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ABSTRACT A frequently used measure for the extent of cooperativity in ligand binding by an allosteric protein is the Hill
coefficient, obtained by fitting data of initial reaction velocity (or fractional binding saturation) as a function of substrate
concentration to the Hill equation. Here, it is demonstrated that the simple two-state Boltzmann equation that is widely used to fit
voltage-activation data of voltage-dependent ion channels is analogous to the Hill equation. A general empiric definition for a Hill
coefficient (nH) for channel gating transitions that is analogous to the logarithmic potential sensitivity function of Almers is
derived. This definition provides a novel framework for interpreting the meaning of the Hill coefficient. In considering three
particular and simple gating schemes for a voltage-activated cation channel, the relation of the Hill coefficient to the magnitude
and nature of cooperative interactions along the reaction coordinate of channel gating is demonstrated. A possible functional
explanation for the low value of the Hill coefficient for gating transitions of the Shaker voltage-activated K1 channel is
suggested. The analogy between the Hill coefficients for ligand binding and for channel gating transitions further points to a
unified conceptual framework in analyzing enzymes and channels behavior.

INTRODUCTION

Voltage-activated Na1, K1, and Ca21 channels are multi-

subunits/protomers allosteric proteins that undergo voltage-

induced conformational transitions between closed and open

states (Almers, 1978; Sigworth, 1994; Yellen, 1998;

Bezanilla, 2000). The voltage sensitivity of these channels

arises from voltage-induced displacement of charges across

the membrane electric field, a phenomenon first noted by

Hodgkin and Huxley (1952). These voltage-sensing charges

were later found to be alternating basic amino acids that are

uniquely arranged at the S4 transmembrane helix, a motif

common to all voltage-activated cation channels (Noda et al.,

1984; Stuhmer et al., 1989; Papazian et al., 1991; Liman

et al., 1991). In the Shaker voltage-dependent K1 channel,

for example, the gating charge corresponds to nearly 12–14

electron charge units traversing the membrane electric field

(Schoppa et al., 1992; Seoh et al., 1996; Aggarwal and

MacKinnon, 1996). Similar number of gating charges move

across the membrane electric field when skeletal muscle Na1

channels are opened (Hirschberg et al., 1995). Additional

contributions to the voltage sensitivity of these channels may

arise, however, from cooperative interactions along the

activation pathways of such channels (Papazian et al., 1991;

McCormack et al., 1991; Schoppa et al., 1992; Tytgat and

Hess, 1992; Zagotta et al., 1994; Smith-Maxwell et al.,

1998a). Such interactions give rise to cooperativity in

channel gating transitions. In the following, cooperativity

in channel function is interpreted in a simple, intuitive, and

traditional way. We ask how the switch of one subunit from

the closed to the open state affects the gating transitions of its

neighboring subunits (may be more than one transition for

each subunit). In other words, considering cooperativity in

channel gating addresses the coupling between the channel’s

subunits. The extreme case is the two-state model in which

all four subunits of the channel switch in a concerted

manner—all at once—from the closed to the open state.

Alternatively, subunits switching from closed to the open

state may occur in an independent fashion, in which channel

subunits do not ‘‘sense’’ the conformational state(s) of their

adjacent subunits. Cooperative interactions along the re-

action coordinate of channel gating may originate from

intersubunit interactions in sequential KNF-type (Koshland

et al., 1966) transitions of the channel, from MWC-type

(Monod et al., 1965) concerted transition(s) along the

channel activation pathway or from combination of both

(for detailed discussion, see Sigworth, 1994; Zagotta et al.,

1994). An estimate of the magnitude of these interactions is

the effective gating charge (Z), obtained by fitting the

voltage-activation data of a channel to a two-state Boltzmann

equation, derived assuming equilibrium of the channel

between the closed and open states. As already pointed

out, the essence of Z is intuitively reminiscent of the Hill

coefficient used to describe the magnitude of cooperativity in

ligand binding allosteric systems (Almers, 1978; Islas and

Sigworth, 1999).

