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ABSTRACT The theoretical basis of an optical microscope technique to image dynamically scattered light fluctuation decay
rates (dynamic light scattering microscopy) is developed. It is shown that relative motions between scattering centers even
smaller than the optical resolution of the microscope are sufficient to produce significant phase variations resulting in
interference intensity fluctuations in the image plane. The timescale and time dependence for the temporal autocorrelation
function of these intensity fluctuations is derived. The spatial correlation distance, which reports the average distance between
constructive and destructive interference in the image plane, is calculated and compared with the pixel size, and the distance
dependence of the spatial correlation function is derived. The accompanying article in this issue describes an experimental
implementation of dynamic light scattering microscopy.

INTRODUCTION

We here describe the theory for a novel imaging technique for

optical microscopy based on dynamic light scattering (DLS).

Conventional dynamic light scattering (also known as

quasielastic light scattering) is a well-established laser-based

nonmicroscopic, nonimaging technique commonly used to

measure diffusion coefficients of proteins in solution (Pecora,

1964; Cummins et al., 1964). The accompanying article

(Dzakpasu and Axelrod, 2004) describes an experimental

implementation of this theoretical work, in which DLS is

modified for use in a microscope in an imaging mode so that

spatial maps can be constructed from the light intensity

fluctuation decay rates of scattering centers in the sample.

DLS microscopy is based on the time-dependent in-

terference among electric fields emanating from scattering

centers in relative motion and is sensitive to relative motions

that are six times smaller than the optical resolution of the

microscope. Previously reported applications of DLS in

a microscope were limited to a single point (rather than

spatial mapping) measurement of diffusion coefficients and

flow rates (velocimetry) (Maeda and Fujime, 1972; Mishina

et al., 1974, 1975; Cochrane and Earnshaw, 1978; Herbert

and Acton, 1979; Nishio et al., 1983, 1985; Blank et al.,

1987; Peetermans et al., 1986, 1987a,b,c; Tishler and

Carlson, 1993; Wong and Wiltzius, 1993). These works

did not address the theoretical question as to how intensity

fluctuations can occur from scattering centers mutually close

enough to fall within the optical resolution distance of the

microscope; that question is addressed here.

We begin with a derivation of the functional form of the

scattered electric field at the image plane of a microscope

(which is modeled as a simple lens), first from a single

scattering center and then from a collection of centers. From

the resulting intensity, the temporal and spatial autocorrela-

tion functions are derived. The theory is essentially

a combination of scalar diffraction theory for a simple lens

and a generalization of the conventional DLS theory as

presented by Cummins et al. (1969).

The optical resolution of a microscope specifies the

minimum separation of two objects in object space required

to form distinctly separated images. If the separation is

greater than the resolution distance, then clearly little

interference can occur in the image plane. We show here

that for scattering centers spaced closer than the optical

resolution distance, sufficient phase variations still exist to

create intensity fluctuations in the image plane.

As individual scattering centers can enter and/or leave an

imaged region monitored by a single pixel in the detector,

additional intensity fluctuations are created due to the change

in particle number. These intensity fluctuations would occur

even for incoherent light scattering (e.g., fluorescence). We

derive an expression that includes the effect of intensity

fluctuations due to both phase and number variations.

The characteristic decay time of the temporal intensity

autocorrelation function guides what is the minimum sample

time that should be employed in the detection system. The

characteristic decay distance of the spatial autocorrelation

function guides what is the maximum pixel size that should

be employed in the detection system.

Single scattering center

We first consider the electric field as it scatters from a single

particle toward the objective lens, refracts through the lens,

and propagates to the image plane. The scattering center is

assumed to be much smaller than the wavelength of the

incident light l (the Rayleigh scattering limit); the

polarization of the incident light is assumed to be linear

and the polarization of the scattered light is assumed to be the
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same as the incident light. The electric fields are thereby

represented as (complex) scalars rather than vectors. All of

the light (incident and scattered) is monochromatic so the

common factor exp(ivt) is everywhere suppressed.
The coordinate systems are depicted in Fig. 1. Scattering

center (object) space, objective lens space, and image space

coordinates are unprimed, primed, and double-primed,

respectively. The optical axis of the microscope is defined

as the z axis. The incident light is formed from a collimated

laser beam propagating in the y,z plane and passing through

a cylindrical lens. This lens focuses in the x-dimension only

and leaves the incident light as a thin stripe along the

y-direction, although still much larger in every dimension

than the optical resolution. Therefore, the illumination elec-

tric field amplitude E0 can be considered constant over a re-

gion competent for mutual interference at one detector pixel.

