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ABSTRACT Proteins undergo an apparent dynamical transition on temperature variation that has been correlated with the
onset of function. The transition in the mean-square displacement, ÆDr2æ, that is observed using a spectrometer or computer
simulation, depends on the relationship between the timescales of the relaxation processes activated and the timescale
accessible to the instrument or simulation. Models are described of two extreme situations—an ‘‘equilibrium’’ model, in which
the long-time dynamics changes with temperature and all motions are resolved by the instrument used; and a ‘‘frequency
window’’ model, in which there is no change in the long-time dynamics but as the temperature increases, the relaxation
frequencies move into the instrumental range. Here we demonstrate that the latter, frequency-window model can describe the
temperature and timescale dependences of both the intermediate neutron scattering function and ÆDr2æ derived from molecular
dynamics simulations of a small protein in a cryosolution. The frequency-window model also describes the energy-resolution
and temperature-dependences of ÆDr2æ obtained from experimental neutron scattering on glutamate dehydrogenase in the
same solvent. Although equilibrium effects should also contribute to dynamical transitions in proteins, the present results
suggests that frequency-window effects can play a role in the simulations and experiments examined. Finally, misquotations of
previous findings are discussed in the context of solvent activation of protein dynamics and the possible relationship of this to
activity.

INTRODUCTION

A range of experiments and computer simulations have

detected a qualitative change with temperature in the nature of

internal motions of proteins at 180–220 K (Keller and

Debrunner, 1980; Doster et al., 1989; Rasmussen et al., 1992;

Cohen et al., 1981; Knapp et al., 1982). At temperatures below

this transition the average atomic mean-square displacement

is linear with temperature, consistent with harmonic dynam-

ics, whereas above it additional fluctuations occur and, at

physiological temperatures, dominate the atomic mean-square

displacement. The additional fluctuations may involve atoms

undergoing confined continuous diffusion (Kneller and

Smith, 1994) and/or jump diffusion between potential

energy wells associated with ‘‘conformational substates’’

(Frauenfelder et al., 1979, 1991; Elber and Karplus, 1987;

Lamy et al., 1996; Tournier and Smith, 2003).

Correlations have been made between the function of

some proteins, such as ligand binding or proton pumping,

and the presence of the increased fluctuations (Rasmussen

et al., 1992; Ferrand et al., 1993; Fitter et al., 1997; Lehnert

et al., 1998; Ding et al., 1994). Flexibility is indeed required

for proteins to rearrange their structures so as to reach

functional configurations. However, the forms and time-

scales of the motions required for function are, in general,

unknown. Moreover, it has been shown using neutron

scattering that, in the case of enzyme activity in a cryosol-

vent, the rate-limiting step is independent of the ps-timescale

;220 K dynamical transition in this solution (Daniel et al.,

1998; Dunn et al., 2000).

Whether a dynamical transition is detected experimentally

depends on the relationship between the timescale of the

characteristic relaxation processes leading to the increased

mean-square displacement and the time resolution of the

experimental technique employed. Two contrasting scenar-

ios for the dynamical transition can be envisaged. In the first,

‘‘equilibrium’’ scenario, all motions in the system are re-

solved by the instrument at all temperatures examined. In

other words, the characteristic relaxation frequencies of the

dynamics are all within the energy resolution of the instru-

ment used. In this case, an observed dynamical transition

results from a change with temperature of the long-time

probability distribution of the single atom displacements,

and analysis of the dynamical transition can, in principle,

lead to a characterization of energy levels occupied by

different conformational substates (Doster et al., 1989;

Doster and Settles, 1999).

In the alternative, ‘‘frequency window’’ scenario, there is

no change in the time-converged atomic probability distribu-

tion with temperature. This would be the case, for example, in

a system with a double-well potential with no difference in

energy between the minima. Apparent dynamical transition

behavior can be observed in this scenario if, below the

transition, the relaxation frequencies of the dynamics de-

termining the mean-square displacement are too slow to be

detected by the finite energy-resolution instrument, and if the
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frequencies increase with temperature such that they pass into

the frequency window of the instrument. This description of

the dynamical transition has recently been suggested to

explain the timescale dependence of the mean-square

displacement observed for an enzyme solution (Daniel et al.,

2003). For systems in which the frequency-window scenario

dominates, the dynamical transition reveals information about

the timescales of motions crossing the resolution window of

the instrument. If these motions involve activated dynamics

then the barriers concerned can be determined.