In what follows, is a rigorous demonstration that the two-

state voltage-dependent Boltzmann equation is analogous to

the original Hill equation. A framework to understand the

meaning of the Hill coefficient for channel gating transitions

is suggested. Using three particular and simple gating

schemes for channel activation, the relation of nH to the

magnitude and nature of cooperativity in channel gating

transitions is demonstrated.
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RESULTS AND DISCUSSION

Hill coefficient (nH) for assessing cooperativity
in channel gating transitions

Gating transitions of voltage-activated cation channels are

usually studied by measuring voltage-activation relations of

the channel. In such measurements, the transition of the

channel from the closed to the opened state(s) is induced by

changes in the membrane voltage and the elicited ionic

currents resulting from ions flow through the open channels

are recorded. The probability of the channel to be open and

its dependence on voltage is then inferred by plotting the

normalized tail current amplitude as a function of voltage

(G–V curve). Whereas the total gating charge per channel

may be determined by measuring the slope of the G–V curve

at very low open probabilities (Almers, 1978), the magnitude

of cooperative interactions along the channel activation

pathway may be assessed by the slope of such a relation at

moderate-range open probabilities (Smith-Maxwell et al.,

1998b). An estimate for the slope of the G–V curve at these

latter values is frequently obtained by fitting activation data

to a Boltzmann equation, derived assuming a simple two-

state model for channel activation. According to this model,

the equilibrium between the closed (C) and open (O) states of
the channel is voltage-dependent (K(V)) and is given by

KðVÞ ¼ O

C
¼ Ke

ZTFV

RT ; (1)

where K is the chemical equilibrium constant for channel

gating in the absence of voltage (at 0 mV), ZT is the total

gating charge of the channel that moves across the membrane

electrical field upon depolarization, and all the other

constants have their usual thermodynamic meaning. This

equation can be transformed into a different form as

log
P

1� P
¼ logK1 nH

ZUF

RT
V; (2)

where P is the probability of the channel being open (P¼ (O/
(O1C))), nH is the number of channel subunits (or pro-

tomers), and ZU is the unitary gating charge associated with

one subunit (ZT ¼ nH ZU). Written in this form, it is worth

noting the similarity of the equation to the Hill equation that

is extensively used to estimate the magnitude of cooperativity

in multisubunits’ allosteric enzymes (Hill, 1910),

log
�YY

1� �YY
¼ logK1 nH log S; (3)

where �YY; the fractional binding saturation function, is the

fraction of sites occupied with the substrate (S), nH is the Hill

coefficient, and K is the apparent binding constant of the

substrate to the enzyme. This equation was derived assum-

ing an infinitely cooperative case, i.e., where n substrate

molecules bind simultaneously to the enzyme. In practice,

however, by fitting experimental binding data with the Hill

equation, a value between 1 and the total number of binding

sites (n) is frequently observed for nH. nH, therefore, is an
index of cooperativity in ligand binding. Whereas nH ¼ n
reflects cooperative and concerted ligand binding to the

enzyme, nH ¼ 1 reflects noncooperative (independent)

sequential binding. Although the last statement is true in

the case of many allosteric enzymes, the relation of nH to

cooperativity in ligand binding is not always correct, as nH
depends on the specific details of the ligation reaction (see

below).

The analogy between the Hill equation and the Hill form

of the Boltzmann equation is not surprising, bearing in mind

the underlying assumption of the Boltzmann equation of one

concerted transition of all channel subunits (or protomers)

from the closed to open state. The similarity between the two

equations is not just in structure but also in essence;

conformational transitions within a protein may be driven by

changes in chemical potential (logS, in the case of ligand-

binding systems) or by changes in electrical potential (ZUFV/
RT, in the case of voltage-gated ion channels). Given that the
unitary gating charge of the channel is known, fitting channel

activation data to the Hill form of the Boltzmann equation

may yield a value for the Hill coefficient for channel gating

transitions. In a simple way, this allows for comparison of

the magnitude of steady-state cooperativity in channel gating

transitions between different subtypes of the same channel or

between different cation channels, irrespective of differences

in the nominal gating charge of the channels. Hill coefficient

values for gating transitions of ion channels may be also

compared to those derived for other allosteric enzymes like

hemoglobin, aspartate transcarbamylase and the GroEL

chaperonin. It should be stressed, however, that although it

is a common practice to compare Hill values of different

proteins, such comparisons, as will be evident later on, are

more informative when comparing channels that gate

according to similar activation mechanisms. Fitting the

Shaker K1 channel activation data to the Hill form of the

Boltzmann equation (assuming a unitary gating charge of 3)

yields a value slightly above 1 for the Hill coefficient (data

not shown) (Yifrach and Mackinnon, 2002). Taking into

account the tetrameric organization of K1 channels (MacK-

innon, 1991), this low nH value obtained for the Shaker K1

channel may reflect the fact that the activation pathway of

this channel involves many independent subunit transitions

(Zagotta et al., 1994; Schoppa and Sigworth, 1998). A

possible functional explanation for this low Hill value for the

Shaker K1 channel will be discussed later.