The direction of propagation and focusing is such that no di-

rect incident light reaches the objective (i.e., essentially dark

field). If k0 is the incident wave vector and r is the location of
a particular scattering center in object space, then the

incident electric field E(r) at a single scattering center is

EðrÞ ¼ E0 expðik0 � rÞ: (1)

At the position of the objective lens, the scattered light

(before propagating through the lens) will produce an electric

field E#(r#) with amplitude proportional to both E(r) and
some scattering efficiency factor dependent upon the

polarizability of the scattering center. However, this

scattering efficiency factor is assumed constant among all

scattering centers and also isotropic over the range of angles

gathered by the lens, so its appearance will be suppressed in

the expression for E#(r#),

E#ðr#Þ ¼ EðrÞexpðiksjR� rjÞ; (2)

where R is the vector from the origin in r-space to a point on
the objective lens represented by two-dimensional vector r#

in the plane of the lens; jR�rj is the distance from the

scattering center to that point on the objective; and ks ¼ jksj
is the amplitude of the scattered wave vector.

The electric field E$(r$, z$) in the image region (with

positions denoted in cylindrical coordinates) is given by

(Klein, 1970)

E$ðr$; z$Þ ¼ expðik0LÞ
ilL

ZZ
E#ðr#Þexp �ik0r#

2
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� �

3exp
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� �� �
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� �
d
2r#;

(3)

where f is the focal length of the objective lens, k0 [ jk0j and
L is the distance from the objective to the image plane.

Assuming a small angle (i.e., small numerical aperture)

approximation, the term, exp �ik0r#
2=2f

� �
, corresponds to

the phase shift imposed by the objective lens. The factor

exp ik0r#
2/2 1/Lð Þ 1� z$/Lð Þð Þ½ � � ik0r# � r$/LÞð g

�	
de-

scribes the phase alteration as the field propagates in the

empty space from the objective lens to the image region.

Combining Eqs. 1–3, noting that ks is oriented in the same

direction as R–r with ks � k0, and regrouping, we obtain

E$ðr$;z$Þ ¼ E0

expðik0LÞ
ilL
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ZZ
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For r� R, we can substitute an approximation for jR�rj:

jR� rj ¼ R
2
11
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(5)

Since R ¼ r#1Jẑ; where J is the object distance, 1/R can

be written in the small aperture approximation (r# � J) as

1

R
¼ ðr#21J

2Þ�1=2 ffi 1

J
1�1

2

r#

J

� �2

1 . . .

" #
: (6)

Substituting Eqs. 5 and 6 into Eq. 4, and noting that

1/fð Þ ¼ 1/Jð Þ1 1/Lð Þ, the electric field in the image region

becomes

E$ðr$;z$Þ ¼ E0

exp ik0ðL1JÞ
ilL

3

Z
exp ik0 �r �Qðr#Þ1r

2
gðr$Þ
2J

� r# � r$
L

� z$r#2

2L
2

� �
d
2r#;

(7)

where

FIGURE 1 Coordinate systems used in the theory. The object is shown as

a discrete black dot, and the point spread intensity in the image region as

a blur. The origin in image space is located in the plane of the detector. The

origin in object space is chosen at a point on the optical axis such that its

focused image is centered at the origin in image space.
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gðr#Þ[1� r#2

2J
2 (8)

and

Qðr#Þ[g
r#
J
1 ẑ

� �
� k̂0: (9)

Vector k0Q is a generalized scattering vector, analogous to q
([ks�k0) in conventional nonimaging DLS. Here, Q
additionally takes into account the range of scattering angles

gathered by the microscope objective lens.

