binding isotherms for Potential B with well-depth

�2 kcal/mol. Both isotherms use a signal zone extending from 2 to 5 u in

rRL. (Top) Signal is detected only when the ligand is oriented to within630�
of the binding site’s axis. (Bottom) Signal is detected irrespective of

orientation of ligand.

FIGURE 7 Simulated binding isotherms for Potential A with well-depth

�1 kcal/mol. (Top) Signal detected for 2 u , rRL , 3 u. (Bottom) Signal
detected for 1 u , rRL , 4 u.
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zone of the small ligand. Interestingly, the shape of the

resulting isotherm (Fig. 9 b) still matches the ideal. Even

more intriguing, curve-fitting to the new isotherm yields

a binding affinity of 434, which is essentially the same as that

obtained when the signal extended over the entire exclusion

zone of the large ligand. It should be noted, however, that the

saturating signal for the isotherm, ;0.2, is now much lower

than that obtained with the full exclusion zone for the large

ligand, for obvious reasons, and the data are noisier because

the mean occupancy is not as well converged as before. It is

also worth making clear that it is possible to select a signal

zone for the large ligand that will yield an abnormal binding

isotherm. Thus, the isotherm obtained when the signal zone

is restricted to 0 u , rRL , 1.7 u and thus does not

encompass the deepest part of the well has an abnormal

shape, as shown in Fig. 9 c, and yields an experimental

binding constant of 255, approximately one-half of the

correct value from the normal isotherm Fig. 9 a.
Table 4 compares the affinities extracted from the ideal

isotherms presented above with those calculated by various

theories. The experimental binding constants Kisotherm agree

well with Boltzmann integrals over the exclusion zones of

the respective ligands KBoltzmann,ex, but integrating the

Boltzmann factor over the entire funnel-shaped energy-well,

which implies integrating out to the –kT energy contour,

yields a binding constant of KBoltzmann,kT that is off by about

a factor of 4 for the small ligand. The Mayer and Andersen

integrals are close to KBoltzmann,kT and thus are likewise

markedly in error for the small ligand.

Signal-based measurement of binding in
three dimensions

Three-dimensional simulations are included to confirm the

generality of key results from the artificial but more tractable

two-dimensional simulations. The results, summarized in

Table 5, confirm that the Boltzmann integral over the

exclusion zone, KBoltzmann,ex, agrees far better than the Mayer

integral with the binding constants Kisotherm extracted from

the simulated isotherms. Also, although the integral of the

Boltzmann factor to the –kT energy contour is much more

accurate than the Mayer integral, it is less accurate than the

Boltzmann integral over the exclusion zone, especially for

the weakest potential. Finally, integrals of the Boltzmann

factor out to the 6.5 u cutoff of the ligand-receptor potential,

KBoltzmann,cut, markedly overestimate the affinities from the

TABLE 4 Comparison of simulated and theoretical binding

constants for funnel-like potentials in two dimensions for

large and small ligands

Ligand Kisotherm KBoltzmann,ex KMayer KAndersen KBoltzmann,kT

Large 432 430 358 410 411

Small 85 86 387 410 411

Kisotherm is obtained by fitting to the normal isotherms obtained with signal

zones that match the respective exclusion zones. KBoltzmann,ex: integral of

Boltzmann factor for ligand-receptor interaction over the exclusion zone.

KBoltzmann,kT: integral of Boltzmann factor for ligand-receptor interaction

over the region in which the receptor-ligand interaction potential is ,–kT

kcal/mol.