The frequency windows of neutron scattering experi-

ments are in the same range as characteristic frequencies

of molecular motions, i.e., ;1–100 meV. Therefore, the

frequency-window scenario is likely to play a role in

determining the dynamics observed using this technique. In

a complex energy landscape, such as that explored by

a solvated protein, the transition observed by neutron

scattering is likely to involve a combination of both the

frequency-window and equilibrium scenarios. In the present

work, however, we concentrate on the latter, frequency-

window effect, as this has not been considered in most

previous analyses. We demonstrate that the frequency-

window model can describe the dynamical transition data

obtained from a molecular dynamics simulation of a small

protein in a CD3OD/D2O cryosolvent. We also analyze here

neutron scattering experiments that demonstrated that the

dynamical transition behavior of an enzyme in the above

solvent depends strongly on the timescale of motions

observed: the temperature at which the transition is observed

shifts from ;220 K to ;150 K when improving the

instrumental energy resolution from 50 meV to 1 meV

(Daniel et al., 1999; Dunn et al., 2000). It is shown that the

basic features of the timescale-dependence of the mean-

square displacements obtained in these experiments are also

well reproduced with the frequency-window model.

METHODS AND THEORY

In this section outlines are given of the theoretical frequency-window model

as applied to the analysis of neutron scattering data, and of the molecular

dynamics calculations. Details of the theory can be found in Becker and

Smith (2003) and details of the simulations in Hayward et al. (2003).

The dynamic structure factor, S(Q, v)

The experimentally measured quantity is the incoherent dynamic structure

factor, SðQ~; vÞ, which is the time Fourier-transform of the intermediate

scattering function, IðQ~; tÞ (Lovesey, 1987),

SðQ~;vÞ ¼ 1

2p

Z
dt e

�ivt
IðQ~; tÞ (1)

with

IðQ~; tÞ ¼ 1

N
+
a

b
2

a hexpðiQ~r~aðtÞÞ expð�iQ~r~að0ÞÞi: (2)

where Q~ is the scattering vector, -v the energy transfer, N is the number of

atoms in the system, ba is the incoherent scattering length of atom a, and

r~aðtÞ denotes the corresponding position vector at time t. In what follows

isotropic averaging is performed, thereby discarding the vector notation for

the position and wave vectors. This is appropriate for powder and solution

samples.

The dynamical transition is characterized by the scattering at very low

energy transfer in the elastic and quasielastic regions. In the quasielastic

regime the scattering function, Sqel(Q, v) can be approximated as (Bee,

1988)

SqelðQ; vÞ ¼ e
�2WðQÞðA0ðQÞdðvÞ1 S

DðQ; vÞÞ: (3)

Here W(Q) is the Debye-Waller factor and e�2W(Q) is the reduction of the

elastic peak height due to vibrational motions of the protein. Within the

Gaussian approximation the Debye-Waller factor can be related to a mean-

square displacement via 2WðQÞ ¼ ð1=6Þhu2ivQ
2, where hu2iv is the

vibrational mean-square displacement (Rahman, 1963).

A0(Q) is the elastic incoherent scattering function. SD(Q, v) is

approximated by a sum of Lorentzian functions representing the slow,

diffusive motions of the sample as

S
DðQ; vÞ ¼ +

l. 0

AlðQÞ
1

p

kl

k
2

l 1v
2: (4)

Here the kl define characteristic timescales of relaxation processes

(tl ; ð1=klÞ) and the Al(Q) are defined by the spatial characteristics of these

processes (jumps, diffusion, etc.). Fourier-transforming Eq. 3 gives the

expression

IðQ; tÞ ¼ e
�2WðQÞ

A0ðQÞ1 +
l. 0

AlðQÞe�kl t

� �
; (5)

where +
l
AlðQÞ ¼ 1.

To understand the temperature-dependence of I(Q, t), it is instructive to

look at the two limiting situations, t / 0 and t / N. The situation t /
0 here means times that are short compared to the lowest characteristic

relaxation time, 1/k, but still long enough for vibrational motions to be

resolved. In this case, the vibrational motions determine the intermediate

scattering function, and I(Q, t) is given by the Debye-Waller factor, e�2W(Q).

For times long enough to sample all relaxation processes of the system (t/
N), I(Q, t) is given by

IðQ; t/NÞ ¼ e
�2WðQÞ

A0ðQÞ; (6)

i.e., the product of the Debye-Waller factor and the elastic incoherent

scattering function, and hence this product also determines the temperature-

dependence of the elastic scattering at t/N. According to Eq. 5 the time-

dependence of I(Q, t) can be described by a sum of exponentials of

amplitude, Al(Q), each representing a decay of the scattering function on

a certain timescale, 1/kl. The amplitudes Al(Q) and the frequencies kl may

depend on the temperature. Thus, for intermediate times, in which all of the

vibrational motions are fully sampled but not all of the relaxation processes,

whether a process l contributes to I(Q, t) will depend on the relationship

between t and kl.