To simplify Eq. 7 further, we assume that the detector is

located in the image plane (z$ ¼ 0). The scattering centers

imaged within the same optical resolution area are then very

close to the origin in object space so that r � r# for almost

the entire range of the integral. Therefore, the exponent term

r � Q � r2g/2JÞ;ð implying that the factor expð�ik0r �QÞ in
Eq. 7 varies much more rapidly than exp(ik0r

2g/2J ) over the
range of the r#, so that the latter factor can be assumed

constant and close to unity. Eq. 7 then becomes

E$z$¼0ðr;r$Þ ¼ E0

exp ik0ðL1JÞ
ilL

3

Z
exp ik0 �r �Q� r# � r$

L

� �
d2r#:

(10)

Multiple scattering centers

Each scattering center i located at position ri produces an

electric field at z$ ¼ 0 according to Eq. 10. The total electric

field E and the consequent intensity I at the image plane

depend on the set of all the ri positions (i ¼ 1, . . .N) as

follows:

Eðfrig;r$; tÞ ¼+
N

i

biðtÞE$z$¼0ðri;r$Þ (11)

Iðfrig;r$; tÞ ¼ E �E: (12)

To understand the meaning of the bi(t) parameters, we define

an ‘‘equivalent volume’’ vpix in object space that contains all
of the r-positions that contribute to the intensity observed by
a single CCD camera pixel at one position in the image

plane. (Of course, the actual region from which scattered

light is gathered has graded rather than sharp edges.) We also

define an arbitrarily larger volume V that subsumes vpix and
contains the N scattering centers included in the sum in Eq.

11. The occupation number bi(t) equals unity if scattering

center i is in vpix at time t and zero otherwise. We assume that

the positions ri are statistically independent from each other

and randomly time-dependent (e.g., due to Brownian

motion). These random motions cause E to fluctuate in both

phase and amplitude, and the resulting intensity to fluctuate

in amplitude. The temporal and spatial behavior of the

intensity fluctuations can be investigated through autocorre-

lation functions.

Temporal autocorrelation of intensity

The temporal autocorrelation is defined as

GðtÞ ¼ ÆIðt1ÞIðt2Þæ; (13)

where t [ t2�t1, the intensities at the two times are

measured at the same r$ position in the image plane, and the

ensemble average indicated by the brackets is taken over all

possible {ri} configurations. Because the system is assumed

to be in equilibrium, G depends only on the time difference t

and not the absolute times. After substituting Eqs. 10–12 into

Eq. 13, we get

The phase fluctuations (arising from the complex exponen-

tial factors) are uncorrelated with number fluctuations

(arising from the b factors); this is why the single ensemble

average in Eq. 13 can be separated into a product of two

ensemble averages (number and phase) in Eq. 14.

The summation in Eq. 14 can be separated according to the

relationships among the summation indices i,j,k,l such that

G¼ jE0j
ilL

� �4

+
6

m¼1

ð+
m
G
num

m G
ph

m Þ; (15)

where Gnum
m and Gph

m are the number and phase fluctuation

factors, respectively, and Sm represents sums over i,j,k,l
restricted as in Table 1.

Phase fluctuation factors

In the first three cases (m¼ 1,2,3) at least one index is unique

from all of the others. In such cases, a factor

GðtÞ ¼ jE0j
ilL

� �4

+
N

i;j;k;l

Æbiðt1Þbjðt1Þbkðt2Þblðt2Þæ
ZZZZ

expð�ik0riðt1Þ �QaÞexpðik0rjðt1Þ �QbÞ
expðik0rkðt2Þ �QcÞexpð�ik0rlðt2Þ �QdÞ

� 

3exp � ik0r#a � r$
L

� �
exp

ik0r#b � r$
L

� �
exp

ik0r#c � r$
L

� �
exp � ik0r#d � r$

L

� �
d2r#ad

2r#bd
2r#cd

2r#d: (14)
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Æexpð�ik0r �QÞæwith the unique index on the r-vector can be
factored out from the overall ensemble average, since the

motions of the scattering centers are mutually independent.