FIGURE 9 Simulated and fitted binding isotherms for

funnel-shaped potentials with large ligand (left-hand

graphs) and small ligand (right-hand graphs). Ordinate
shows mean occupancy of the signal zone. (a) Large ligand

with signal zone equal to corresponding exclusion

zone. (b) Large ligand with signal zone equal to exclusion

zone of small ligand. (c) Large ligand with signal zone

extending from 0 to 1.7 u and hence excluding the energy

minimum. (d ) Small ligand with signal zone equal to

corresponding exclusion zone. (e) Small ligand with signal

zone equal to exclusion zone of large ligand. (f ) Detail of

isotherm shown in e.
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simulations because they extend outside the wedge-shaped

binding site and include a spherical shell around the entire

ligand for which the interaction potential is favorable due to

the Lennard-Jones part of the receptor-ligand interaction

potential. Values of KAndersen are not provided here because

it was not clear how to divide the smoothly varying R–L
potential, which includes a nonexclusive Lennard-Jones

attraction, into the repulsive and attractive potentials,WR and

WA, that are required by the theory, as discussed in the

Introduction.

The binding constants in Table 5 in effect use a standard

concentration of 1 molecule/u3, but it is possible to refer

the results to the standard concentration of 1 mol/liter by

assigning a real distance to the distance unit u. The results,

shown in Table 6, indicate that the stronger binding cases

considered here have dissociation constants in a range that is

of experimental interest for weakly binding systems.

Equilibrium dialysis

In equilibrium dialysis, the extent of binding is determined

from the net concentration of ligands in a dialysis bag

containing receptors. This contrasts with measurement via

a localized signal, where binding is assessed based upon the

number of ligands that are near the receptor. Simulations of

equilibrium dialysis, summarized in Tables 5 and 7, show

that binding constants from the two methods can differ

significantly, and that the binding constants from equilibrium

dialysis correspond most closely to the Mayer integral, in

accord with previous theory (Stigter and Dill, 1996). The

negative binding constants in the tables imply that the steric

bulk of the receptors displace more ligand than the binding

sites attract, a possibility that was previously foreseen (van

Holde, 1971).

DISCUSSION AND CONCLUSIONS

This study provides a consistent theoretical picture of

noncovalent association that is applicable to computational

models and the interpretation of experimental data. Central

to this work is the use of simulations that mimic the methods

by which binding constants are actually measured and that

can therefore be used to assess and compare the accuracy

of various theories. The simulations, further supported by

theory developed here, elucidate the applicability of several

different theories of binding.

The simulations reproduce the long-recognized fact that,

when a poorly chosen signal is used to measure binding, the

experiment can yield an isotherm that deviates markedly

from ideality and yields a value of the binding constant that

is at best suspect. The present analysis suggests that an ideal

isotherm is reliably obtained when the signal zone comprises

those positions of a ligand that prevent any other ligand from

interacting more strongly with the receptor; i.e., when the

signal is detected when the ligand lies in the exclusion zone

defined in Proposed Definition of the Exclusion Zone.

However, some variations in the signal zone are permissible,

and the minimal requirement seems to be that the signal must
report occupancy of the entire deep part of the energy well
without reporting on binding of more than one ligand at
a time.
A central result of the present study is that the binding

constant extracted from an ideal isotherm agrees extremely

well with the integral of the Boltzmann factor over the

exclusion zone. It should be emphasized that integrating the

Boltzmann factor over the signal zone is not a reliable

approach, even when the signal provides a good isotherm.

Thus, for the funnel-shaped potentials, limiting the large

ligand’s signal zone to the �6 kcal/mol part of the energy

well yields a good isotherm (Fig. 9 b), but integrating over

this small region yields a binding constant of;90 instead of

the correct value of ;430. The problem of relying on the

signal zone to define the range of integration is thrown into

particularly sharp relief by the fact that a signal might be

detected for only an infinitesimal range of ligand positions,

or it could alternatively be extremely long-ranged. The

corresponding Boltzmann integrals range between 0 and

infinity, although altering the range of the signal clearly does

not change the true binding affinity. (Also, abnormal

isotherms are expected from a miniscule or highly extended

signal zone, as just discussed.) One might also seek to

compute the binding constant as a Boltzmann integral over

all ligand positions for which the ligand-receptor potential is

,–kT. However, the present results show that this approach

can be considerably less accurate than integrating over the

exclusion zone.

