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ABSTRACT Signaling in bacterial chemotaxis is mediated by several types of transmembrane chemoreceptors. The
chemoreceptors form tight polar clusters whose functions are of great biological interest. Here, we study the general properties
of a chemotaxis model that includes interaction between neighboring chemoreceptors within a receptor cluster and the
appropriate receptor methylation and demethylation dynamics to maintain (near) perfect adaptation. We find that, depending on
the receptor coupling strength, there are two steady-state phases in the model: a stationary phase and an oscillatory phase. The
mechanism for the existence of the two phases is understood analytically. Two important phenomena in transient response, the
overshoot in response to a pulse stimulus and the high gain in response to sustained changes in external ligand concentrations,
can be explained in our model, and the mechanisms for these two seemingly different phenomena are found to be closely
related. The model also naturally accounts for several key in vitro response experiments and the recent in vivo fluorescence
resonance energy transfer experiments for various mutant strains. Quantitatively, our study reveals possible choices of
parameters for fitting the existing experiments and suggests future experiments to test the model predictions.

INTRODUCTION

Bacterial chemotaxis is one of the best-studied biological

systems (Berg, 2000). It is the sensory system used by

coliform bacteria, such as Escherichia coli, to detect and

react to external chemical signals, such as nutrients or toxins.

Each E. coli cell is propelled by the rotation of several

flagella. The rod-shaped cell moves by two types of motion:

‘‘running’’, when all the flagella rotate counterclockwise to

form a coherent bundle and drive the cell in a straight motion,

and ‘‘tumbling’’, when one or a few of the flagella rotate

clockwise and the cell wiggles locally with the net result of

changing its orientation. Through years of persistent, in-

novative studies using physics, chemistry, molecular bi-

ology, and genetics methods (Adler, 1976; Berg, 2000; Bren

and Eisenbach, 2000; Falke and Hazelbauer, 2001), we

now have a fairly complete picture of which molecules are

involved and how they interact with each other to receive

and react to the external signal. The combination of rich,

interesting behaviors of the system, together with the rather

complete qualitative knowledge about the underlying path-

way, provides us with a unique opportunity to understand

a biological system from a more quantitative, systems-level

point of view. Indeed, the bacterial chemotaxis system has

served as a very useful model system in investigating general

principles in biology, such as robustness in biological

networks (Barkai and Leibler, 1997; Alon et al., 1999; Yi

et al., 2000; Mello and Tu, 2003a). In this article, we focus on

another interesting aspect of the system, the interaction

between receptors and its effects on the response of the

system, such as signal amplification.

There are five types of transmembrane chemoreceptors,

capable of binding to different types of external small

molecules (ligands). The cytoplasmic part of the receptor

forms a complex with a histidine kinase (CheA) through a

linker molecule (CheW). The ligand concentration is sensed

by the binding of the ligand to the corresponding type of

receptor; this information, i.e., receptor bound or unbound

to ligand, is passed into the cytoplasm through its effect on

the kinase activity of CheA. Upon activation by receptor

binding to repellent (or removal of attractant), CheA acquires

a phosphate group through autophosphorylation. Once phos-

phorylated, CheA-P passes its phosphate group to a diffusible

signaling protein CheY, which relays the signal from the

receptors to the flagellar motors through diffusion inside

the cytoplasm. The binding of CheY-P to the FliM ring of

the flagellar motor complex biases the flagellar rotation

toward clockwise and therefore increases the probability of

tumbling. This chain of reactions constitute the ‘‘linear’’ in-

formation passage of the signaling pathway. As with almost

all other sensory systems, bacterial chemotaxis pathway also

regulates the signal by adapting to persistent environmental

conditions to permit a large dynamical range of response.

The adaptation in bacterial chemotaxis is achieved by a slow

modification of the receptors, catalyzed by CheR and CheB

for the methylation and demethylation processes, respec-

tively. Each receptor has four methylation sites, and recep-

tors with higher methylation levels generally induce higher

kinase activity in the attached CheA.