That factor can be handled as follows (written here for

a particular scattering index i),

Æexpð�ik0riðt1Þ �QaÞæ¼
Z

xiðriÞ

3expð�ik0ri �QaÞd3ri;

(16)

where xi is the probability density that the particle is located

in the vicinity of position ri. The scattering centers i are
assumed to be uniformly distributed over the volume vpix
imaged by an individual pixel in r-space so that xi (ri)¼ x ¼

1/vpix. Eq. 16 becomes

Æexpð�ik0riðt1Þ �QaÞæ¼
1

vpix

Z
expð�ik0ri �QaÞd3ri

¼ ð2pÞ
3
2

vpix
dðk0QaÞ: (17)

The integral over r#a in Eq. 14 then becomesZ
Æexpð�ik0riðt1Þ �QaÞæexp � ik0r#a � r$

L

� �
d
2r#a

¼ ð2pÞ
3
2

vpix

Z
dðk0QaÞexp � ik0r#a � r$

L

� �
d
2r#a

¼ ð2pÞ
3
2

vpix

J

k0g

� �2Z
dðk0QaÞexp � ik0r#a � r$

L

� �
d2ðk0QaÞ:

(18)

The integral has a nonzero value only when k0Qa ¼ 0. From

the definition ofQa in Eq. 9, we can obtain the value of r#a for
which this condition is satisfied:

r#a

����
Qa¼0

¼ J

g
k̂0� Jẑ: (19)

This particular r#a is located where the extension of the

incident beam crosses the plane of the objective lens. Since

our experimental setup was designed so that the incident light

misses the objective, the integral over r#a in Eq. 18 (which is

limited to the area of the objective) does not include r#a jQa¼0 :
Thus, those terms in the sum of Eq. 15with at least one unique

summation index (i.e., m ¼ 1,2,3) are zero.

The phase term for the m ¼ 4 case from Eq. 15 is

where DQab [ Qb � Qa and Dr#ab [ r#b � r#a. The terms

of the form Æexp ik0½rðt1Þ � DQ�æ are similar to that in Eq. 17,

except for the factor DQ instead ofQ. Therefore, the integral

in Eq. 20 can be reduced to

G
ph

4 ¼
ZZ

Æexp ik0½riðt1Þ � DQab�æ exp
ik0Dr#ab � r$

L

� �
d
2r#a d

2r#b3
ZZ
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; (20)

TABLE 1

m index Scattering center indices Number of unique indices

1 i 6¼ j 6¼ k 6¼ l 4

2 i 6¼ j 6¼ k ¼ l 2

3 i 6¼ j ¼ k ¼ l 1

4 i ¼ j 6¼ k ¼ l 0

5 i ¼ k 6¼ j ¼ l 0

6 i ¼ j ¼ k ¼ l 0

1
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ZZ Z
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where lpix is the z-dimension of the observed volume vpix; spix
is the area of the observed volume; and A is the area of the

objective. Therefore,

G
ph

4 ¼ ð2pÞ2

s
2

pix

J

k0g

� �4

A
2
: (22)

For the m ¼ 5 term in Eq. 15,

where Dri[ ri(t2)� ri(t1). The term Æexpð�ik0riðt2Þ � DQacÞæ
reduces to a d-function, so we obtain

G
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where the subscript c on the rc# factors has been suppressed.
The ensemble average in Eq. 24 can be rewritten as

Æexpð�ik0Dri �QÞæ¼
Z

p½DriðtÞj0�

3expð�ik0Dri �QÞd3
Dri;

(25)

where p½DriðtÞj0� is the conditional probability of finding

a particle at position Dri at time t given that it was at the

origin (Dri ¼ 0) at t ¼ 0. The right side of Eq. 25 is the

Fourier transform of p½DriðtÞj0�,

Æexpð�ik0Dri �QÞæ¼ ð2pÞ3=2p̃ðQÞ; (26)

where p̃ðQÞis the Fourier transform of p½DriðtÞj0� into

Q-space.

We assume that the scattering centers are undergoing ran-

dom diffusivemotion. Taking the Fourier transform of the dif-

fusion equation @p
@t ¼ D=2 p from Dri-space to Q-space gives

@p̃
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¼�Dk

2

0Q
2
p̃; (27)

so that

p̃ðQÞ ¼ ð2pÞ�3=2
expð�DQ2k20tÞ (28)

and therefore, in combination with Eq. 26,
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Eq. 24 then becomes
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For the m ¼ 6 term in Eq. 15,
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Number of fluctuation factors

