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ABSTRACT Large-scale models of signaling networks are beginning to be reconstructed and corresponding analysis
frameworks are being developed. Herein, a reconstruction of the JAK-STAT signaling system in the human B-cell is described
and a scalable framework for its network analysis is presented. This approach is called extreme signaling pathway analysis and
involves the description of network properties with systemically independent basis vectors called extreme pathways. From the
extreme signaling pathways, emergent systems properties of the JAK-STAT signaling network have been characterized,
including 1), a mathematical definition of network crosstalk; 2), an analysis of redundancy in signaling inputs and outputs; 3),
a study of reaction participation in the network; and 4), a delineation of 85 correlated reaction sets, or systemic signaling
modules. This study is the first such analysis of an actual biological signaling system. Extreme signaling pathway analysis is
a topologically based approach and assumes a balanced use of the signaling network. As large-scale reconstructions of
signaling networks emerge, such scalable analyses will lead to a description of the fundamental systems properties of signal
transduction networks.

INTRODUCTION

Reconstructed biochemical reaction networks are founda-

tional to systems analysis in biology. Large-scale recon-

struction efforts have been successful for metabolic and

regulatory networks (Covert and Palsson, 2002; Forster et al.,

2003; Pramanik and Keasling, 1997; Reed and Palsson,

2003; Selkov et al., 1998); however, such efforts for large-

scale signaling processes are in their infancy (Bhalla and

Iyengar, 1999; Gilman et al., 2002). In silico analysis

frameworks for these reconstructed signaling networks will

need to be scalable and able to describe emergent proper-

ties that arise from the interconnectivity of the network

constituents. A recent approach has been developed to study

the topological properties of signaling networks (Papin and

Palsson, 2003), called extreme signaling pathway analysis

(ExSPA). This approach uses extreme pathway analysis

(Schilling et al., 2000) to characterize the properties of

signaling networks. ExSPA has been applied to a prototypic

signaling network to define and study properties of signaling

networks (Papin and Palsson, 2003). Systems properties

including input/output relationships and crosstalk were

mathematically defined and described, and other emergent

properties were characterized, including correlated reaction

sets, pathway redundancy, and the participation of reactions

in network-based pathways.

Network reconstruction involves the integration of

multiple datasets to generate increasingly more accurate

models of biological processes (Herrgard et al., 2004; Price

et al., 2003; Reed and Palsson, 2003). The B-cell was

recently selected to apply large-scale approaches to elucidate

signaling networks (Gilman et al., 2002). The JAK-STAT

signaling network, particularly important for many immune

responses, is well-characterized in the human B-cell as well

as many other cell types (Aaronson and Horvath, 2002) (Fig.

1). Typically, the binding of a corresponding ligand to its

receptor induces dimerization of the receptor, which in turn

results in the activation of an associated kinase called a JAK.

The activated JAK protein then induces the phosphorylation

of a protein from the family of signal transducers and

activators of transcription (STATs). These STATs can form

homo- and heterodimers. Following the STAT dimerization

event, these proteins translocate into the nucleus and induce

expression of their target genes.

This study presents a large-scale reconstruction of the

JAK-STAT signaling network in the human B-cell. The

extreme signaling pathways were computed and an analysis

of the systems properties of the reconstructed JAK-STAT

network was then performed based on methods previously

developed (Papin and Palsson, 2003).

CONCEPTUAL FRAMEWORK AND METHODS

Stoichiometric formalism of signaling networks

The constraint-based modeling framework allows for the analysis of

biological networks by successively applying known constraints such as

mass balance, maximum capacity, and reaction irreversibility (Price et al.,

2003). After the application of these known constraints, the remaining

solution space can be characterized by calculating convex basis vectors that

provide a way to represent every possible flux state of the network (Schilling

et al., 2000). These convex basis vectors are fundamental pathways of the

network, and studying them for genome-scale metabolic networks has

yielded biologically meaningful results (Papin et al., 2003). Signaling

network events are subject to mass balance and thermodynamic constraints.
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Consequently, in silico analysis methods within the constraint-based

framework developed for metabolic and regulatory networks can be applied

to signaling networks (Papin and Palsson, 2003).