nH depends on the Adair-like model parameters

The form of the Hill equation for channel gating transitions

(Eq. 2) is based on the assumption that no intermediate states

exist along the channel gating reaction, or in other words,
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that all four channel’s subunits switch at once from the

closed to fully open state. This, of course, is far from

reality for almost all channels studied thus far. Gating

reactions of ion channels are much more complicated than

predicted by a two-state scheme, requiring many closed

and (sometimes) open states (Sigworth, 1994; Zagotta et al.,

1994; Bezanilla, 2000). For a channel that gates according

to a multistates activation scheme, how reliable is it then to

estimate the magnitude of cooperativity in gating tran-

sitions using a two-state Hill equation? A similar

reservation was made by Adair with respect to the use

of the Hill equation to assess the extent of cooperativity

in oxygen binding to hemoglobin (Adair et al., 1925).

It should be stressed, however, that plotting a channel’s

open-probability data according to the Hill form of the

Boltzmann equation is a legitimate procedure. It is instead

the interpretation of the Hill coefficient that requires

detailed analysis. Accordingly, and in analogy to ligand

binding allosteric systems (Levitzki, 1978), expressions for

nH that depend on the Adair-like constants for particular

channel gating schemes can be derived. This allows more

precise understanding of the meaning of the Hill co-

efficient.

A general definition for a Hill coefficient for gating

transitions may be derived from Eq. 2 as follows:

nHðVÞ ¼
RT

ZUF

@ logðP=ð1� PÞÞ
@V

¼ RT

ZUF

@P=@V

Pð1� PÞ: (4)

This definition of nH(V) is analogous to the logarithmic

potential sensitivity function of Almers (1978; see Eq. 32

therein), derived for the general case of sequential transitions

along a channel’s activation pathway. The analogy is in-

teresting when considered from historical perspective. In

Almers’ original derivation, the total channel gating charge

(qT) was multiplied by a fractional number that is dependent

on the number and nature of intermediate states along the

gating reaction (Almers, 1978). This number is, in any sense,

a scaled Hill-like number. Only several years later, upon

cloning of the first voltage-activated channels, was the

tetrameric organization of these channels realized (Noda

et al., 1984; Tanabe et al., 1987; MacKinnon, 1991). This

fact, combined with more accurate determination of the total

gating charge per channel (Schoppa et al., 1992; Seoh et al.,

1996; Aggarwal and MacKinnon, 1996), allowed, by

inference, determination of the unitary gating charge per

subunit (ZU). Incorporating ZU in Eq. 2 gives nH its common

traditional view, i.e., number of subunits/protomers (nor-

mally, 1 # nH # n).
The general definition of the Hill equation given here (Eq.

4) is also reminiscent of the equation derived by Sigg and

Bezanilla describing the dependence of the mean activation

charge, ÆqAæ (the actual gating charge that is energetically

coupled to channel opening), on gating charge displacement

(Sigg and Bezanilla, 1997). In that study, the following

expression for ÆqAæ was derived following a detailed and

thorough statistical mechanics analysis,

ÆqAæ ¼
RT

F

@ lnP

@V
¼ ZT � ðÆZæ1 ÆZlæÞ; (5)

where ÆZæ and ÆZlæ are the equilibrium gating charge dis-

placement and the latent gating charge (the effective charge

movement during transitions among open states), respectively.

It can be easily seen that Eqs. 4 and 5 may be combined to

yield the following expression for nH,

nHðVÞ ¼
ZT

ZU

ð1� ÆZæ1 ÆZlæ
ZT

Þ

ð1� PÞ ; (6)

which can be reduced to the following expression for a

channel for which ÆZlæ ¼ 0,

nHðVÞ ¼
ZT

ZU

ð1� QðVÞÞ
ð1� PðVÞÞ; (7)

where Q(V) and P(V) are equivalent to the normalized,

experimentally determined open probability and charge

movement curves, respectively. Equations 5–7, in the

context of the Hill analysis developed here, highlight the

importance of performing gating currents measurements

(Q(V) curves) to gain mechanistic insight regarding the

voltage sensitivity of ion channels (Seoh et al., 1996; Sigg

and Bezanilla, 1997; Islas and Sigworth, 1999). The

magnitude and direction of displacement of the Q(V) curve
along the voltage axis with respect to the P(V) curve can be

compared. In the simplest case, the two curves will coincide

in the case of two-state gating model for which nH ¼ ZT/ZU
for the entire voltage range. For the Shaker voltage-gated