The idea that the binding constant equals the Boltzmann

integral over the exclusion zone leads to a novel prediction

TABLE 5 Comparison of binding constants extracted from simulated isotherms and simulated equilibrium dialysis with

theoretical binding constants for three-dimensional simulations

Simulations Theoretical integrals

e Kisotherm Kdialysis KBoltzmann,ex KBoltzmann,kT KBoltzmann,cut KMayer

�4.1 78.8 �467 59.8 26.5 1690 �457

�5.1 117 �418 104 70.9 1740 �412

�7.7 1470 844 1410 1350 3020 867

eelec: parameter determining strength of r�3 interaction (Eq. 21). KBoltzmann,cut: integral of the Boltzmann factor to the 6.5u cutoff of the ligand-receptor

potential. See previous tables and text for other symbols.
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that the observed affinity of a large ligand will be greater than

that of a small ligand if both ligands have the same receptor-

ligand interaction potential, because the larger ligand has

a larger exclusion zone. It is satisfying that this phenomenon

is observed in the simulations with funnel-shaped potentials

which are specificially designed to test this prediction. Some

intuition regarding this result can be gained by recognizing

that expansion of the integration range for the small ligand

beyond its exclusion zone implies integrating over a region

that can be occupied by many of the small ligands, so the

integral should not be expected to correspond to the binding

constant for 1:1 ligand-receptor binding.

The simulations also show that the formulae of Andersen,

Hoye and Olaussen, and Wertheim, yields binding constants

that are somewhat less accurate than those given by the

Boltzmann integral over the exclusion zone. For signal-

based measurements of binding, the Mayer integral is even

less accurate. However, binding constants measured by

equilibrium dialysis are matched well by the Mayer integral

because it uniquely accounts for the exclusion of ligand from

the dialysis bag by the steric bulk of the receptor.

Interestingly, the equilibrium dialysis experiment can yield

an affinity different from that obtained by a signal-based

measurement. Indeed, unlike a measurement based upon

a short-ranged signal, equilibrium dialysis can in principle

yield a negative binding constant, as previously noted (van

Holde, 1971). A broader issue in the application of either the

Mayer or the Andersen formula has to do with the fact that

these integrals range over all of space. As a consequence, for

a receptor with multiple binding sites, they will incorrectly

yield a single binding constant that includes attractive

contributions from all of the binding sites. It thus appears that

these formulae do not eliminate the need to provide some

geometric definition of the bound complex for a given

binding site.

One may readily delineate the cases in which the Mayer

and Boltzmann integrals will differ markedly. The essence of

the problem is captured by a simplified receptor-ligand

system with interaction energy W ¼ 0 except within an

interaction region of volume V comprising an attractive

exclusion zone and a repulsive steric overlap zone. We are

then interested in cases where the ratio of the Mayer and

Boltzmann integrals deviates from 1, as

KBoltzmann

KMayer

¼ ve
�W=RT

ve
�W=RT � V

6¼ 1: (25)

This occurs when

V*
KBoltzmann

C�
¼ 1660 Å

3

Kd

; (26)

where Kd is the dissociation constant measured with a local

signal and referred to a standard concentration C� ¼
1 molecule/1660 Å3. For example, deviations will occur for

a protein that binds ligand with a (signal-based) dissociation

constant of 10 mMwhen the steric volume is$1.7 3 108Å3,

which corresponds to a linear dimension of several hundred

Angstroms. Thus, significant deviations can occur for large

receptors with weak binding sites. In contrast, the Andersen

formula will rarely yield significant errors because it does not

integrate the Mayer factor over the region of steric overlap.

APPENDIX

This addendum shows that the commonly used approach to computing

covalent binding affinities via the rigid rotor-harmonic oscillator approxi-

mation (see, e.g., Chapter 9 of McQuarrie, 1973) yields a binding constant

TABLE 6 Computed dissociation constants (KBoltzmann,ex
21) for

three-dimensional systems at standard concentration 1 mol/

liter, as a function of the length in Å assigned to the

distance unit u, for three values of eelec (kcal/mol)

eelec

u (Å) �4.1 �5.1 �7.7

1 27.8 M 16.0 M 3.14 M

4 0.434 M 0.250 M 49.1 mM

10 27.8 mM 16.0 mM 3.14 mM

Note that the receptor-ligand interaction includes a Lennard-Jones term

along with the ‘‘electrostatic’’ part, so eelec is not proportional to the depth

of the energy well.