The timescale accessible to an instrument depends on its energy

resolution. The energy resolution can be incorporated into the analysis as

follows. An expression for the experimentally determined mean-square

displacement, hDr2iexp, can be derived from Eqs. 3 and 4. The measured

elastic scattering, Sexp(Q, v � 0), is

Timescales and the Dynamical Transition 1437

Biophysical Journal 87(3) 1436–1444



SexpðQ; v � 0Þ ¼ e�2WðQÞðA0ðQÞ

1

Z
dvRðvÞSDðQ; vÞÞ (7)

¼ e
�2WðQÞ

A0ðQÞ1 +
l. 0

AlðQÞ
Z

dvRðvÞ1

p

kl

k
2

l 1v
2

 !
; (8)

where R(v) is the energy resolution function of the instrument.

At low Q the elastic scattering is Gaussian in Q, allowing hDr2iexp to be

extracted by taking the slope of the natural logarithm of the elastic scattering

as a function of Q2 (Rahman, 1963), as

hDr2iexp ¼ �6
@

@Q
2lnðSexpðQ; v � 0ÞÞj

Q
2¼0

: (9)

As described in Becker and Smith (2003), the combination of Eqs. 8 and 9

yields

hDr2iexp ¼ hDr2iConv � hDr2iRes; (10)

where

hDr2iConv ¼ hDr2i2W 1 hDr2iA0; (11)

and, assuming R(v) is rectangular,

hDr2iRes ¼ +
l. 0

al

2

p
arctan

Dv

kl

: (12)

In Eq. 10 hDr2iConv is the long-time converged mean-square displace-

ment (which is finite for a spatially confined system). hDr2iRes arises from

quasielastic scattering not resolved by the instrument and is therefore due to

motions too slow to be detected. In Eq. 11, two additional mean-square

displacements have been defined: hDr2i2W, arising from the fast vibrational

motions; and hDr2iA0, arising from the slow, diffusive motions. hDr2iConv is

the sum of these two. In Eq. 12, Dv is the width of the resolution function

(half-width at full maximum), and al is the maximal contribution of

relaxation process l to the mean-square displacement.

Variation with temperature of either of the two terms on the right-hand

side of Eq. 10 can produce a dynamical transition in hDr2iexp. A change in

hDr2iConv, while keeping hDr2iRes constant, corresponds to the equilibrium

model, in which there is a change in the time-converged properties of the

protein. This could arise, for example, from the presence of multiple minima

in the energy landscape which can lead to changes in hDr2iA0. However, if

these minima have the same free energy, their relative populations will not

change with temperature and hDr2iA0 will remain constant. Rather, the free

energies of the minima must be different, in which case the increased relative

occupation of the higher-energy state with increasing temperature leads to an

increase in hDr2iA0. Since changes in hDr2iConv are in time-converged

properties of the protein, the transition will be independent of instrumental

resolution, provided that all associated motions are resolved. An example of

a model based on a change in hDr2iA0 is that of Doster et al. (1989), in which

a two-state potential with a free-energy difference DU between the states was

examined.

In this article we explore the alternative, frequency-window scenario,

in which the transition arises entirely from the temperature-dependence

of hDr2iRes, which is itself given by the temperature-dependence of kl(T) in

Eq. 12.

Molecular dynamics simulations

The model system consists of one molecule of BPTI with 658 CD3OD and

661 D2O molecules in an orthorhombic box with periodic boundary

conditions, providing at least three solvent shells around the protein. This is

adequate for simulating a protein in a bulk-solvent environment. As in

typical neutron scattering experiments, the exchangeable BPTI hydrogen

atoms were replaced by deuterium. This system models a solution of

a protein in 70% v/v CD3OD/D2O cryosolvent, as was used in several

neutron experiments (Daniel et al., 1999, 1998; Réat et al., 2000) including

those analyzed in Results, below. The concentration of BPTI in the

simulation is 156 mg/ml, which again is in the range commonly used in

solution experiments.

The system was simulated using CHARMM (Brooks et al., 1983), Ver.

27, with All-Atom Parameter Set 22 (Mackerell et al., 1998). The sim-

ulations were performed in the NPT ensemble at 1 atm pressure. The sys-

tem was simulated at a range of temperatures from 80 K through to 300 K.

Equilibration at each temperature was for 150 ps and data was collected

every 0.1 ps for 520 ps.