K1 channel that gates according to an activation pathway

involving many closed states and one open state (Zagotta

et al., 1994; Schoppa and Sigworth, 1998), the Q(V) curve
is shifted to the left along the voltage axis with respect to

the P(V) curve. This observation combined with results

demonstrating that the latent gating charge for this channel

is very low (Islas and Sigworth, 1999) may explain the low

value of nH obtained at moderate-range open probabili-

ties for which (1–Q(V))/(1–P(V)) is always smaller

than 1. For this case, nH will equal n, the total number of

channel subunits, only at an Almers’ range of very low open

probabilities achieved at extremely negative voltages. For the

general case, analysis using Eq. 5 above (or Eq. 6 within the

context of the present analysis) may yield additional insight

into the meaning of nH (Sigg and Bezanilla, 1997).

The definition for the Hill coefficient for channel gating

transitions (Eq. 4) makes intuitive sense—nH is a scaled

slope of an open probability function (@P/@V) relative to the

slope of a reference open probability function (ZF/RT)(P(1–
P)), derived for a gating scheme that assumes independent
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subunit transitions. It can be shown that for an independent

gating scheme of the sort CC) j j j j/2KðVÞ CO) j j j j/1=2KðVÞ OO

the slope of the open probability function with respect to

voltage (@P/@V) is equal to the scaled multiplication of the

probabilities of the channel to be closed and to be opened

(P(1–P)(ZF/RT)). For the scheme above, C and O are the

respective subunit conformations in the closed and open

states and K(V) is the equilibrium constant for subunit

transitions. It is also assumed that both the CO and OO states

are conductive. Thus, a Hill coefficient value of 1 will be

obtained for nH if the slope of the open probability function

(@P/@V) is equal to that of the independent, noncooperative

case. Deviations of the Hill value from 1 may indicate the

existence of cooperativity in channel gating transitions—a

reflection of coupling between the channel’s subunits. Using

this empirical definition of cooperativity in channel gating

transitions, one may derive explicit expressions for nH for

different channel gating schemes (different P schemes).

nH for a KNF-type gating model

Consider, for example, the following simple gating scheme

for a homodimeric channel undergoing two sequential KNF-

type subunit (or protomer) transitions (Koshland et al.,

1966), as shown in Fig. 1 A. In this gating scheme, it is

assumed that the channel is open only when both subunits

are in the open state (O state). Using the principle of

microscopic reversibility and Boltzmann-type transitions for

channel subunits/protomers (Eq. 1), one can derive expres-

sions for P, 1–P, and @P/@V for this gating scheme and

substitute them into Eq. 4 to obtain the expression for nH,

nHðVÞ ¼
21 2KAe

ZUF

RT V

11 2KAe
ZUF

RT V
: (8)

It may be seen that a Hill coefficient of 2 (or a total gating

charge of 2 ZU) is obtained at infinite negative voltages, as

predicted by the limiting probability theorem (Almers, 1978).

Usually, however, gating isothermsofvoltage-activated chan-

nels are parameterized based on the voltage midpoint of the

gating transition (V1/2) where P¼ 1/2 and on the slope of the

gating isotherm around this midpoint (Z). The Hill coefficient
at an open probability of half (nH (V ¼ V1/2)) may be derived

for such a gating model by combining Eq. 8 with a limiting

condition derived from P ¼ 1/2 to yield the expression

nHðV ¼V1=2Þ ¼
1

11
2

ðKB=KAÞ
ð11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðKB=KAÞ

p
Þ
11; (9)

where KA and KB are the equilibrium constants for the first

and second subunit transitions in the absence of voltage (at

0 mV), respectively. It may be seen that, for a channel that

gates according to the KNF model, nH (V ¼ V1/2) depends

only on the Adair-like KA and KB model parameters. The

quantity KB/KA reflects how much the second transition of

the channel is facilitated (or inhibited) by the first one and is

an intuitive measure of the magnitude of cooperativity in

channel gating transitions. In the context of the sequential

gating model discussed here, this quantity is directly related

to the magnitude of intersubunit interactions (Fig. 1 B).
Examining Eq. 9 at the extreme cases yields a logical

outcome: At the limits where KB/KA is very high, a Hill

coefficient of 2 (the total number of subunits or protomers in

our model) is obtained, reflecting a complete and concerted

gating charge movement. In the case of negative coupling

between subunits (or protomers), i.e., where KB/KA ap-

proaches zero, a value of 1 is obtained for nH. It is interesting
to note that an nH value of 1.17 is obtained by substituting

KA ¼ KB in Eq. 9. This outcome addresses the common

misconception that Hill coefficient values greater than one

are always indicative of positive cooperativity along the

FIGURE 1 TheKNF allostericmodel applied to voltage-dependent gating.