The natural question for such a qualitatively well-

characterized system is whether it can be described at a more

quantitative level and what extra insight can be gained from

such a quantitative description. Indeed, this question can be

meaningfully addressed in bacterial chemotaxis, mainly
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because quantitative data such as the cell behavior and various

biochemical measurements of the system are readily avail-

able. More advanced technologies, such as in vivo protein

concentration measurements (Sourjik and Berg, 2000,

2002a,b) and single cell response measurements (Cluzel

et al., 2000), are also becoming accessible. However, for

a complicated system like bacterial chemotaxis, possessing

much quantitative data does not automatically lead to a deeper

understanding of the system. Most of the experiments are

measurements of the response of the system to various

external stimuli, for different genetically altered bacterial

strains and under different experimental conditions. The

complicated interactions between the molecules involved

often cause difficulty in interpreting the data and reconciling

the results from different experiments. To best use these

quantitative data, it is absolutely critical to have a quantitative

integrative model of the system that is compatible with the

details of the experiments. Only through fitting and un-

derstanding various quantitative data within a general model

framework can we extract useful information out of the

diverse sets of data and achieve a higher level of un-

derstanding for bacterial chemotaxis.

One of the most intriguing problems in bacterial

chemotaxis is the origin of the large gain in signal

transduction. It is observed that for a small fractional change

in external ligand concentration, the fractional change in the

kinase activity is much larger (Berg and Tedesco, 1975). One

idea to explain this phenomena, due to Dennis Bray and his

co-workers (Bray et al., 1998), is that the gain could come

from receptor coupling. This suggestion is motivated by the

fact that the receptors form clusters on the cell membrane

(Maddock and Shapiro, 1993). The subsequent modeling

efforts (Duke and Bray, 1999; Shi and Duke, 1998; Shi,

2000) were very helpful in confirming the relevance of

receptor coupling theoretically, but they could not go beyond

the conceptual level due to lack of direct quantitative data.

Recently, by using fluorescence resonance energy transfer,

Sourjik and Berg (SB) were able to measure the CheY-P

concentration in vivo in response to different stimulus levels

for both wild-type (WT) and different mutant strains.

Following these experiments, we proposed a model to

understand the receptor sensitivity and the gain of the system

(Mello and Tu, 2003b). Using this model, we were able to fit,

using relatively few parameters, the recent in vivo response

experiments of Sourjik and Berg for six different strains of

mutants. Using the same model, we also showed a possible

mechanism for the high gain and high sensitivity for a large

range of ambient ligand concentrations for the WT cell. In

fitting the SB data within our model, we demonstrated the

importance of receptor coupling in general and the existence

of strong interaction between different types of chemo-

receptors, such as strong interaction between Tsr and Tar,

which is consistent with the findings of recent cross-linking

experiments (Ames et al., 2002; Ames and Parkinson,

2004).

Although our previous study was specially aimed at

explaining the SB experiments, the same model framework

can be used to study other experiments. To do that, we need

to understand the general properties of this class of models.

In this article, we define such a model (slightly different from

the one we used in Mello and Tu, 2003b) and study its

general properties, including the steady-state properties of

the system and the transient response to various stimuli (step

or pulse), for both mutant models where methylation and/or

demethylation processes are blocked and (WT) models

where receptors have a distribution of methylation levels due

to methylation/demethylation kinetics. (In this study, WT

model refers to any model where methylation/demethylation

is included.) The emphasis is twofold here. First, we want to

make connections between the general behavior of the model

and the experiments and understand the reason behind the

agreement or disagreement; second, we want to understand

the range and limitations of the model with the purpose of

better calibration of the parameters and possible modification

of the model itself.