The protein trajectories were decomposed into external (whole-molecule

diffusion) and internal components. The external motions were removed by

superimposing every frame from the atomic trajectory with a root mean-

square fit onto the first frame. In this article only the internal protein motions

are considered. The intermediate scattering function I(Q, t) was calculated

from the molecular dynamics trajectory using the nMOLDYN package

(Kneller et al., 1995). Subsequent analysis was performed using the theory

outlined above. In additional analysis the mean-square displacement was

calculated directly from the simulation, hDr2iSim, and compared with the

mean-square displacement calculated using the theoretical model in The

Dynamic Structure Factor, S(Q, v), above.

Analysis of experimentally derived mean-square
displacements

In the frequency-window model the experimentally determined mean-square

displacement depends on the resolution of the spectrometer. Resolution

dependence of hDr2iexp has indeed been observed in experiments on

glutamate dehydrogenase in a 70% v/v CD3OD/D2O cryosolvent. Details of

sample preparation and data acquisition and reduction for these experiments

can be found in Daniel et al. (1999). Spectra were taken at the Institut Laue-

Langevin (Grenoble, France) with two different instruments, IN6 and IN16,

having energy resolutions of 50 meV and 1 meV, respectively. Both

instruments cover the same Q-range (0 , Q , 2 Å�1), thereby enabling

direct comparison of the resultant mean-square displacements. The transition

temperature in this system was found to shift from ;220 K (50 meV) to

;150 K (1 meV). Here, the resolution dependence is analyzed using the

theory in The Dynamic Structure Factor, S(Q, v), above.

RESULTS

Molecular dynamics simulation

The temperature-dependence of the intermediate scattering

function, I(Q, t), calculated from the molecular dynamics

simulations is shown in Fig. 1. Below 180 K there is virtually

no decay of I(Q, t) in the time span accessed (1 # t # 200

ps). In the temperature range 180–300 K, a decay at long

times (t. 20 ps) is observed, indicating the presence of slow

relaxation processes.

We now examine whether the frequency-window scenario,

in whichAl(Q) is independent of temperature butkl dependent

on temperature, can describe the simulation-derived I(Q, t)

1438 Becker et al.
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and hDr2iSim. I(Q, t) in Fig. 1 was found to decay

approximately exponentially for t $ 10 ps and T $ 180 K.

Fitting with more than one exponential leads to better

agreement in the short time regime (t # 10 ps). However,

the parameters of the two exponentials are strongly in-

terdependent, complicating their interpretation. Moreover,

the main focus of this article is not to derive a detailed

description of short-time protein dynamics, but rather to

investigate the slow relaxation processes that dominate the

dynamical transition behavior. Therefore, it was decided to

model I(Q, t) with a single exponential that reproduces the

long-time behavior. Consequently, the equation fitted to the

simulation-derived I(Q, t) is

IðQ; tÞ ¼ e�
1
6Q

2hDr
2ifast ½A0ðQÞ1 ð1 � A0ðQÞÞe�kFWt�: (13)

Here, the Debye-Waller factor representing vibrational

motions in Eq. 5 has been replaced by the term

e�ð1=6ÞQ2hDr2ifast . hDr2ifast includes all dynamics of the system

faster than ;10 ps, comprising not only vibrational motions

but also fast diffusive motions. This again reflects the fact

that the time-dependence in I(Q, t) represents the long-time

behavior via the temperature-dependent relaxation fre-

quency, kFW.

The extraction of the parameters of Eq. 13 was performed

in two steps. First, the equation was fitted to the simulation-

derived I(Q, t) with all parameters allowed to vary freely

with temperature, including the amplitudes, A0. The decay of

the intermediate scattering function is more pronounced at

high temperatures than at low temperatures, allowing a better

extraction of A0(Q) (see Fig. 2) at high temperatures. A0ðQÞ
was obtained by averaging A0(Q) over the temperatures

above 250 K. A0ðQÞ represents an estimate of the long-time,

converged elastic incoherent scattering function, and was

kept invariant with temperature in all further analyses, as

required by to the frequency-window hypothesis. In a second

fitting step, then, Eq. 13 was fitted to the simulation-derived

I(Q, t) with A0ðQÞ kept fixed. Fig. 1 shows a comparison of

the frequency-window fit with the simulation-derived I(Q, t).
The model clearly reproduces the temperature-dependent

decay of I(Q, t) over the range 10 # t # 300 ps.

In the equilibrium model the temperature-dependence of

the t/N values of I(Q, t) are determined by the decrease of

A0(Q) with temperature, due to the onset of new dynamical

processes in the system. In contrast, in the frequency-

window model, for all temperatures I(Q, t) will finally decay

to the plateau value e�ð1=6ÞQ2hDr2ifastA0ðQÞ; with A0ðQÞ now

being independent of temperature. The higher measured

values of I(Q, t) at low temperatures then reflect the fact that

the motions determining A0ðQÞ occur on timescales too slow

to be seen in the simulations at these temperatures.