(A) Scheme of the different states considered by the KNF model. A

homodimeric channel undergoes two sequential voltage-dependent subunit

transitions from the closed (square) to open (circle) states. KA(V) and KB(V)

are the equilibrium constants for the first and second transitions, respectively,

and display voltage dependence of the form Ki(V)¼ Ki exp(ZiFV/RT), where

Ki is the chemical equilibrium constant for the corresponding transitions at

0 mV (i ¼ A, B), Zi (111) is the gating charge associated with subunit

transition from the closed to open states (it is assumed to be equal for both

transitions, ZA¼ ZB¼ Z), F is Faraday constant, and all other constants have

their usual thermodynamic meaning. For this gating scheme, the open

probability function is given by PKNF
O ¼ ðKAKB expð2ZFV=RTÞÞ=

ð1 1 2KA expðZFV=RTÞ 1 KAKB expð2ZFV=RTÞÞ: (B) Double-mutant

cycle representation of the KNF model, above (A). The ‘‘mutation’’ in this

cycle is a transition of a subunit from the closed to the open conformation.

Cooperativity arises when the free energy associated with this ‘‘mutation’’

depends on the conformational state of the adjacent subunit. Such co-

operativity is a function of themagnitude of intersubunit interactions between

the monomers in the different conformations and is manifested by KB/KA.
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reaction pathway (ligand binding or gating). Here, in this

particular case, an apparent positive cooperativity is detected

for nH (nH .1), despite the fact that channel subunits switch

from closed to open states in an independent manner. This

outcome originates from the fact that the C2 state is

a nonconductive state (see below). This specific outcome

underscores the need for a detailed analysis, by means of

Eq. 4, to truly capture the meaning of the Hill coefficient.

The outcome arrived at here, i.e., that only nH values

between 1 and n may be obtained for a channel that gates

according to the classical KNFmodel, further strengthens the

analogy between the two Hill equations. It is also points to

the generality of the empiric Hill coefficient definition, as

given in Eq. 4. This outcome further argues against the strict

association of negative cooperativity between protein

subunits with Hill values ,1. Here, in this particular gating

scheme, negative coupling between channel subunits (KB/KA

� 1) results in a Hill value of 1. This is in contrast with the

results of a similar analysis conducted for the same gating

scheme, this time assuming a subconductance state for the

channel (C2 state in the scheme of Fig. 1 A for which one

subunit is in a permissive open state whereas the second is

not). In this case, the following expression for nH is obtained,

nHðV ¼V1=2Þ ¼
2

ð11 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KB=KA

p Þ
: (10)

It may be seen that for such a case, a Hill coefficient of 1 is

obtained for KA ¼ KB (independent subunit transitions) and

that Hill values smaller than 1 can be obtained for low KB/KA

values, reflecting negative cooperativity between channel

subunits (or protomers). TheHill analysis applied to these two

slight variations on the KNF-type gating model demonstrates

that the meaning of the Hill coefficient is context-dependent

and, therefore, to capture its true essence a detailed analysis of

the channel’s gating scheme, using Eq. 4 above, is needed.

The dependences of both nH at half-activation and V1/2

on the Adair-like model parameters, as well as the relation

between these two quantities, can be better realized by

graphing the three-dimensional surfaces of nH and V1/2 as

a function of both KA and KB, using identical scales

(Fig. 2). The main diagonal trajectory in both surfaces,

where KA ¼ KB, separates the two domains of negative

and positive coupling between channel subunits. Upon

comparison of nH and V1/2 surfaces, it may be seen that the

simple sequential KNF-type gating scheme (Fig. 1 A)
permits different relations between nH and V1/2. For

example, increasing KB alone along the outlined trajectory

in Fig. 2 (such as might be achieved upon mutations, for ex-

ample), would shift the midpoint activation voltage (V1/2)

to more negative potentials (the activation curve is shifted

to the left along the voltage axis open-state stabilization

effect) and would increase the slope of the activation curve

(i.e., nH increases). Other relations between nH and V1/2 are

expected for different trajectories crossing these surfaces

(see Fig. 2 legend for further discussion).