The total volume of the imaged sample is V and the total

number of scattering centers in that volume is N. The volume

‘‘imaged’’ by a single pixel is vpix. The number of particles

M(t) (assumed � N) and its expectation value in the volume

vpix can be written

MðtÞ ¼+
N

i

biðtÞ; (32)

ÆMæ¼ +
i

biðtÞ
� 

¼+
i

ÆbiðtÞæ¼NÆbiæ: (33)

The variance of M can be derived from Eqs. 32 and 33:

varM¼Nvarbi: (34)

The assumption that Æbiæ � 1 implies that M follows

a Poisson distribution so that var M ¼ ÆMæ. Therefore,

varbi ¼ ÆMæ=N¼ Æbiæ; (35)

and the temporal autocorrelation function for bi can be

written as

Æbiðt1Þbiðt11tÞæ¼ ðvarbiÞgnumðtÞ1 Æbiæ2

� ÆMæ
N

gnumðtÞ; (36)

where gnum(t) is a normalized number fluctuation autocor-

relation function such that g(0) ¼ 1 and g(N) ¼ 0.

We are now set to consider the terms Gnum
m that appear in

Eq. 15. Since them¼ 1,2,3 terms in Eq. 15 are forced to zero

by their phase fluctuation factors, we need consider only

Gnum
4;5;6. We make the approximations that N � M � 1.

For the m ¼ 4 term of Eq. 15,

G
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4 ¼ +
N

i 6¼k
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2
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N
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Æbiðt1Þæ Æbkðt11tÞæ¼ ðN2�NÞÆbiæ2 � ÆMæ2: (37)

For the m ¼ 5 term,

G
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5 ¼+
N

i 6¼j
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¼+
N

i 6¼j
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¼ ðN2�NÞÆbiðt1Þbiðt11tÞæ2 � ÆMæ2g2numðtÞ: (38)

For the m ¼ 6 term,

G
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6 ¼+
N
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Æb2i ðt1Þb
2
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N

i

Æbiðt1Þbiðt11tÞæ

¼NÆbiðt1Þbiðt11tÞæ� ÆMægnumðtÞ: (39)

The m¼ 6 term is smaller than the m¼ 4 and m¼ 5 terms

by a factor of 1/ÆMæ; therefore, it will be neglected. The

complete temporal autocorrelation function thereby becomes

GðtÞ ¼ ÆI æ2 11g
2

numðtÞ
1

A

Z
expð�DQ

2
k
2

0tÞd
2r#

� �2( )
;

(40)

where ÆIæ is the mean intensity observed at a pixel from the

ÆMæ scattering centers in its view:

ÆI æ¼ jE0j
ilL

� �2ð2pÞ
Spix

J

k0g

� �2

AÆMæ: (41)

To compare the result given in Eq. 40 with experimentally

obtained autocorrelations functions, we construct the

normalized temporal autocorrelation function:

gTðtÞ[
GðtÞ� ÆI æ2

ÆI æ2
: (42)

Combining Eqs. 40 and 42 shows that gT(t) monotonically

decays to zero:

gTðtÞ ¼ g
2

numðtÞ
1

A

Z
expð�DQ

2
k0tÞd2r#

� �2
: (43)

As t / 0, gT(t) / 1. Since gT(0) is the variance of the

intensity fluctuations (normalized to the square of the mean

intensity), gT(0) ¼ 1 means that phase fluctuations have

a standard deviation equal to the mean, regardless of the

concentration of scattering centers.

Characteristic times and distances

Fig. 2 a shows gT(t) (Eq. 43) plotted as a function of the

unitless time variable Dk20t, with the indicated integration

performed numerically for the particular case where the

objective numerical aperture (NA) equals 0.4 (as used in the

experimental setup described in the accompanying article).

The characteristic decay time Dk20tc, defined as the time

required for gT(t) to reach its e�1 value, is Dk20tc � 0:52 for

this particular numerical aperture. In that time, the mean

distance rc the particle travels laterally by three-dimensional

diffusion is

rc[ð4DtcÞ1=2 ¼ ð4 �0:52=k20Þ
1=2 ¼ 0:23l: (44)
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This characteristic distance is approximately a factor of 6

smaller than the resolution of the microscope, which

according to the Rayleigh criterion is rres ¼ 0.61l/NA ¼
1.5l for NA ¼ 0.4. This proves that dynamic light scattering

intensity fluctuations of significant amplitude do occur

among scattering centers within a resolution distance of

each other.