The temperature-dependence of the mean-square displace-

ment was determined directly from the set of molecular

dynamics simulations, using the equation

hDr2iSimðtÞ ¼
1

N
+
a

hðr~aðmÞ � r~að0ÞÞ2i

� 1

N
+
a

1

Nt � m
+

Nt�m�1

k¼0

ðr~aðk1mÞ � r~aðkÞÞ2

� �
;

(14)

where m, k, and Nt are integer numbers with t ¼ m Dt, Dt
being the timestep of the simulation of total length Nt Dt.
hDr2iSim was calculated for four different values of t: 20, 50,

100, and 200 ps. Fig. 3 shows the resulting mean-square

displacements, hDr2iSim. Below T� 180 K, hDr2iSim(t) is the

same on all timescales, indicating that no processes are

activated with timescales between 20 and 200 ps at these

temperatures. Raising the temperature further, a dynamical

transition, i.e., a deviation from linearity of hDr2iSim, is

FIGURE 1 Intermediate scattering function I(Q, t) calculated from nine

molecular dynamics simulations at different temperatures at 1.2 Å�1

(symbols). The result of the fit of Eq. 13 to I(Q, t) is also shown (lines).

FIGURE 2 Elastic incoherent scattering factor (A0(Q)) determined for

T $ 250 K by fitting Eq. 13 to I(Q, t) obtained from molecular dynam-

ics simulations. Also shown is the average, A0ðQÞ.
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observed on all timescales. However, the transitions on

different timescales differ in two aspects.

First, T0, the temperature at which hDr2iSim deviates from

the straight line, shows a timescale-dependence. This is

illustrated in Fig. 4, in which hDr2iSim is plotted for 20 ps and

200 ps together with a linear fit over the temperature range

100 # T# 180 K. Although hDr2iSim deviates from linearity

at ;180 K for the 200-ps data, a deviation appears only at

;220 K on the 20-ps timescale. This reflects the fact that for

temperatures between 170 and 220 K the intermediate

scattering function in Fig. 1 exhibits an additional decrease

on the 200-ps, but not on the 20-ps, timescale. The presence

of a timescale-dependence of the transition temperature is

a characteristic feature of the frequency-window scenario.

Since in the frequency-window picture no new motions are

activated at T0, but rather existing motions become faster and

drift into the timescale accessible to an instrument, T0

depends on the instrumental resolution.

A second difference between hDr2iSim on different

timescales is in the magnitude of hDr2iSim for T . T0. This

magnitude increases with timescale such that hDr2iSim(200

ps) � 2hDr2iSim(20 ps) at 300 K. Again, this reflects the

presence of motions on the 20–200-ps timescale.

Assuming the presence of a single relaxation frequency,

the mean-square displacement from the frequency-window

model in Eq. 13, hDr2iFW, is given by

hDr2iFW ¼ hDr2ifast 1 hDr2i�AA0

�
1 � 2

p
arctan

Dv

kFW

�
; (15)

where hDr2ifast and hDr2i�AA0
are the fast and slow

contributions to the mean-square displacement, respectively.

hDr2ifast and hDr2i�AA0
can be determined as described in

Methods and Theory, above, and Becker and Smith (2003).

For example, hDr2i�AA0
is given by

hDr2i�AA0
¼ �6

@

@Q
2ln½A0�jQ¼0; (16)

and can be obtained by a straight line fit to the low Q2-regime

of ln½A0� versus Q2.

The mean-square displacement, hDr2iFW, at different

values of the resolution, Dv(1/20 ps), 1/50 ps, 1/100 ps,

and 1/200 ps, was calculated using Eq. 15. The results

thus obtained are compared with hDr2iSim in Fig. 3. The only

difference between the four hDr2iFW values shown is the

factor Dv representing different instrumental resolutions.

Nevertheless, hDr2iFW reproduces the simulation data on all

timescales (resolutions). As expected, the agreement for the

lowest resolution (20-ps timescale) is slightly worse than at

other resolutions, since the frequency-window model used

here (Eq. 13) was parameterized to reproduce the simulation-

derived I(Q, t) only for longer times.

The inset to Fig. 3 depicts hDr2ifast, the fast contribution to

hDr2i together with the time-converged slow contribution

due to diffusive motions, hDr2i�AA0
. Also shown is a linear fit

to hDr2ifast over the temperature range 100 , T , 180 K.