THE HYBRID MODEL FOR COLLECTIVE
KINASE ACTIVITY

Our model describes the behavior of a cluster of N interacting

receptors. The network of receptors does not have to be on

a regular lattice, as long as a set of neighboring receptors is

defined for each individual receptor in the network based on

physical proximity. The properties of a receptor i, labeled by
its receptor type qi (Tar, Tsr, Tap, etc.), can be described by

three dynamic variables: mi 2 [0, 4] is its methylation state; li
is its ligand binding status (li ¼ 1 means the receptor is

occupied by a ligand, and li¼ 0means the receptor is vacant);

ai is its activity (ai ¼ 1 means the receptor is active, and ai ¼
0 means the receptor is inactive). In our model, the receptor

cooperativity is modeled by interaction between the receptor

activities (ai’s). The overall normalized kinase activity of the

whole system is simply characterized by the average of all

individual receptor activities: A ¼ Æaæ ¼ N�1 +N

i¼1
ai:

The timescales for the receptor activity change (ta) and

ligand binding/unbinding process (tl) are much faster than

that of the methylation/demethylation processes (tm). Since

we are mostly interested in behaviors of the system at

a timescale (t) larger than ta and tl, but smaller than tm (tl,

ta� t� tm), the kinetics of the system can be conveniently

described by a hybrid model consisting of a quasi-equilib-

rium model of fai, lig for fixed methylation levels (mi’s) and

the slow dynamics of fmig affected by the averaged activity

of each receptor. Furthermore, the equilibration of ai’s and
li’s for a given set of mi’s may be described by an energy

function (Hamiltonian), which can be considered as

a simplification for the general rate-based kinetics used in

our previous study (Mello and Tu, 2003b).

The activity of a receptor should depend both on its own

properties (its methylation level and ligand binding status)
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and also on its neighbors’ activities due to receptor inter-

action. A general form of the Hamiltonian governing the

variations of the fast variables ai and li for a given mi can be

written as

H ¼ +
i

hiða~; qi;mi; liÞai 1 +
i

mðqi;miÞli; (1)

where a~ refers to the activities of all the receptors. hi is the
activation energy, i.e., energy difference between the active

and inactive configuration, for vacant receptors (when li ¼
0); and mi is the occupation energy, i.e., energy difference

between the vacant and bound configuration, for inactive

receptors (when ai ¼ 0).

hi has contributions from ligand binding, the methylation

level of the receptor itself, and coupling to its neighboring

receptors, parameterized by EL, EM, and EJ, respectively, in

the following expression:

hiða~; qi;mi; liÞ ¼ ELðqi;miÞli 1EMðqi;miÞ

1 +
j

EJðqi; qj;mi;mjÞ aj �
1

2

� �
; (2)

with j representing all the neighboring receptors of receptor i.
EM(m) is a decreasing function of methylation level m. EL

couples ligand binding li with receptor activity ai. For

attractants, EL . 0 because ligand binding decreases kinase

activity. The local (coupling energy excluded) activation

energies are E0(m) [ EM(m) and E1(m) [ EM(m) 1 EL(m)
for vacant and ligand-occupied receptors respectively.

‘‘Ferromagnetic’’ coupling (i.e., EJ , 0) is used because

receptor coupling is assumed to align activities of neighbor-

ing receptors.

m is essentially the chemical potential for inactive

receptors to bind ligand. m depends on the external ligand

concentration and can be explicitly written as

mðq;mÞ=RT ¼ ln
K

i

dðq;mÞ
½L�q

 !
; (3)

where Ki
d is the ligand dissociation constant for inactive

receptors and [L]q is the concentration of type q ligand that

binds to type q receptor. (Here the Hamiltonian assumes each

type of receptor binds to only one type of ligand; however, it

is easy to generalize to include multiple ligand types.) RT is

the thermal energy unit, which we set to be 1 from now on.

For the active receptors, i.e., ai¼ 1, the corresponding ligand

dissociation constant Ka
d can be easily obtained from the

Hamiltonian (Eqs. 1 and 2):

K
a

dðq;mÞ
K

i

dðq;mÞ
¼ expðELðq;mÞ=RTÞ: (4)

The above relation between the ratio of the dissociation

constants for active and inactive receptors and EL is a direct

consequence of energy balance in a Hamiltonian system. The

only difference between our previous model (Mello and Tu,

2003b) and the model used in this article is that the relation

of Eq. 4 was not enforced in Mello and Tu (2003b).