A recently developed analysis method within the constraint-based

framework is extreme pathway analysis (Papin et al., 2003). With this

approach, the first step is the creation of a stoichiometric matrix to represent

the primary chemical events that take place within a network. The rows of

this matrix correspond to network components (e.g., adenosine triphosphate

(ATP), interleukin 2 receptor, STAT6, etc.). The columns of this matrix

correspond to reactions (e.g., binding of interleukin 2 to its receptor,

homodimerization of STAT6, etc.). Each element of the matrix contains the

stoichiometric coefficient of the given component in the associated reaction.

With a stoichiometric formalism, the underlying reactions of a network

model are explicitly defined and forced to be chemically consistent. Since

this formalism requires explicit description of the reaction mechanisms, each

‘‘state’’ of a component must be accounted for in the network. For example,

a protein is differentially represented if it is phosphorylated than if it is not

phosphorylated. With such an explicit description of all the chemical

transformations in a network, the systemic effects of each component of

a network can be readily assessed.

Extreme signaling pathway analysis

Once the stoichiometric matrix has been defined, topological analyses can be

used to make characterizations of network properties. Extreme pathways

(Schilling et al., 2000), elementary modes (Schuster et al., 2000), and

extreme currents (Clarke, 1988) are topological analysis methods based on

convex analysis (Rockafellar, 1970). Convex analysis allows for the study of

systems of equations with inequality constraints. Extreme pathways are

the minimal set of conically independent basis vectors that completely

characterize the fundamental functional states of a given reaction network

and that satisfy constraints on the directions of the network reactions (Papin

et al., 2003). Since extreme pathways are calculated directly from

a stoichiometric matrix, subject to constraints on reaction direction, they

can directly correspond to integrated functions of the signaling network as

a whole.

Extreme pathways have the following important characteristics: 1), they

are a unique and systemically independent set of basis vectors; 2), all routes

through the network can be described by nonnegative linear combinations

of the extreme pathways; and 3), time-invariant network properties are

characterized (Papin et al., 2003). Recently, this approach was extended to

describe signaling networks (Papin and Palsson, 2003), and herein the

application of extreme pathways to signaling networks is called ExSPA.

Time-scale separation in signaling networks

Extreme pathway analysis has been extensively used for the analysis of

metabolic networks (Papin et al., 2003). Since metabolic processes occur on

a scale of milliseconds to seconds and regulatory and growth processes

occur on a scale of minutes to hours, a quasi-steady-state assumption al-

lows for the interpretation of the extreme pathways as steady-state flux

distributions in a metabolic network (Covert et al., 2001; Varma and

Palsson, 1994). The quasi-steady-state assumption has allowed for simu-

lations of dynamic concentration profiles for Escherichia coli metabo-

lism (Covert and Palsson, 2002; Varma and Palsson, 1994) using standard

temporal decomposition approaches. The timescales for events in signaling

networks like kinase and phosphatase activity (Goodman et al., 1998;

Lillemeier et al., 2001; Theurkauf, 1994; Vuong and Chabre, 1991), re-

ceptor internalization (Ferguson, 2001; Jullien et al., 2002), and regulatory

processes (McAdams and Arkin, 1998; Rivett, 1986; Zubay, 1973) are

approximately known (see Table 1). Consequently, extreme pathways of

signaling networks may be interpreted as steady-state flux distributions. If

these transients are too rapid to be of importance they can be relaxed and

only the eventual transcription state is analyzed.

This approximation is also valid for the JAK-STAT signaling network.

Although inhibitory reactions have not been delineated in the reconstructed

network presented herein, their activity is an important consideration for the

TABLE 1 Approximation of the order of magnitudes for

signaling processes

Process

Order of

magnitude References

Signaling reactions ,10� s Goodman et al. (1998);

Vuoung et al. (1991);

Lillemeier et al. (2001);

Theurkauf et al. (1994)

Transcriptional

regulation

102 s Zubay (1973); Rivett (1986);

McAdams and Arkin (1998)

Receptor

internalization

102 s Jullien et al. (2002);

Ferguson et al. (2001)