Below T � 220 K the linearity of hDr2ifast is consistent with

the motions being harmonic, given by the Debye-Waller

factor Ifast(Q, t) � e�2W. The linear fit suggests that there is

a small transition in hDr2ifast at T � 200–220 K. This might

indicate the onset of fast anharmonic motions on timescales

faster than 10 ps.

hDr2iConv is given by the sum of hDr2ifast and hDr2i�AA0
(see

Eqs. 10 and 11), where hDr2i�AA0
is constant with temperature.

The high value of hDr2i�AA0
at low temperature in the inset to

Fig. 3 might be surprising at first but can be understood if one

FIGURE 3 Energy resolution and timescale-dependence of hDr2i. (Solid

lines) hDr2iSim calculated from molecular dynamics trajectories using Eq. 14

with t¼ 20, 50, 100, and 200 ps. (Symbols) hDr2iFW calculated using Eq. 15

with the instrumental energy resolution, Dv, set to 1/20, 1/50, 1/100, and

1/200 ps�1. (Inset) The fast component, hDr2ifast of hDr2iFW (dots) and

hDr2iA0 (diamonds). The dashed line represents a linear fit to the temperature

range 100–180 K.

FIGURE 4 hDr2iSim calculated from the molecular dynamics trajectories

for two values of t, 20 ps, and 200 ps. Also shown is a linear fit to the

temperature range 100–180 K.
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recalls that in the frequency-window model motions do not

cease to exist at a given temperature, but simply shift to

longer timescales. Given enough time, these motions still

occur, leading to a constant mean-square displacement even

at low temperatures. Taking the symmetric two-state model

as an example again, this reflects that barrier crossings do

occur at very low temperatures, with the timescale of these

crossings tending to infinity.

In Fig. 5 the relaxation frequency, kFW, obtained by the fit

shown in Fig. 1 is plotted. For T# 180 K the relaxation time,

1/kFW, is indeed much longer than the 200-ps timescale,

i.e., kFW is sufficiently small not to lead to substantial

decrease in I(Q, t) for t # 200 ps. At the onset of the

measured transition, at T � 220 K, it is ;200 ps, and

becomes faster with increasing temperature, reaching

a timescale of ;50 ps at 300 K.

The frequency-window model does not suppose any

particular form of the dynamics associated with the relaxation

time, kFW. For example, a priori, the dynamics could be

continuous or jump-diffusion. Distinguishing between these

types of dynamics is beyond the remit of the present analysis

method. Further analysis can involve fitting an Arrhenius

function, kðTÞ ¼ ae�DG=RT, to kFW. k(T) in Fig. 5 indeed

follows approximately Arrhenius behavior. The resulting

parameters determining the slow dynamics in hDr2iFW are

hDr2iA0, the pre-exponential a; and DG, the activation free

energy. hDr2iA0 is 0.96 Å, DG is 3.0 kcal/mol, and the pre-

exponential factor is a; 1012 s�1. These values are typical for

barrier crossing in condensed-phase molecular systems (Bee,

1988). It must be stressed, however, that over-interpretation

ofkFW is dangerous and that attribution of the dynamics to any

single process is unwarranted. Indeed for a heterogeneous

system such as a protein in solution it is unlikely that a simple

type of motion determines the scattering profile of the system.

Further analysis of the simulations and quasielastic scattering

would be necessary to disentangle these different contribu-

tions and to obtain a detailed picture of the underlying

dynamics at atomic resolution (Tournier and Smith, 2003).

Experimental neutron scattering data

The frequency-window model is now used to analyze

experimentally derived mean-square displacements obtained

from glutamate dehydrogenase in a cryosolution (Daniel

et al., 1999). The analysis again uses Eq. 15 as the fitting

function. The fast component, hDr2ifast, was assumed to

depend linearly on temperature, hDr2ifast ¼ aT. Eq. 15 was

fitted simultaneously to the mean-square displacements de-

termined using the instruments IN6 and IN16 with DvIN6 ¼
50 meV ¼ 50 DvIN16, reflecting the 50-times-higher energy

resolution of IN16.

Fig. 6 shows the result of the least-squares fit of Eq. 15 to

the experimental data sets. The model is able to reproduce

the most prominent features of the experimental data, namely

the pronounced shift of the transition temperature, T0, from

150 K to 220 K between the two instruments, and the

leveling off of hDr2iexp at higher temperatures seen on the

higher-resolution instrument. The shift in T0 with resolution

is in harmony with the shift seen in the simulation data,

hDr2iSim, in Fig. 4. Motions being fast enough to be detected

at 150 K with the instrument IN16 become fast enough to be

seen on IN6 only at 220 K. The fact that the shift in the

simulation data in Fig. 4 is smaller than that seen

experimentally in Fig. 6 is consistent with the fact that the

difference in timescale between the two simulation data sets

is smaller than that between the two experimental data sets.

