Skip to main content
. 2004 Jul;87(1):276–294. doi: 10.1529/biophysj.103.036632

TABLE 7.

GABAR and simulated COO data, parameter estimation

GABAR
COO
Average ± SE Central four Average ± SE Simulation Parameters Average ± SE Central six Average ± SE
N 200 208 ± 18 192 ± 5
α1 299 ± 110 267 ± 112 183.5 266 ± 75 209 ± 32
β1 5524 ± 979 5161 ± 579 5202 5432 ± 299 5561 ± 122
α2 87.0 ± 73 17.63 ± 9.72 9.998 31.0 ± 14.4 16.0 ± 3.4
β2 40.7 ± 16.0 32.2 ± 12.7 41.6 42.4 ± 4.8 43.8 ± 2.8
Kf1 1026 ± 538 652 ± 288 864.5 910 ± 341 606 ± 114
Kr1 0.126 ± 0.043 0.115 ± 0.031 0.1927 0.179 ± 0.035 0.169 ± 0.021
Kf2 129 ± 11 133 ± 8 140.6 159 ± 13 152 ± 5
Kr2 116 ± 24 118 ± 12 188.9 213 ± 22 211 ± 16
Kf3 5087 ± 3470 2049 ± 488 1496 1722 ± 179 1745 ± 143
Kr3 1157 ± 325 1154 ± 269 799.5 749 ± 182 605 ± 92
τD1 2.84 ms
%D1 51.2%
τD2 27.2 ms
%D2 25.0%
τD3 725 ms
%D3 20.3%

Simulation parameters are used to generate 10 COO data sets, 3 s in duration, 0.25 ms per point, 200 channels per set. For the six GABAR traces and the 10 COO data sets, 200 points are selected along the path of desensitization favoring the earlier phases (tsf = 3). Gaussian noise (σ = 0.564 channels) is added to each point of the COO data sets. All 16 data sets are fit to COO using CVF allowing the number of channels to vary as a free parameter. Central four and Central six averages are the results of excluding the highest and lowest one or two values for each parameter, respectively. Results of fitting GABAR sets are used to create the consensus model shown in Fig. 8. Desensitization parameters are determined by fitting the smooth curve (generated using simulation parameters) to a three-component exponential equation by sum-of-squares minimization.