FIGURE 1 Schematic of generalized reactions for

the JAK-STAT signaling network.
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application of extreme signaling pathways to its analysis and the steady-state

flux approximation. The genes for the well-characterized suppressor of

cytokine signaling (SOCS) inhibitors of JAK-STAT signaling (Shuai and

Liu, 2003) are expressed as a result of STAT transcriptional activity. The

regulation of other inhibitors of JAK-STAT signaling (e.g., PIAS (protein

inhibitor of activated STAT) and SHP (Src homology phosphotase)

proteins) is less characterized (Shuai and Liu, 2003; Wormald and Hilton,

2004). Some data suggest that JAK-STAT signaling peaks at;30 min to 1 h

and can be sustained for multiple hours (Kalvakolanu, 2003), suggesting that

these mechanisms of inhibition operate over approximately an hour time

frame. Combined, these data suggest that the time frame for chemical

transformations involved in JAK-STAT signaling is an order of magnitude

slower than transcriptional events and the inhibition of the signaling. Since

the activated receptor-ligand complex can continue to phosphorylate STAT

proteins, there is a constant ‘‘source’’ of flux in the network. The ‘‘sink’’ for

this flux may be the transport of STAT proteins into the nucleus where they

lead to transcriptional events.

RESULTS

The JAK-STAT signaling network of the human B-cell was

reconstructed and ExSPA was applied to it. Emergent

properties can be studied using ExSPA, including 1), crosstalk;

2), pathway redundancy; 3), reaction participation; and

4), correlated reaction sets. These properties represent novel

structural characterizations of the JAK-STAT signaling

network in the human B-cell.

Reconstruction of JAK-STAT signaling network
in the human B-cell

A stoichiometric matrix was constructed for the chemical

reactions that characterize the known JAK-STAT signaling

system in the human B-cell. There are 15 receptors and 15

corresponding ligands accounted for in this reconstruction.

Each of these receptors has been identified in the human

B-cell. There are a total of 297 reactions (216 internal and

81 irreversible exchange) in the reconstructed JAK-STAT

signaling network (the corresponding reactions and associ-

ated references can be found in the supplementary material).

These reactions involve 15 ligand inputs and seven STAT

homo- and heterodimer outputs as listed in Table 2. This set

of reactions can be represented with a stoichiometric matrix

with reactions as columns and components as rows. The

metabolic and protein components of the signaling network

are also shown in Table 2. The full list of components

illustrates the interconnectivity of the signaling network with

other cellular processes, namely metabolism and protein

synthesis/degradation. For example, the cofactor conversion

of ATP to ADP drives the signaling system, and ATP

resynthesis is a primary function of metabolism. Addition-

ally, receptors will need to be synthesized. Such intercon-

nectivity between ‘‘disparate’’ cellular processes emphasizes

the need for integrated modeling approaches.

The actual process of network reconstruction can lead

to useful biological results. For example, it is important to

characterize the specificity of STAT substrates to the proper

JAK and the receptor. In this reconstruction, the phosphor-

ylation of the STATs is specific to a particular JAK-receptor

complex. If the STATs were specific solely to the receptor,

or solely to the JAK, the analysis would yield different

results. These characterizations illustrate the hypotheses that

can be generated (and subsequently tested) through the

process of network reconstruction.

Enumeration of extreme pathways

The extreme pathways were calculated for the JAK-STAT

signaling network (see Schilling et al., 2000 for a description

of the algorithm). There are 147 extreme pathways in this

network and they can be categorized in two groups (Fig. 2).