The receptor coupling strength, EJ, could in principle

depend on the methylation levels of the interacting receptors.

For simplicity, we omit such dependence for the rest of the

article. In a true Hamiltonian model, the coupling constant

should be symmetric under permutation of the receptor

types, i.e., EJ(qi, qj)¼ EJ(qj, qi). However, there are no direct
biological constraints enforcing such symmetry. In the case

of asymmetric coupling strength, the energy function can be

used only for each individual receptor to determine the

transition rate between active and inactive conformations of

the receptor while its environment, i.e., the activities of the

neighboring receptors, is kept fixed.

In a recent work by Shimizu et al. (2003), a similar model

was used but with several significant simplifications made

for the Hamiltonian. First, only one receptor species was

considered in their studies. Second, EM was made to have the

following simple form:

EMðmÞ ¼ ðm� 2ÞEm 1 dðm� 4ÞEm; (5)

where Em ¼ �1.95 in the above equation is a constant, d(m
� 4) is only nonzero (equals to 1) when m ¼ 4. Third, EL(m)
was made to be independent of m, in particular, it was set

equal to �Em. Last, the ligand binding constant Ki
d was also

made to be independent of methylation level m. Because EL

was a constant in their model, Ka
d was therefore also

independent of m through the relation in Eq. 4. In our study,

we use this specific set of parameters as a reference point in

the full parameter space to study the general properties of our

model.

To complete the description of the system, we need to

model the dynamics of the methylation level for each

receptor mi. In its simplest form, the slow methylation

kinetics can be described by the methylation rate TR(mi, ai)
(from state mi to state (mi 1 1)), and the demethylation rate

TB(mi, ai) (from state mi to state (mi � 1)). The StochSim

approach (Morton-Firth et al., 1999) used in Shimizu et al.

(2003) effectively calculated these rates by simulating all the

detailed enzymatic reactions stochastically (although assum-

ing that enzyme concentration was uniform throughout the

cell). However, for understanding the behavior of the system,

the most important feature of these transition rates is their

dependence on the kinase activity of the receptor complex. A

key property of these enzymatic reactions, inferred from the

system’s perfect (or near perfect) adaptability, is that these

rates may depend on the activity (Barkai and Leibler, 1997;

Yi et al., 2000; Mello and Tu, 2003a). The simplest way to

achieve perfect adaptation is to let methylation take place

only for the inactive receptors and demethylation take place

only for the active receptors. This assumption can be

expressed as
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TRðmi; aiÞ ¼ kRð1� aiÞ; TBðmi; aiÞ ¼ kBai; (6)

where kR and kB are rate constants, with the corresponding

timescales tR ¼ 1/kR and tB ¼ 1/kB much longer than the

equilibration time t0 ¼ max(ta, t‘) of ai and li.
Overall, for a given methylation configuration fmig, the

quasi-equilibrium behavior of the fai, lig variables is

governed by the Hamiltonian given in Eqs. 1 and 2. The

averaged activity of the receptors in turn determines the

slower kinetics of the methylation levels as given in Eq. 6. In

the rest of the article, we study this hybrid model that

includes a quasi-equilibrium statistical model for describing

the fast variables coupled with a stochastic dynamic model

for studying the methylation/demethylation processes.

METHODS: MEAN-FIELD THEORY AND MONTE
CARLO SIMULATION

The above hybrid model does not have a known analytical solution, so the

exact behavior of the model has to be studied numerically by Monte Carlo

simulation. However, most of the behavior can be studied analytically by

using mean-field approximations. We describe the details of the mean-field

theory and the Monte Carlo simulation in this section.