nH for a MWC-type gating model

The above definition for the Hill equation for channel gating

transitions (Eq. 4) may not be solely restricted to sequential

gating schemes. Consider next a dimeric channel which

gates according to the classical MWC allosteric model

(Monod et al., 1965), described in Fig. 3 A. In this scheme,

sequential and independent voltage-dependent transitions,

probably reflecting charge movements transitions between

closed states and between open states (KC(V) and KO(V),
respectively), are separated by voltage-independent pore

opening transitions (L). We assume, for simplicity, that

a similar gating charge moves through both closed and open

transitions and that the open probability function for this

scheme is given by Po ¼ (O1 1 O2 1 O3)/(C1 1 C2 1 C31

O1 1 O2 1 O3). Using the Hill definition outlined in Eq. 4,

the following expression is thus obtained for nH(V)

FIGURE 2 Three-dimensional surfaces of nH (V ¼
V1/2) and V1/2 as a function of both KA and KB using

identical scales. The graph for nH was plotted based on

Eq. 9 and that of V1/2 according to the equation

V1=2 ¼ ðRT=ZFÞlnðð11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðKB=KA

p
ÞÞ=KBÞ; derived

using the condition of half-activation (PO ¼ 1/2).

Unitary gating charge of 3 was assumed for Z. The

main diagonal trajectory where KA ¼ KB separates

positive ((KB/KA) . 1) and negative ((KB/KA) , 1)

coupling domains to the right and left of this diagonal,

respectively. Three extreme scenarios may be envis-

aged: 1), along the main diagonal trajectory; increasing

KA and KB upon mutations, for example, would shift

the midpoint activation voltage to the left to more

negative voltages; however, nH would not change. 2),

The trajectory in bold corresponds to a case in which

increasing KB only would result in a shift of the midpoint activation voltage to the left in parallel with steeper nH slopes. 3), Opposite dependence is observed

between nH and V1/2 for a case in which only KA is changed upon mutations.
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nHðVÞ ¼
2e

ZUF

RT VðKO�KCÞ
ð11KOe

ZUF

RT VÞð11KCe
ZUF

RT VÞ
; (11)

where KO and KC are the equilibrium constants for charge

movements in the open and closed states in the absence of

voltage (i.e., at 0 mV), respectively. Inspection of Eq. 11

reveals the following points: First, the scaled Hill slope for

such a gating scheme can be either positive or negative,

depending on the relative magnitudes of KC and KO.

Negative slopes reflect the fact that the probability of the

channel to be open is decreased upon membrane de-

polarization when KC . KO. Second, a Hill slope of zero

is obtained at both extreme positive or negative voltages,

suggesting a bell-shaped dependence of nH(V) on voltage.

Plots of nH as a function of voltage for different ratios of KC/

KO values (given as c, analogous to the binding affinity ratio

c of the substrate to the tense (T) and relaxed (R) states of an
allosteric enzyme (Monod et al., 1965)) are shown in Fig. 3 B.
The extreme points of nH(V) at any given c can be obtained

by taking the partial derivative of Eq. 11 with respect to

voltage (@nH(V)/@V). This yields the following expression

for nmax
H ; the maximal scaled slope of the MWC open

probability function obtained at Vmax, the activation voltage

at this maximal slope:

nmax

H ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KO=KC

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KC=KO

p

ð11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KC=KO

p
Þð11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KO=KC

p
Þ

¼ 2
ð1= ffiffiffi

c
p � ffiffiffi

c
p Þ

ð11 ffiffiffi
c

p Þð111=
ffiffiffi
c

p Þ: (12)

It can be seen that nmax
H depends on the ratio of equilibrium

constants for charge movement transitions in the closed and

open states and not on the allosteric equilibrium constant L
(Karlin, 1967). A Hill value of 2 is obtained for very low

values of c (KO� KC), whereas a value of�2 is obtained for

high c-values (KO � KC). Thus, for a channel that gates

according to the classical MWC scheme (Fig. 3 A), nmax
H

reflects the magnitude of cooperativity in channel opening

transitions which is solely determined by c. It follows from
the above analysis that the maximal slope of the open

probability function does not necessarily coincide with the

slope at the midpoint of activation (nH (V ¼ V1/2)). The

direction and magnitude of the departure of nmax
H from nH (V

¼ V1/2) depends on the relative values of L and c. The
expression for nH (V ¼ V1/2) may be obtained by combining

Eq. 11 with the limiting condition derived from P ¼ 1/2 to

yield

nHðV ¼V1=2Þ ¼
2ð

ffiffiffi
L

p
�1Þ
ffiffiffi
L

p ð1�
ffiffiffi
L

p
KC=KOÞ

1�KC=KO

¼ 2ð
ffiffiffi
L

p
�1Þ
ffiffiffi
L

p ð1� c
ffiffiffi
L

p
Þ

1� c
: (13)