The first category represents the classical signaling mecha-

nism involving one input and one output; there are 37 of the

TABLE 2 Inputs and outputs of the JAK-STAT signaling

network in the human B-cell

Inputs Outputs

ATP ADP

JAK1 Prolactin-JAK2 receptor-ligand complex

JAK2 Interleukin 2-JAK1 receptor-ligand complex

JAK3 Interleukin 2-JAK3 receptor-ligand complex

TYK2 Interleukin 3-JAK2 receptor-ligand complex

STAT1 Interleukin 5-JAK2 receptor-ligand complex

STAT2 Interleukin 6-JAK1 receptor-ligand complex

STAT3 Interleukin 7-JAK1 receptor-ligand complex

STAT4 Interleukin 7-JAK3 receptor-ligand complex

STAT5A Interleukin 9-JAK1 receptor-ligand complex

STAT6 Interleukin 9-JAK3 receptor-ligand complex

Prolactin Interleukin 10-JAK1 receptor-ligand complex

Interleukin 2 Interleukin 10-TYK2 receptor-ligand complex

Interleukin 3 Interleukin 10-TYK2-JAK1 receptor-ligand complex

Interleukin 4 Interleukin 11-JAK1 receptor-ligand complex

Interleukin 5 Interleukin 12-JAK2 receptor-ligand complex

Interleukin 6 Interleukin 12-TYK2 receptor-ligand complex

Interleukin 7 Interleukin 12-TYK2-JAK2 receptor-ligand complex

Interleukin 9 Interleukin 13 receptor-ligand complex

Interleukin 10 Interleukin 13-JAK1 receptor-ligand complex

Interleukin 11 Interleukin 13-JAK2 receptor-ligand complex

Interleukin 12 Interleukin 13-JAK2-JAK1 receptor-ligand complex

Interleukin 13 Interleukin 14-JAK1 receptor-ligand complex

Interleukin 15 Interleukin 14-JAK3 receptor-ligand complex

Interferon a/b Interleukin 14-JAK3-JAK1 receptor-ligand complex

Interferon g Interleukin 15-JAK1 receptor-ligand complex

Prolactin receptor Interleukin 15-JAK3 receptor-ligand complex

Interleukin 2 receptor Interferon a/b-JAK1 receptor-ligand complex

Interleukin 3 receptor Interferon a/b-TYK2 receptor-ligand complex

Interleukin 4 receptor Interferon a/b-TYK2-JAK1 receptor-ligand complex

Interleukin 5 receptor Interferon g-JAK1 receptor-ligand complex

Interleukin 6 receptor Interferon g-JAK2 receptor-ligand complex

Interleukin 7 receptor Interferon g-JAK2-JAK1 receptor-ligand complex

Interleukin 9 receptor STAT1 homodimer

Interleukin 10 receptor STAT3 homodimer

Interleukin 11 receptor STAT4 homodimer

Interleukin 12 receptor STAT5A homodimer

Interleukin 13 receptor STAT6 homodimer

Interleukin 15 receptor STAT1-STAT2 heterodimer

Interferon a/b receptor STAT1-STAT3 heterodimer

Interferon g receptor

ExSPA of the JAK-STAT Signaling Network 39
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147 extreme pathways in this group. The second category

represents a concatenation of inputs to generate one output;

there are 110 of the 147 extreme pathways in this group.

Other categories of extreme signaling pathways, described

elsewhere (Papin and Palsson, 2003), are not found in this

set of extreme pathways, including signal pleiotropy (one

signaling input generates multiple signaling outputs) and

complex signaling events (multiple signaling inputs generate

multiple signaling outputs).

The complete set of extreme pathways of the JAK-STAT

signaling network are listed in the supplementary material.

Two representative pathways are shown in Fig. 3. Pathway

119 (the numbers represent the order in which the extreme

pathways are computed) is the formation of the activated

ligand-receptor complex. Pathway 1 demonstrates some of

the interconnectivity that exists in the JAK-STAT signal-

ing network herein (Fig. 3). This pathway describes the

activation of different STATs that then form heterodimers

(e.g., STAT1-STAT2 heterodimer is activated as a result of

the binding of ligands interferon g and interferon a/b to their

respective receptors). Although these pathways generally

describe ‘‘silos’’ that connect the activated ligand-receptor

complex to activated transcription factor, the reconstruc-

tion of the JAK-STAT signaling network is easily expanded

to include inhibitory reactions and additional signaling

moieties (e.g., mitogen-activated protein kinase (MAPK)

reactions) which will lead to further interconnectivity. These

pathways also depict the interconnectivity between signal-

ing, metabolic, and transcriptional regulatory networks.

Crosstalk in the JAK-STAT signaling network

‘‘Crosstalk’’ in signaling networks has been defined as

network states that are a nonnegative linear combination of

extreme signaling pathways (Papin and Palsson, 2003) and

as such represents the interaction of systemically indepen-

dent routes in a reaction network. This system property can

be characterized by making pairwise comparisons of the

entire set of extreme signaling pathways. A pair of pathways

may have identical, overlapping, or disjoint input sets (e.g.,

a pathway with interleukin-2 and interleukin-4 as input

signals would overlap with a pathway that had interleukin-2

and interleukin-15 as input signals). Each pair of pathways

may likewise have identical, overlapping, or disjoint output

sets. Consequently, there are nine categories of crosstalk.

Since the extreme signaling pathways are a unique and

minimal set of basis vectors, this unambiguous definition and

categorization of crosstalk describes the interaction of fun-

damental functional states in a signaling network.