The actual characteristic time tc can be estimated for an

aqueous suspension of 200-nm-diameter polystyrene nano-

spheres as used in some of our experiments. Hydrodynamics

predicts D ¼ 2.2 3 10�8 cm2/s for such spheres. For l ¼
632.8 nm, the characteristic time of the temporal intensity

autocorrelation function would be tc ¼ 2.4 ms. The

experimental detection system must be able to observe these

fast timescale fluctuations.

Spatial autocorrelation of intensity

We define the spatial correlation region to be the spatial

extent of the intensity fluctuations at the image plane. It is

measured as the characteristic distance of the spatial

autocorrelation function and determines the maximum pixel

size allowable for measuring the temporal behavior of the

intensity fluctuations. For example, if a pixel is larger than

several characteristic spatial correlation regions, then the

relative size of the observed fluctuations will be greatly

reduced, compromising the signal/noise ratio. Ideally, a pixel

should cover less than one spatial correlation region.

We start the calculation of the spatial autocorrelation

function in a manner similar to the temporal autocorrelation

function (Eq. 14) except here using the intensities at two

different positions r$1,2, recorded at the same time. (Because

of the similarity of the mathematical procedures, we will skip

most of the details here.) We count only those scattering

centers that are actually present in the illuminated region at one

snapshotof time, so all thebi(t) factors canbe set equal tounity.

GSðDr$Þ ¼
jE0j
ilL

� �4

+
N

i;j;k;l

Z
expð�ik0riðt1Þ �QaÞ

*

3expðik0rjðt1Þ �QbÞexpðik0rkðt1Þ �QcÞ

3expð�ik0rlðt1Þ �QdÞ
+
exp

�ik0r#a � r$1
L

� �

3exp
ik0r#b � r$1

L

� �
exp

ik0r#c � r$2
L

� �

3exp
�ik0r#d � r$2

L

� �
d
2r#a d

2r#b d
2r#c d

2r#d: (45)

As in the calculation for the temporal autocorrelation

function, the spatial autocorrelation function terms corre-

sponding to m ¼ 1,2,3 (see Table 1 after Eq. 15) produce

zero values and the m¼ 4,5,6 terms produce nonzero values.

In the these latter terms, an integral appears which can be

related to a first-order Bessel function,

Z
exp

�ik0r# �Dr$
L

� �
d
2r#¼ 2J1ðmÞ

m
; (46)

where Dr$ [ r$2–r$1 and m[ ðk0r#oDr$=LÞ and r#o is the

radius of the objective.

The final form of the spatial autocorrelation function

becomes

GSðDr$Þ ¼ ÆI æ2 11
2J1ðmÞ

m

� �2
" #(

1 ÆMæ�1 2J1ðmÞ
m

� �4

� 2J1ðmÞ
m

� �2

�1

" #)
: (47)

For large ÆMæ, the ÆMæ�1 term is small and is not included

in further calculations. The leading term of the spatial

autocorrelation function has the same distance dependence

as the point spread function of the microscope objective at

the image plane (an Airy disk). In analogy with Eq. 42,

a normalized form of GSðDr$Þ can be written as

gSðDr$Þ ¼
GSðDr$Þ� ÆIðr$Þæ2

ÆIðr$Þæ2
: (48)

The characteristic spatial correlation distance is qualitatively

the average distance in the image plane from constructive to

FIGURE 2 Theoretical temporal autocorrelation function of the scattered

light intensity versus unitless time parameter Dk20t; as calculated from Eq.