The mean-field theory

In the mean-field theory (MFT) approximation, each receptor interacts with

a mean field Æaæ instead of with its specific neighbors. It can be formally

described as a variation of the original Hamiltonian by allowing all receptors

to interact with each other, i.e., the sum over j in Eq. 2 is now over all the

receptors in the system. The interaction strength has to be normalized

accordingly to preserve the total interaction strength: EJ is replaced by j0EJ/

N, where j0 is the number of nearest neighbors of each receptor in the

original model (e.g., j0 ¼ 4 for a square lattice) and N is the total number of

receptors in the system. The mean-field Hamiltonian is then

Hmft ¼ +
i

ELli 1EMðmÞ1EJj0 Æaæ� 1

2

� �� �
ai 1 +

i

mli;

(7)

where the mean field Æaæ ¼ N�1 +N

i¼1
ai:

The mean-field system can be solved analytically because its Hamilto-

nian is just a sum of decoupled local terms. The average activity for site i

depends only on its methylation level m (we have dropped the subscript i

because of the spatially decoupled nature of the equations) and can be

written as

Æaiæ[ aðm; ÆaæÞ

¼ 11 e�ðm1ELÞ

11 e
�ðm1ELÞ 1 ð11 e

�mÞeEMðmÞ1EJj0ðÆaæ�1
2Þ
: (8)

The mean field Æaæ can be obtained by the self-consistency condition:

Æaæ ¼ +
4

m¼0

Pðm; tÞaðm; ÆaæÞ; (9)

where P(m, t) is the fraction of receptors with methylation level m at time t.
P(m, t) is simply governed by the flow equation in the m space:

dPðm; tÞ
dt

¼ kR½1� aðm� 1Þ�Pðm� 1; tÞ

1 kBaðm1 1ÞPðm1 1; tÞ
� fkR½1� aðmÞ�1 kBaðmÞgPðm; tÞ; (10)

for m ¼ 0, 1, 2, 3, 4, and with the boundary conditions P(�1, t) ¼ P(5, t) ¼
0 and the conservation condition

+
4

m¼0

Pðm; tÞ ¼ 1: (11)

Equations 8–11 determine the mean-field dynamics of the system.

A simplified mean-field theory

To understand the qualitative properties of the model, such as the existence

and the characteristics of different steady states (phases), it is desirable to

have the simplest mathematical theory that captures the essence of the

dynamics. The mean-field theory described in the last section can be fur-

ther simplified under the approximation that the methylation level mi is

a continuum variable, instead of being discrete. It is known that chemo-

receptors form homodimers. Given the large number of possible com-

binatorial methylation states for the receptor dimer (28 ¼ 256), this

approximation may not be unreasonable.

For the mean-field theory under the assumption of a continuum

methylation level m, the dynamical equations for the methylation (Eq. 10)

are simplified significantly to just one equation governing the dynamics of

the mean methylation level m(t):

dmðtÞ
dt

¼ kRð1� ÆaæÞ � kBÆaæ; (12)

together with the activity equation

Æaæ ¼ 11 e
�ðm1ELÞ

11 e
�ðm1ELÞ 1 ð11 e

�mÞeEMðmÞ1EJj0ðÆaæ�1
2Þ
; (13)

these two coupled equations determine the behavior of the simplified MFT.

Monte Carlo simulations

We have also explored the properties of our hybrid model usingMonte Carlo

(MC) simulations. Simulations were conducted as follows. The receptors

filled a two-dimensional square lattice, typically of size N ¼ 65 3 65

receptors. When multiple receptor types were used, the receptors were

arranged randomly. Initial conditions were generally for the receptors to

have methylation level m ¼ 2, no bound ligand (l ¼ 0), and activity of each

receptor selected randomly to be 0 or 1. We are not concerned with the

absolute timescale in this study; for convenience, the unit in time is set by the

slow methylation timescale tR ¼ 1/kR. The system was evolved in time with

random sequential updating. During Monte Carlo step of length Dt ¼ 0.005,

N receptors were selected at random, in sequence, to be updated. Updating of

a receptor consisted of two steps: equilibration of the activity and ligand

binding according to the energy function for a single receptor, and potential

methylation or demethylation governed by the kinetic equations. For

equilibration, for a given single receptor i, the energies Ei(ai, lijmi) for the

four possible states ai¼f0,1g, li¼f0,1g were computed. One of the four

states, (ai,li), was selected randomly according to the probability

(}exp½�Eiðai; lijmiÞ�). Based on the resulting ai, the appropriate rate TR or
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TB was computed, and the probability for methylation (demethylation) to

occur in this time step was TRDt (TBDt). A random number was generated,

and methylation (demethylation) was performed if the random number was

less than the probability.