Various forms of crosstalk in the JAK-STAT signaling

network can be characterized with the ExSPA approach

(Papin and Palsson, 2003). For the JAK-STAT system, the

pairwise combinations of all extreme pathways (crosstalk)

have been grouped into one of the nine categories described

above. These categories and their respective biological

interpretations have been described (Papin and Palsson,

2003). For example, pairwise combinations of pathways

with disjoint inputs and disjoint outputs may correspond to

completely independent functions of a network even though

intracellular reaction may be shared. Pairwise combinations

of pathways with overlapping inputs and disjoint outputs

may correspond to economized uses of the network allowing

a small difference in a signaling input to generate a distinct

biological response.

The percentages of each type of crosstalk found in the

reconstructed JAK-STAT network are listed in Fig. 4. With

147 extreme pathways, there are 10,731 pairwise combina-

tions ((1472 � 147)/2). Approximately 99.8% of the pairs of

extreme signaling pathways have disjoint outputs and nearly

0.2% have identical outputs. There are no pairwise com-

binations of extreme pathways with overlapping outputs

since all the extreme pathways of the JAK-STAT network

have only one signaling output. Approximately 63.9%,

21.3%, and 14.8% of the pairwise combinations have

disjoint, overlapping, and identical input sets, respectively.

The high percentage of pairwise combinations with disjoint

sets of inputs and disjoint sets of outputs indicates a fairly

deterministic signaling network; there is very little ‘‘classi-

cal’’ crosstalk (i.e., identical signaling molecules used in

different signaling pathways (Schwartz and Baron, 1999))

as one input signal typically corresponds to one output

signal. As more signaling networks are comprehensively

reconstructed, the percentages of types of crosstalk in

different systems will be characterized and comparative

systems properties will be described.

Signaling redundancy

‘‘Pathway redundancy’’ is the multiplicity of routes through

a network by which identical inputs can generate identical

outputs. This emergent property has been characterized in

genome-scale metabolic networks (Papin et al., 2002a; Price

FIGURE 2 Signaling pathway types in the JAK-STAT network. Other

signaling types, not present in this network, include signal pleiotropy (one-

input, multiple-outputs) and cross talk (multiple inputs, multiple outputs).
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et al., 2002) and a prototypic signaling network (Papin and

Palsson, 2003). A significant amount of redundancy in sig-

naling networks would suggest a lack of specificity for gener-

ating a particular output with multiple different signaling

inputs. A small degree of redundancy in a signaling network

would suggest a highly specific relationship between inputs

and outputs.

Signaling pathway redundancy has been characterized for

the JAK-STAT signaling network (Table 3). The systemic

signaling pathway redundancy calculation indicated that on

average there were four independent routes (extreme path-

ways) with identical signaling inputs and identical signaling

outputs (data not shown). The signaling pathway redundancy

can be further discriminated by the level of output and input

redundancy. Output redundancy is the number of extreme

pathways with identical outputs; a high output redundancy

corresponds to output signals that can be generated by way

of multiple systemically independent routes. Input redun-

dancy is the number of extreme pathways with identical

inputs; it is an indication of the inputs that have a high degree

of influence in the signaling network as each corresponding

extreme pathway corresponds to a unique function in the

network. Output redundancy and input redundancy are

related to the previous concepts of crosstalk between pairs of

extreme pathways with identical output and input signals,

respectively (Fig. 4, 3rd column and 3rd row). The output

redundancy and input redundancy values have been

calculated. The synthesis of the STAT1-STAT3 heterodimer

is the most redundant and the synthesis of the STAT3,

STAT4, and STAT6 homodimers is the least redundant.

High redundancy values are indicative of signal inputs and

outputs to which the signaling network is particularly robust

under network modifications.

Reaction participation in the JAK-STAT
signaling network

The ‘‘reaction participation’’ is the percentage of extreme

pathways in which a given reaction is used (Papin et al.,

2002b). The reaction participation values have been

FIGURE 3 Examples of extreme sig-

naling pathways of the JAK-STAT sig-

naling network. Pathway 119 (A)

corresponds to the binding of the in-

terferon g ligand to its receptor and the

subsequent formation of an activated

receptor-ligand complex. Pathway 1 (B)

corresponds to the activation of the

STAT1-STAT2 heterodimer by the in-

terferon g and interferon a/b bound

receptors. The names of the reactions

are in italics above the reaction arrows

(see supplementary material).
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calculated for the JAK-STAT signaling network (Fig. 5).