FIGURE 6 hDr2iexp determined by two different instruments (IN6, IN16)

fitted using Eq. 15. Experimental data were taken from Daniel et al. (1999).

(Inset) Characteristic relaxation time as a function of temperature. 1/k(T)

was determined by fitting Eq. 10 to hDr2iexp.

FIGURE 5 (Symbols) Long-time relaxation frequency k as obtained by

fitting Eq. 13 to I(Q, t). (Solid line) The result of fitting an Arrhenius function

to l.
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The leveling off of hDr2iexp with T at high resolution is

a consequence of the finite amount that the relaxation process

contributes to hDr2iConv. According to Eq. 10 each process l
contributes at most al to the converged mean-square

displacement. This can be illustrated with the two-state

model again. Jumping between the minima makes a contri-

bution to hDr2iConv. This contribution will not be seen in

hDr2iexp at low temperature since the timescale of these

jumps is too slow. At higher temperatures the jumps

contribute more and more, thereby leading to a transition

in hDr2iexp. If the timescale of these jumps is much faster

than the timescale accessible to the instrument (i.e., tjump �
tres), all of the jumps are seen leading to no further increase

in the observed mean-square displacement with temperature.

The frequency-window model fails to obtain quantitative

agreement with experiment in Fig. 6 at higher temperatures.

In particular, the continued increase in hDr2iexp above 270 K

determined using the lower-resolution instrument is not

reproduced. However, experimental errors may be signifi-

cantly higher than estimated at high hDr2i, due to the

correspondingly low elastic peak intensities. Furthermore,

additional solvent-driven processes are likely to be activated

at ;270 K due to solvent melting. The assumption of a single

relaxation process is unlikely to be valid at T $ 270 K.

The temperature-dependence of the relaxation frequency,

k, is shown in the inset of Fig. 6. In the temperature range

150 K–280 K, the relaxation time changes from ;100 ns to

;10 ps. Thus the motion passes through the approximate

time resolution windows of the two instruments, which are 5

ns for IN16 and 100 ps for IN6. hDr2iA0 is 0.81 Å2, similar to

the value obtained in the molecular dynamics analysis.

DISCUSSION

The present theoretical analysis shows that the dynami-

cal transition as observed by molecular dynamics simulation

and neutron experiment can be described without needing

to invoke a change with temperature in the long-time,

equilibrium atomic dynamics. In the ‘‘frequency window’’

model used to analyze the data the temperature-dependence

of dynamical relaxation processes leads to the appearance of

dynamical transition behavior in the measured signal as, with

increasing temperature, the processes become fast enough to

be resolved by the instrument used. The frequency-window

model is a true dynamical model insofar as the change in

slope of the observed hDr2i at the dynamical transition is due

to the temperature-dependence of the motional timescales.

Assuming activated dynamics, the transition would thus be

determined by the barriers between energy minima rather

than by differences in energies between the minima.

The frequency-window model reproduces the broad

features of the experimental mean-square displacement

results for a protein in a cryosolution and is also in good

quantitative agreement with molecular dynamics simulation

data on a smaller protein in the same solvent. The observed

timescale-dependence of the mean-square displacement rules

out an interpretation of the present molecular dynamics or

neutron experimental results based solely on the ‘‘equilib-

rium’’ model. However, the analysis does not rule out

a combination of the frequency-window and equilibrium

models in which the transition involves both barrier crossing

and populating of higher energy states. Indeed, it is highly

unlikely that the minima of a protein free energy landscape

are equienergetic, as is required for a pure frequency-

window scenario. Allowing the equilibrium dynamics to

vary (by allowing A0 to vary as in Fig. 2) led to a fit to the

simulation-derived I(Q, t) (not shown) that is as good as, but

not better, than that achieved with the frequency-window

model. Moreover, some experimental work on proteins has

not produced clear evidence for resolution-dependent tran-

sition temperatures, although the difference in resolution of

the instruments used may not have been sufficient to detect

an effect (Réat et al., 1997; Doster and Settles, 1999).

Work remains to be done to tease apart the equilibrium

and frequency-window contributions to the temperature-

dependence of atomic fluctuations in proteins and their

surrounding solvent, as observed using neutron scattering.