RESULTS

Using the methods described above, we studied both steady-

state (long time) and transient (short time) properties of the

model for different stimuli. Many interesting observations on

the response and the steady-state behavior of the system have

been made in the recent study by Shimizu et al. (2003) using

a similar but simplified model. Our emphasis here is to

understand the underlying mechanisms of the observed

phenomena for the more general model.We have also studied

the behavior of our model in the absence of methylation

dynamics, which is crucial in understanding many experi-

ments with mutant strains and almost all of the in vitro

experiments.

The steady-state behavior: phases and
phase transition

At steady state, the fluxes of receptor populations in the m
space have to be balanced, and we can replace Eq. 10 by its

steady-state equation

kRP0ðmÞð1� aðmÞÞ ¼ kBP0ðm1 1Þaðm1 1Þ; (14)

form¼ 0, 1, 2, 3, where P0 is the steady-state probability. By

summing the above equation over m, it is easy to see that the
average steady-state activity of the system Æaæ will be

a constant independent of ligand concentration

Æaæ ¼ +P0ðmÞaðmÞ ¼ kR=ðkB 1 kRÞ; (15)

provided the following conditions are both satisfied:

P0ð0Það0Þ ¼ 0; P0ð4Þ½1� að4Þ� ¼ 0: (16)

These conditions can be strictly enforced by having EM(0) ¼
N and EM(4)¼ �N (i.e., a(0)¼ 1� a(4)¼ 0), which leads

to perfect adaptation, or by having large enough EM(0) and

�EM(4), together with small receptor populations at m ¼
0 and m ¼ 4 (i.e., a(0), 1�a(4), P0(0), P0(4)¼1), which lead

to near perfect adaptation.

Therefore, for a model with (near) perfect adaptation, the

steady-state activity is given by the balance of themethylation

and demethylation rates, independent of the ligand concen-

tration. Essentially, the system adjusts its overall methylation

level to regulate the activity of the system to be at exactly the

desired level. However, this desired activity level is not

always available to the system. Imagine the extreme situation

in which the coupling constant is much larger than other

energy scales in our model. Then the receptors of the system

would be either all active or all inactive depending on the

overall methylation level and ligand concentration. In this

case, except for average activities near 0 or 1, the intermediate

activity levels cannot be achieved in a steady-state solution of

the model. As a result, in trying to reach an unavailable

activity level, the methylation and demethylation processes

drive the system into an oscillatory state between the fully

active state and the fully suppressed state.

The simplest way to show the existence of the oscillatory

phase in our model is by studying the mean-field theory. In

particular, the results from the simplified MFT with

continuum methylation levels are especially intuitive. In

Fig. 1, we plot the MFT relation between the mean activity

and the mean methylation (Eq. 13), together with the null

line of the methylation kinetics Eq. 12, which is simply

Æaæ ¼ kR=ðkB 1 kRÞ in our model. The intersection of the two

lines, which we call (m0, a0), is the fixed point of the system.

The stability of the fixed point is determined by the sign of

the local derivative s [ @Æaæ=@mjm¼m0
for the activity

versus methylation curve. For coupling strength jEJj smaller

than a critical value Ec
J ; s is positive and it is easy to show

that the steady-state fixed point is stable (Fig. 1 a). However,
for larger values of jEJj, the MFT relation between Æaæ and m
is no longer monotonic and there are multiple solutions of

Æaæ for a given m for a range of m and Æaæ. When the fixed

point activity a0 falls within this activity range, s is negative
and the fixed point becomes unstable. The behavior of the