The reactions with participation values greater than 10% are

shown in the inset table. Plotting the data on a log-log scale

does not result in a strict linear relationship. However, there

is a decreasing relationship between the number of reac-

tions and their corresponding participation numbers, which

indicates the importance of a small number of reactions in

determining the phenotypic potential of the signaling

network.

For example, the exchange reactions of ATP and ADP

have 100% participation. These components are essential

for all the states of the signaling network since phosphate

transfer is the mechanism by which the signal propagates.

The exchange reactions (i.e., reactions that describe the

transfer of components across the system boundary) for

STAT1, STAT3, the STAT1-STAT3 heterodimer, and the

reaction SD7, which describes the formation of the STAT1-

STAT3 heterodimer, have the next highest participation

values. This result is in part a reflection of the calculations

described above regarding the high degree of output re-

dundancy for the STAT1-STAT3 heterodimer; the network

is structured such that there are multiple routes to synthesize

the STAT1-STAT3 heterodimer. There are 168 reactions that

participate in only one extreme pathway. Reactions with low

participation values correspond to reactions that have very

specific network functions. Manipulating reactions with low

participation values could allow for control of very specific

functions, potentially important for drug targeting.

The exchange reactions for STAT1, STAT3, STAT4,

STAT5A, and STAT6 homodimers participated in 5%, 4%,

4%, 7%, and 4% of the extreme signaling pathways,

respectively. These reaction participation values do not

correlate with the number of cytokines that activate the

respective STATs (i.e., the STATs activated by a greater

number of cytokines do not necessarily participate in

a greater number of reactions (see supplementary material)).

The reaction participation values for the exchange reactions

of heterodimers are significantly higher than the exchange

reactions for homodimers. The exchange reactions for

STAT1-STAT3 and STAT1-STAT2 heterodimers partici-

pated in 33% and 16% of the extreme signaling pathways,

respectively. This result suggests that the combinatorial

expansion around a small number of already existing

components can allow for a significant increase in the

number of distinct phenotypes. Similarly, the crosstalk

analysis indicated that 21% of the pairwise comparisons

consist of overlapping inputs and disjoint outputs. Together

these results suggest that signaling networks may be de-

signed to expand around an existing repertoire to generate ad-

ditional responses to environmental stimuli.

Correlated reaction sets

Reactions that always appear together in the set of extreme

pathways for a given network have been called ‘‘correlated

reaction sets’’ (Papin et al., 2002b); in other words, all the

possible states of the network that use these reactions use

them together. The correlated reaction sets for the JAK-

STAT signaling network in the human B-cell have been

calculated (Table 4). There are 85 correlated reaction sets.

An obvious correlated reaction set is the exchange reactions

for ATP and ADP; whenever ATP goes into the system,

ADP consequently has to come out (set 1). Additional

correlated reaction sets include the exchange reactions for

the ligand and receptor pairs (e.g., set 4). However, there are

exchange reactions for ligands and receptors that belong

to reaction sets with additional reactions (e.g., set 2). The

receptors associated with these ligands only bind to one

member of the JAK family in this network and consequently

FIGURE 4 Cross talk in the JAK-STAT signaling network of the human

B-cell. There are 10,731 pairwise combinations of the 147 extreme

pathways. Each value is the percentage of all pairwise combinations that

belong to the corresponding category.

TABLE 3 Signaling redundancy

STAT1

Homodimer

STAT1-STAT2

Heterodimer

STAT1-STAT3

Heterodimer

STAT3

Homodimer

STAT4

Homodimer

STAT5A

Homodimer

STAT6

Homodimer Number

0 0 1 0 0 0 0 48

0 1 0 0 0 0 0 24

0 0 0 0 0 1 0 11

1 0 0 0 0 0 0 8

0 0 0 0 0 0 1 6

0 0 0 0 1 0 0 6

0 0 0 1 0 0 0 6

The number of extreme signaling pathways with equivalent signal outputs and their respective signaling output are shown.
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the additional reactions are only present with the input of the

ligand and its corresponding receptor.