TABLE 7 Comparison of binding constants extracted from

equilibrium dialysis simulations with results from the

Mayer formula, for the two-dimensional systems

Potential A Potential B

e Kdialysis Kisotherm KMayer Kdialysis Kisotherm KMayer

�0.1 �50.2 8.83 �52.4 �53.0 10.5 �56.3

�0.2 �49.6 9.25 �51.9 �53.3 11.0 �55.8

�0.3 �49.2 9.77 �51.4 �51.3 11.7 �55.2

�0.4 �47.6 10.4 �50.7 �52.3 12.5 �54.5

�0.5 �49.0 11.2 �50.0 �51.0 13.4 �53.7

�0.6 �46.7 12.0 �49.1 �49.6 14.6 �52.7

�0.7 �46.1 13.3 �48.0 �50.9 15.7 �51.5

�0.8 �45.0 14.5 �46.8 �46.8 17.3 �50.1

�0.9 �42.9 16.0 �45.3 �47.2 19.0 �48.5

�1.0 �41.6 17.9 �43.6 �45.5 21.2 �46.6

�1.1 �39.2 20.2 �41.5 �41.8 23.6 �44.3

�1.2 �37.6 23.0 �39.1 �37.4 26.4 �41.6

�1.3 �34.7 26.1 �36.2 �38.0 30.2 �38.4

�1.4 �32.6 29.9 �32.8 �33.5 34.4 �34.6

�1.5 �28.0 34.4 �28.8 �29.8 39.7 �30.2

�1.6 �20.5 39.6 �24.1 �25.2 45.5 �24.9

�1.7 �16.7 46.5 �18.5 �18.2 52.9 �18.7

�1.8 �12.0 54.3 �11.9 �11.8 61.9 �11.4

�1.9 �4.5 63.4 �4.1 �4.3 72.1 �2.8

�2.0 4.7 74.8 5.1 5.7 85.2 7.5

�4.0 1670 1780 1630 1840 1990 1810

e: depth of energy well in kcal/mol.
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equal to the Boltzmann integral (Eq. 4), in the classical limit, and thus further

validates the use of a Boltzmann integral for noncovalent pairwise binding.

Consider the association of a monatomic receptor R and ligand L of

respective masses MR and ML to form a covalent dimer D. The product of

the moments of inertia of the dimer equal I ¼ b2m, where

m ¼ ðMRMLÞ=ðMR 1MLÞ is the reduced mass. The covalent bond between

the monomers is approximated by a quadratic potential with force constant

v, equilibrium distance b, and well-depth E0, relative to the monomers:

E ¼ E0 1
v

2
ðr � bÞ2: (27)

In the classical limit where the gap between vibrational energy levels is

much smaller than kT, the partition functions and binding constant become

qR ¼ 2pMRkT

h
2

� �3
2

V (28)

qL ¼
2pMLkT

h
2

� �3
2

V (29)

qD ¼ qtqrqv (30)

qt ¼
2pðMR 1MLÞkT

h
2

� �3
2

V (31)

qr ¼
8p

2
IkT

h
2 (32)

qv ¼ e
�bE0

2pkT

h

m

v

� �1
2

(33)

K ¼ qD=V

qR=V qL=V
¼ 4pe

�bE0b
2 2pkT

v

� �1
2

: (34)

This expression for K is equivalent to that from KBoltzmann if the integration

domain is approximated as ranging over bond lengths of 0–N,

KBoltzmann ¼ 4pe
�bE0

Z N

0

r
2
e
�bv

2
ðr�bÞ2

dr; (35)

where the factor of 4p results from the integral over the angular degrees of

freedom of the ligand relative to the receptor.
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