FIGURE 1 Illustration of the two different phases: (a) the stationary phase

at jEJj, jEc
J j; and (b) the oscillatory phase at jEJj.jEc

J j: The activity-

methylation relation is represented by the thick line. The horizontal thin line

is the null line for the methylation kinetics: points below it will move toward

higher methylation regions (toward the right along the thick line), and points
above it will move to lower methylation regions (toward the left along the

thick line). The slope of the activity-methylation relation at the intersection

of the two lines determines the stability of the fixed point (d).
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model is then a limit cycle alternating between the two stable

branches of the MFT line, as shown in Fig. 1 b.
The existence of the oscillatory phase is a general result of

frustration between the methylation dynamics, which drives

the system toward a specific activity, and the high coupling

constant, which makes the system (energetically) unstable at

that particular activity level. The onset of the transition

occurs when the derivative @Æaæ=@mjm¼m0
¼ N: This transi-

tion is related to the phase transition in equilibrium Ising-like

models, but the oscillation is due to the additional feature of

our model introduced by the (nonequilibrium) methylation/

demethylation dynamics. Quantitatively, the onset of the

oscillatory phase occurs at a critical coupling constant larger

than that of the Ising transition.

The different phases of the model were also investigated

by simulating the complete hybrid model using the Monte

Carlo method. In particular, the phase diagram was de-

termined in detail for the energy parameters used in Shimizu

et al. (2003), but using our simplified methylation kinetic

equations with kR ¼ 1 and kB ¼ 1. EJ values from 0 to �5

were studied. The simulation was run for 100 time units to

ensure that steady state was reached and then for an

additional 657 time units to collect data. Values of the

average activity over all receptors, Æaæ, were recorded every

0.01 time unit (time step Dt ¼ 0.005). The variance and the

power spectrum of the average activity were also computed.

Two types of behavior, a nonoscillatory phase at weaker

coupling and an oscillatory phase at stronger coupling, can be

easily identified from the time series of average activity and

their corresponding power spectrum, as shown in Fig. 2, a and
b, respectively. To characterize the transition, the time

variance of the spatially averaged activity ðÆaæÞ; s2
a ; can be

calculated for any given ligand concentration [L]. As shown in
Fig. 2 c for ½L� ¼ 0; s2

a increased as the coupling strength

increased (i.e., as EJ became more negative). We approxi-

mately associated the transition point with the maximum in

the second derivative of variance s2
a versus EJ relation. The

critical coupling had only a weak dependence on m and thus

on the concentration of ligand in the system, as shown in the

inset of Fig. 2 c.
Even though the existence of oscillatory phase is quite

evident in our simulation with finite number of receptors, we

do not expect the oscillatory phase to persist in the

thermodynamic limit of infinite system size. Although small

systems can oscillate as a single unit, with all receptors

approximately in phase with each other, we expect the phase

coherence of such oscillation to decrease as the size of the

system increases. The decoherence of the phase is based on

very general symmetry arguments and should therefore

restore the time translation invariance, i.e., the steady state of

the system, in the infinite system (thermodynamic) limit

(Grinstein and Tang, 1995). We simulated a range of system

sizes (in the absence of ligand, with EJ ¼ �4) from 32 3 32

to 260 3 260. We found that the variance in the average

activity decreased significantly as the system size increased,

indicating a decrease in the amplitude of the activity

oscillations. Results are shown in Fig. 3.

The correlations between different receptors as a function

of their separation d were also studied. Not surprisingly, the

activity correlation Ca(d) increased with stronger coupling

constants. We also found that the methylation correlation

CmðdÞ[ ðÆmimjæ� Æmæ2Þ=ðÆm2æ� Æmæ2Þ (with the distance

between the two receptors i and j equal to d) showed

observable anticorrelation of up to �0.2 for adjacent

receptors (d ¼ 1) but was ;0 for longer distances.