43. Three curves are plotted. (a) The black dashed line curve is obtained

from a numerical integration of Eq. 43 for a 0.4-NA objective. (b) The black

solid curve is a single exponential decay, fit to the points obtained from the

numerical integration. (c) The shaded dashed line is the pure exponential

decay obtained from the zero aperture limit.
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destructive interference (Jakeman et al., 1970; Cantrell and

Fields, 1973). It can be defined quantitatively as the distance

lc in r$-space corresponding to m ¼ 1. Parameter m (defined

after Eq. 46) can be rewritten in terms of the numerical

aperture (NA) and magnification (mag) of the objective (in

the low aperture, air immersion case) as

m¼ 2p

l

� �
NA

mag

� �
Dr$: (49)

Thus the spatial correlation distance lc is

lc ¼Dr$c ¼
l

2p

� �
mag

NA


 �
: (50)

Variance of intensity fluctuations: mobile fraction

We define the mobile fraction b to be the ratio of the

scattered intensity from the mobile scattering centers ÆIæmob

to the total scattering intensity ÆIæ in the collection volume of

each pixel,

b¼ ÆI æmob

ÆI æ ; (51)

where

ÆI æ¼ ÆI æmob1 ÆI æfix; (52)

and ÆIæfix arises from fixed scattering centers (such as the

sample substrate). The mobile fraction b can be estimated

from the variance of the intensity fluctuations, which is the

difference between the extrapolated values of the temporal

autocorrelation function values at t ¼ 0 and at t ¼ N.

Combining the definition of G in Eq. 13 with Eq. 52, we

get

GðtÞ ¼ ÆImobðtÞImobðt1tÞæ1 ÆImobðtÞI fixðt1tÞæ
1 ÆI fixðtÞImobðt1tÞæ1 ÆI fixðtÞI fixðt1tÞæ:

(53)

The first term in the above equation can be reduced to

ÆI æ2mob1gðtÞÆI æ2mob where g(0) ¼ 1 and g(N) ¼ 0. The next

two terms are each ÆIæmob ÆIæfix and the last term is

ÆI 2æfix ¼ ÆI æ2fix since the scattering due to the immobile

intensity does not fluctuate. Therefore,

Gð0Þ ¼ 2ÆI æ2mob12ÆI æmobÆI æfix1 ÆI æ2fix (54)

and

GðNÞ ¼ ÆI æ2mob12ÆI æmobÆI æfix1 ÆI æ2fix ¼ ÆI æ2; (55)

and therefore

b
2 ¼ ÆI æ2mob

ÆI æ2
¼ Gð0Þ�GðNÞ

GðNÞ : (56)

DISCUSSION

We have presented a theoretical basis for measuring the rates

of small relative motions among nearby scattering centers in

a microscope by use of dynamic light scattering. These

relative motions appear as intensity fluctuations due to

relative variations in electric field phase, and are large

enough to be detected in the image plane. Relative motions

of scattering centers even closer than the optical resolution

can still produce substantial intensity fluctuations. Therefore,

the technique should be adaptable to spatial mapping without

sacrificing optical resolution, as described in the accompa-

nying article (Dzakpasu and Axelrod, 2004).

The theory also predicts the spatial scale of the intensity

fluctuations. To measure the fluctuations, a detector pixel

must not view more than one spatial correlation distance, and

this requirement thereby guides the selection of pixel size in

a detector.

There are two standard methods of detection for dynamic

light scattering: homodyning and heterodyning (Cummins

et al., 1969). In the homodyne method, scattered light

emanating only from the mobile scattering centers impinges

upon the detector whereas in the heterodyne method, light

from the source is mixed at the detector with scattered light

from the sample. For the same diffusion coefficient in the

sample, the heterodyne intensity fluctuation decay rate is

only half that of the homodyne rate, since the heterodyne

method involves the beating of mobile scattering centers

against a static background. The theory described here is

a pure homodyne theory. But in fact, the detector invariably

receives a large contribution to the scattered light intensity

from static components, e.g., collection optics and glass

coverslips. This would imply that the calculated diffusion

coefficients (as derived from homodyne theory) may

underestimate the true diffusion coefficient by up to a factor

of 2, depending on the amount of static scattered light from

static centers interfering with that from mobile sources. A

real sample may contain a continuous range of mobilities

from static to highly mobile, which further complicates the

interpretation of decay rates.

The theory implies that certain extreme cases could show

interesting number fluctuation effects. If the number

fluctuations occur on a faster timescale than the phase

fluctuations, there would be an appreciable decay of the

autocorrelation function before a phase fluctuation occurs.

Thus, phase fluctuations can be detected only if they occur

on a faster timescale than the number fluctuations. In the

limit of one scattering center, the intensity autocorrelation

function arises entirely from number fluctuations and will

not contain a contribution due to phase fluctuations.
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