Here, nH (V ¼ V1/2) depends on both L and c allosteric

parameters of the MWC gating scheme. It can be shown that

for any given L, nmax
H is always greater than nH at half-

activation and that nH (V ¼ V1/2) will equal n
max
H only at the

limits where the allosteric constant L is very high and the

ratio of charge movement equilibrium constants in the closed

and open states, c, is extremely low, in which case a Hill

coefficient of 2 is obtained. For the MWC gating scheme

analyzed here, nmax
H rather than nH (V ¼ V1/2) is a more

natural parameter of homotropic interactions, since the

FIGURE 3 MWC-type allosteric model applied to voltage-dependent

gating. (A) Scheme for the different channel states considered by the MWC

model. According to this model, voltage-induced charge movement

transitions between closed and between open states (horizontal transitions,

KC(V) and KO(V) transitions, respectively) are separated by concerted

voltage-independent subunit conformational changes (vertical transitions,

L (¼ [C1]/[O1]) transition). KC(V) and KO(V) display Boltzmann-type

voltage dependence as specified in Fig. 1 legend. For this MWC gating

scheme the open probability function is given by PMWC
O ¼

ðð11KO expðZFV=RTÞÞ2Þ = ðð1 1 KOexpðZFV=RTÞÞ21L ð1 1 KC exp

ðZFV=RTÞÞ2Þ: It is assumed that identical gating charge Z moves across

the membrane electric field in transitions between closed and between open

states. (B) Dependence of nH on voltage at different values of c (¼ KC/KO).

Graphs were generated according to Eq. 11 with different c-values ranging

from 0.0001 to 10,000 in 10-fold increments and assuming a unitary Z of 3.
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former is a measure of the maximum degree of cooperativity

under specific conditions (Rubin and Changeux, 1966). The

dependences of nmax
H and Vmax on c are compared in Fig. 4.

The symmetry of the graph around KO ¼ KC reflects the

symmetric nature of the MWC gating scheme. It may be seen

that for c-values indicating open state stabilization, i.e., c, 1

(KO . KC), n
max
H is increased, whereas the voltage at this

maximal slope is shifted to more negative voltages.

It is interesting to note that the MWC gating scheme

permits Hill values smaller than 1. Hill values ,1 are often

interpreted as a reflection of negative cooperativity between

subunits or protomers. This outcome is in sharp contrast to

similar Hill analysis performed with allosteric enzymes in

which negative cooperativity in substrate binding could only

be explained by a KNF-type model, whereas both the KNF-

type and MWC-type models can account for positive

cooperativity (Levitzki, 1978).

Combined MWC and KNF gating model

Sequential KNF-type or concerted MWC-type gating

schemes were previously employed to analyze K1 and

Na1 channels activation data. Alternative gating schemes,

in which sequential but independent transitions at

voltage-sensing domains (K(V) transitions between

closed states) are followed by a concerted voltage-in-

dependent late pore opening transition (L), are, however,
often considered (Sigworth, 1994; Zagotta et al., 1994).

The simplest version of such a gating scheme is

C1) j j j/2KðVÞ C2) j j/1=2KðVÞ C3) j j/L O (Scheme 3). Assuming

that only the end state is conductive, the above analysis can

be applied to show that, for high L-values, one obtains the

expression for nH at half-activation of

nHðV ¼ V1=2Þ ¼
2

11
1
ffiffiffi
L

p
: (14)

It may be seen that nH depends only on the allosteric constant

L.As for the other gating schemes analyzed, at the limit where

L is very large (i.e., cases of extreme positive cooperativity),

a Hill coefficient of 2 is obtained, reflecting concerted

movement of the total channel gating charge. Interestingly, it

can be noted that Eq. 14 is analogous to Eq. 10 above.

The approach presented here, for analyzing cooperativity

in channel gating transitions using the empiric Hill co-

efficient definition (Eq. 4), is general and may be applied to

other more realistic or more complicated gating schemes.

Such analysis would yield, as demonstrated for the three

simple gating schemes considered here, a dependence of the

magnitude of cooperativity in gating transitions (nH) on the

equilibrium constants of the specific gating scheme dis-

cussed. Such analysis could provide mechanistic insight to

account for experimental observations that may complement

insight gained from gating currents measurements (Sigg and

Bezanilla, 1997; Islas and Sigworth, 1999).