One way of doing this is to use single instruments with

variable elastic resolution that can then effectively access

I(Q, t) at different times (Doster et al., 2001). Alternatively,

different instruments with different elastic resolutions can

be used, as in Fig. 6. Varying the elastic resolution is

a procedure akin to examining molecular dynamics simu-

lations on different timescales. Extending molecular dynam-

ics timescales and improving instrumental energy resolutions

(by, for example, using the spin-echo technique; Bellissent-

Funel et al., 1998; Dellerue et al., 2000) will also be

important in this regard, as will be experiments with

techniques sensitive to longer timescales, such as Mössbauer

absorption and nuclear magnetic resonance relaxation

(Parak, 2003).

Although spectroscopic techniques are time-resolved,

x-ray scattering, in principle, accesses the converged mean-

square displacement, hDr2iConv. If the frequency-window

model holds, there should be no transition due to internal

protein dynamics observable in x-ray B-factors. Extraction of

protein mean-square displacements via x-ray scattering is

hampered by the fact that crystallographic B-factors cannot

distinguish between dynamic and static contributions to hDr2i
(Frauenfelder et al., 1979). Notwithstanding, there is

presently an enthralling debate as to whether x-ray crystal

diffraction does indeed detect a temperature-dependent

transition in internal protein dynamics (Teeter et al., 2001;

Chong et al., 2001; Joti et al., 2002; Halle, 2004). A transition

in crystalline crambin has been reported (Teeter et al., 2001),

although x-ray crystallographic evidence for the absence of

a dynamical transition in internal displacements in myoglobin

has also been presented (Chong et al., 2001; Joti et al., 2002).

Finally, we wish to comment on the relationship of the

temperature-dependence of protein dynamics to solvation and
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activity. In Daniel et al. (1998) and Dunn et al. (2000) it was

found that enzyme activity does not show deviation from

Arrhenius behavior down to 180 K, although a transition

of the dynamics on the picosecond timescale was seen at

;220 K. A publication by Fenimore et al. (2002) states that

‘‘the correct conclusion from the work in Daniel et al. (1998)

and Dunn et al. (2000) is the opposite to what is claimed,

namely that solvent fluctuations activate substate transitions

and thus enzymatic reactions to ,180 K.’’

In Daniel et al. (1998) and Dunn et al. (2000) it is neither

stated nor implied that solvent fluctuations do not activate

substate transitions nor that solvent fluctuations do not

activate enzymatic reactions. However, two interesting

questions may be asked in this context: 1), whether the

dynamical transitions are solvent-activated; and 2), whether

dynamical transitions exist in the protein solution that are not

activity-related.

Although the role of solvent was not investigated in

Daniel et al. (1999, 1998) and Dunn et al. (2000), this role

has been investigated recently by several groups. In neutron

experiments on xylanase in different cryosolvents it was

found that the solvent has a strong effect on the measured

transition temperature, i.e., the protein dynamics indeed

follows closely that of the pure solvent (Réat et al., 2000).

Furthermore, recent simulation work has indicated that the

transition is driven by the onset of translational diffusion of

the hydration water (Tarek and Tobias, 2002; Tournier et al.,

2003), and that the dynamics activated on the ;10�11 s

timescale can be described using a small number of principal

components describing collective motions in the protein

(Tournier and Smith, 2003).

In the experimental data in Fig. 6 several transitions can be

observed. The mean-square displacement as measured by the

instrument IN6 shows a transition at ;220 K. For the IN16

data at least two transitions are seen—a nonlinear increase in

hDr2iexp at ;150 K and a leveling-off at ;220 K. The

absence of a measurable deviation of activity from Arrhenius

behavior down to 180 K suggests that neither the increase of

hDr2iexp as seen with the instrument IN6 nor the leveling-off

seen with IN16 are related to enzyme activity. Since the

enzyme activity can be measured down to only 180 K the

relationship of the ;150 K transition to enzyme activity

cannot be addressed. However, it is interesting to consider

this relationship in the framework of the frequency-window

model. In the equilibrium scenario new, possibly function-

ally required, types of motions are activated at the transition

temperature. In the frequency-window scenario, however,

there are no new types of motions activated; i.e., the

dynamics does not change qualitatively, but just becomes

faster with temperature. As all motions are always present at

all temperatures, it is not possible to use temperature to

eliminate or activate functionally important dynamics from

the system concerned. In the frequency-window scenario,

since the transition temperature, T0, is instrument-dependent,

no correlation between T0 and activity should be expected.

However, the absence of a correlation between T0 and

activity cannot be used to conclude that the displacements

moving into the resolution window of any given instrument

are not required for function. A challenge for the future is to

understand the temperature-dependence of protein dynamics

in the framework of the equilibrium and frequency-window

descriptions, and in the context of typical timescales for

protein activity.
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