There are additional distinctions between the correlated

reaction sets that correspond to biological properties of

the JAK-STAT signaling network. One separation of the

reaction sets occurs with the ligands that result in the

activation of STAT proteins by way of different JAKs. For

example, reaction sets 5 and 6 each include reactions that

describe the phosphorylation of STAT6 by way of JAK1-

associated and JAK3-associated IL-4 dimerized receptors,

respectively.Thesupplementarymaterial contains the complete

list of correlated reaction sets and associated reaction and

compound abbreviations, as well as corresponding refer-

ences.

These correlated reaction sets provide hypotheses re-

garding regulatory control of the JAK-STAT signaling

network. It has been hypothesized that correlated reaction

sets in metabolic networks correspond to enzymes located on

the same operon or controlled by the same regulon (Papin

et al., 2002b). In signaling networks, correlated reaction sets

may correspond to proteins that are coordinately regulated. If

a defined regulatory rule does not correspond to a correlated

reaction set, there may be additional functions of the

signaling components within the set that have not yet been

characterized. Thus, the correlated reaction set could be used

to generate hypotheses regarding regulatory rules and net-

work function of signaling components.

DISCUSSION

The JAK-STAT signaling network in the human B-cell has

been reconstructed. The extreme signaling pathways of this

network have been calculated and described. From the

extreme signaling pathways, emergent systems properties

have been characterized. These properties of the JAK-STAT

signaling network include 1), a definition of network crosstalk;

2), an analysis of redundancy in signaling inputs and

outputs; 3), a study of reaction participation in the network;

and 4), a delineation of correlated reaction sets. This

integrated, mathematical analysis of network properties has

been previously performed for a prototypic signaling

network; this study is the first such analysis of an actual

biological signaling system, and novel properties have

been described.

Extreme signaling pathway analysis provides a concise

and unique description of network properties. Consequently,

extreme signaling pathways enable unambiguous descrip-

tions of systems properties. The extreme signaling pathways

are a conically independent basis set (Schilling et al., 2000)

FIGURE 5 Reaction participation in JAK-STAT

signaling network. The percentage of the extreme

signaling pathways in which the corresponding re-

action participates is indicated on the y axis. The inset
table only lists the reaction participation values greater

than 20% (abbreviations in supplementary material).

The inset plot is the reaction participation plotted on

a log-log scale.

TABLE 4 Representative correlated reaction sets

Set

number

Reaction

name Stoichiometry/Exchange

1 atp INPUT

adp OUTPUT

2 prl1 rPRL 1 j2 / rPRLj2

prl2 rPRLj2 1 PRL / rlPRLj2

prl3 rlPRLj2 1 rPRLj2 1 2 atp /
2 adp 1 2PRLj2

PRL INPUT

rPRL INPUT

2PRLj2 OUTPUT

3 prl4 2PRLj2 1 stat5A / 2PRLj2s5A

prl5 2PRLj2s5A 1 atp / PRLj2s5Ap

prl6 PRLj2s5Ap / 2PRLj2 1 stat5AP 1 adp

4 I4 INPUT

rI4 INPUT

5 il4i 2I4j1 1 stat6 / 2I4j1_s6

il4j 2I4j1_s6 1 atp / I4j1s6p

il4k I4j1s6p / 2I4j1 1 adp 1 stat6P

6 il4l 2I4j3 1 stat6 / 2I4j3_s6

il4m 2I4j3_s6 1 atp / I4j3s6p

il4n I4j3s6p / 2I4j3 1 adp 1 stat6P

Each set of reactions always appears together in a set of extreme pathways

for the JAK-STAT signaling network. The complete list of correlated

reaction sets, as well as the reaction and component abbreviations, are

provided in the supplementary material.
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and thus all physiological network steady states can be

decomposed into this set of pathways (Wiback et al., 2003).

Since they are derived from the application of mass balance

constraints, extreme signaling pathways represent actual

signaling states in a network, and thus described emergent

properties correspond to actual biological characteristics.

One such biological property is crosstalk, which has been

defined as the nonnegative linear combination of extreme

signaling pathways (Papin and Palsson, 2003). Since the

JAK-STAT network studied herein is fairly deterministic,

the types of cross talk that occur are limited; nearly 64% of

pairwise combinations of extreme signaling pathways fall in

the category of disjoint inputs and disjoint outputs. Nonethe-

less, with;21% of the pairwise comparisons in the category

with overlapping inputs and disjoint outputs, there is more

complex control as the particular combination of inputs can

generate distinct signaling outputs. This analysis of crosstalk

is an explicit description of the important signaling network

property of interconnectivity.