Cooperativity in gating transitions of
voltage-dependent potassium channels

The theoretical range of values of nH for a protein with n
subunits exhibiting positive cooperativity is 1, nH # n. For
many allosteric proteins, however, nH � n. In the case of the
Shaker voltage-gated potassium channel, a Hill coefficient

slightly above 1 is obtained, a low value as compared to those

obtained with other tetrameric proteins like hemoglobin or

glyceraldehyde-3-phosphate dehydrogenase (nH values of 2.8
and 2.5, respectively; Edelstein, 1971; Kirschner et al., 1971).

The low value of nH for the Shaker channelmay reflect the fact

that for this channel, gating occurs throughmany independent

transitions. One hint to a functional explanation for the low

Hill value for gating transitions of the Shaker channel may be

provided by the recently observed correlation between the

midpoint (V1/2) and slope (Z) of gating transitions ofwild-type
and variants Shaker K1 channel proteins (Yifrach and

MacKinnon, 2002). It was found that the further the transition

midpoint is shifted to the left upon mutation, as compared to

the wild-type protein (i.e., an open state stabilization effect),

the steeper the slope of the gating transition. At extremely

negative V1/2 values, slope values close to the total number of

gating charges of the channel are obtained (nH approaches n).
This relation between V1/2 and Z (¼ ZU nH (V¼ V1/2)) may be

generally explained even by simple gating models incorpo-

rating cooperativity in different ways (see, for example,

analysis of the KNF andMWCgatingmodels in Figs. 2 and 4,

respectively). Detailed analysis (Yifrach and MacKinnon,

2002), however, has shown that this observation may be

explained within the framework of a well-developed gating

FIGURE 4 Dependence of the maximal Hill coefficient (nmax
H ) and the

activation voltage at this slope (Vmax) on c. The graph for nmax
H was plotted

based on Eq. 12 (shaded, left y-axis) and that of Vmax (black, right y-axis)

according to the equation Vmax ¼ (RT/2ZF)ln(1/(KOKC)), derived by solving

the equation @nH(V)/@V ¼ 0, which is a normalized second derivative of the

MWC open probability expression. In this plot, for convenience, KC was

assigned a value of 1, whereas KO values range from 10�5 to 105. See text for

further discussion.
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model that is a generalized version of Scheme 3, above

(Zagotta et al., 1994; Schoppa and Sigworth 1998). It was

concluded that such correlation between the midpoint and

slope of the gating isotherms is expected if mutations of the

Shaker channel primarily affect the late cooperative pore-

opening transition (L transition of Scheme 3). This conclusion

implies for a possible explanation for the low Hill value

obtained for the ShakerK1 channel: Tuning the channel to be

more cooperative (increased L and nH values) would shift the

activation curve of the channel to the left, thus bringing V1/2

closer to the resting membrane potential. It would also narrow

the voltage range in which transition from the closed to open

state occurs. Under such circumstances, potassium channels

may be opened even in response to subtle fluctuations (noise)

in the resting membrane potential. Uncoordinated opening

and closing of K1 channels, which reflects the inability to

regulate the channel in such an infinitely cooperative case,

would have a dramatic effect on the shape of action potentials.

CONCLUDING REMARKS

Here, the two-state Boltzmann equation that is widely used

to fit activation data of voltage-activated ion channels has

been demonstrated to be analogous to the Hill equation that

is commonly used to estimate the magnitude of cooperativity

in ligand binding by multisubunit allosteric enzymes. This

analogy provides a common ground for the assessment and

comparison of the magnitude of steady-state cooperativity in

conformational transitions in both channels and enzymes. As

such, nH is an index to cooperativity in either ligand binding

by an allosteric protein or in gating transitions of a voltage-

gated ion channel. The general empiric definition for nH
derived for channel gating transitions (Eq. 4) provides a

useful framework for interpreting the meaning of the Hill

coefficient. Following the analysis presented here, one

should realize that the comparison between Hill values of

different proteins, channels or enzymes, is probably more

informative given that the activation mechanisms or ligation

pathways of the compared proteins are similar.

The Hill equation was originally deduced in 1910 to

account for the sigmoidal kinetics of oxygen binding to

hemoglobin. This equation made no assumptions about the

molecular mechanisms giving rise to cooperativity. Mech-

anistic models that account for cooperative phenomena and

regulation of enzymes were later suggested by Monod and

Koshland and their associates in the early 1960s. In recent

years, these allosteric models have been widely employed

to analyze the steady-state activation of different kinds

of voltage-gated channels. The finding that concepts of

classical enzymology are also applicable to the study of

channel gating, together with the analogous natures of the

Hill and Boltzmann equations demonstrated here, point to

a unified conceptual framework for understanding the

functional behavior of channels and enzymes.
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