In addition to the novel description of crosstalk for this

signaling network, the analyses of pathway redundancy,

reaction participation, and correlated reaction sets have

generated insights into network properties. For the JAK-

STAT network described herein, the formation of the

STAT1-STAT3 heterodimer has the highest degree of

pathway redundancy. This result suggests that the formation

of this transcription factor complex is more robust to

modifications in the network structure. Measures of pathway

redundancy indicate network functions that are both highly

specialized (low redundancy) and very generalized (high

redundancy), perhaps suggestive of system objectives.

Reaction participation calculations make a parallel analysis

of reaction function. The removal of reactions with low

participation in the extreme pathways would result in

specific control of a signaling network. The identification

of correlated reaction sets provides hypotheses regarding the

coordination of regulatory control. These emergent proper-

ties have been discussed in detail for metabolic networks and

have been described for signaling networks (Papin and

Palsson, 2003).

Input/output relationships for the JAK-STAT signaling

network are relatively simple. Consequently, the emergent

properties calculated for the previous prototypic signaling

network (Papin and Palsson, 2003) have not all been

calculated for the JAK-STAT signaling network. Such

properties should arise in larger signaling networks once

they are reconstructed. For example, the JAK-STAT

signaling network can be expanded to include other

signaling components like STAT inhibitory proteins (e.g.,

SOCS protein (Yamada et al., 2003)), as well as MAPK

proteins and G-proteins which have both been implicated in

STAT activation (Jain et al., 1998; Pelletier et al., 2003).

Importantly, this modeling approach is scalable. Further

refinements and modifications will not change the types of

results that have been presented here. Rather, discrepancies

between results in the different models will generate

hypotheses that can be tested and resolved.

There is much interest in describing and analyz-

ing ‘‘modules’’ and ‘‘motifs’’ of biochemical networks

(Hartwell et al., 1999; Milo et al., 2002; Rives and Galitski,

2003). Signaling modules often consist of arbitrary groups

of adjacent signaling reactions in the network that may oper-

ate together (e.g., (Bhalla and Iyengar, 1999; Hoffmann et al.,

2002)). These signaling modules may serve as important

conceptual tools for studying related signaling events. Their

definition is based on local network topology and a priori

definition of the investigator. In contrast, the extreme

signaling pathways are network-based characteristics and

the emergent properties calculated based on them carry no

investigator biases. Since extreme pathways describe

balanced uses of a biochemical network, the correlated

reaction sets described in this study are effectively ‘‘systemic

modules’’ because they are generated with consideration of

all network demands and the reactions in a set always

function together. Such systemic modules may contain

reactions that are not topologically adjacent in a visual

representation of the network (Papin et al., 2002b).

Extreme signaling pathway analysis details structural

properties of the mass-balanced representation of the JAK-

STAT signaling network. To date, the approach discussed

herein does not allow for dynamic analyses of concentration

profiles like recent analyses of signaling modules (e.g.,

Schoeberl et al., 2002). The JAK-STAT signaling model

does not yet include genetic feedback mechanisms that will

lead to a description of additional complex behavior

important for the physiology of the human B cell. Ac-

counting for genetic feedback and other dynamic processes

in a signaling network (e.g., an activated transcription factor

induces the synthesis of a protein that in turn inhibits the

corresponding signaling pathway) will require further work

on timescale separation of signaling, regulatory, and

metabolic processes. The JAK-STAT signaling network

herein is an example of the interconnectivity that exists

between signaling, metabolic, and transcriptional regulatory

networks (Fig. 6). This interconnectivity can be accounted

for with stoichiometric representations of biochemical

transformations and their subsequent analysis.

FIGURE 6 Signaling, metabolic, and transcriptional regulatory networks

are interconnected. For example, ATP and GTP, primary currencies of

signaling networks, are principal products of metabolic networks.
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Taken together, this study presents the first constraint-

based analysis of an actual signaling network. The JAK-

STAT signaling system in the human B-cell is of central

importance in immune response and other vital cellular

processes. As the signaling network is further characterized

and reconstructed, the calculated extreme signaling path-

ways may allow for the description of novel biological

properties that will be important in medical and bio-

technological applications as they previously have for

metabolic networks (Carlson et al., 2002; Liao et al., 1996).

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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