For independent receptors, the difference in their methyl-

ation levels leads to the difference in their activity, which in

turn evens out the methylation level difference because of the

way methylation rates depend on activity. For interacting

receptors, the coupling between neighboring receptors

FIGURE 2 Monte Carlo simulation of the system using energy parameters

from reference Shimizu et al. (2003) (EM(m)¼ (m� 2)Em1 d(m� 4)Emwith

EL ¼ � Em ¼ 1.95 and Ki
d independent of m): (a) The average activity time

series for steady-state (EJ¼�2.5) and oscillatory (EJ¼�4.0) phases. (b) The

power spectrum (log plot) for the data shown in a. (c) The variance of the
average activity versus the coupling constant; the transition point is defined as

the coupling constant where this curve has the largest second derivative.

‘‘Phase diagram’’ in the (EJ, [L]) space is shown in the inset.
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decreases their activity difference and therefore weakens

the restoring force for methylation level difference. This is

the main reason for the observed small anticorrelation in

methylation levels of neighboring receptors. This anticorre-

lation can be understood more systematically in a modified

mean-field theory, which takes into account nearest neighbor

receptor correlations. The modified mean-field theory is

presented in the Appendix of this article.

Of the two types of behavior (phases) we found in our

model, the oscillatory phase has yet to be observed exper-

imentally, so we leave the discussion on possible experi-

mental verification to the end of the article. In the rest of the

results section, we confine our model to the parameter space

corresponding to the nonoscillatory phase and study its

relation to various existing experiments.

Enhanced gain in response to step
function stimulus

Even though chemotaxis is the behavior of cells in following

a spatial chemical gradient, it is achieved in bacteria by

temporal sensing (Segall et al., 1986). Therefore, the majority

of the experimental studies on bacterial chemotaxis can be

conveniently carried out by subjecting the cell to a pure

temporal stimulus, i.e., a step function change of the

chemoattractant (or repellent) concentration in time. Due to

the separation in timescales for ligand binding (t‘), receptor

conformational change (ta) and the methylation/demethyla-

tion processes (tm), the response can be separated into the

initial (fast) response to the stimulus, and the longer time

relaxation, when methylation and demethylation play impor-

tant roles. The short time response is a measure of the

sensitivity of the system, which is the focus of this subsection.

For a given ambient external ligand concentration ([L]0)
represented by a constant ‘‘chemical potential’’ m0 ¼
lnðKi

d=½L�0Þ in our model, the equilibrium state of the sys-

tem can be described by the steady-state distribution of

receptors in different methylation states, P0(m). Upon

a sudden change of external ligand concentration (D[L]), the
chemical potential changes from m0 to m ¼ m0 1 Dm, with

Dm ¼ �lnð11 ðD½L�=½L�0ÞÞ: For the short time response, the

methylation levels of receptors have no time to adjust. The

short time activity change (immediate response) can therefore

be determined by the Hamiltonian (Eq. 1) with the fixed

prestimulus receptor methylation distribution P0(m), but for
a new chemical potential m0 1 Dm.

For realistic environments, the change in external ligand

concentration is usually small, and linear response calcu-

lations are often useful. Using the mean-field theory

approach, for small changes Dm, we can compute the linear

response DÆaæ by expanding Eq. 9 at t ¼ 01:

DÆaæ ¼ +
m

P0ðmÞ

3
@aðm; ÆaæÞ

@Æaæ

����
0

DÆaæ1
@aðm; ÆaæÞ

@m

����
0

Dm

� �
; (17)

from which we obtain the linear response:

DÆaæ ¼
+
m

P0ðmÞ
@aðm; ÆaæÞ

@m

����
0

1�+
m

P0ðmÞ
@aðm; ÆaæÞ

@Æaæ

����
0

Dm: (18)

The subscript 0 here and afterward in the derivatives means

the derivatives are taken at the prestimulus values of

parameters, e.g., at m ¼ m0. At larger coupling strength jEJj,
the activity aðm; ÆaæÞ is influenced more by the average

activity of its neighbors Æaæ (as is evident from Eq. 8), and

therefore @aðmÞ=@Æaæj0 is larger, leading to an increased

linear response DÆaæ: DÆaæ diverges when the denominator in

Eq. 18 goes to 0, i.e., when

+
m

P0ðmÞ
@aðm; ÆaæÞ

@Æaæ

����
0

¼ 1; (19)

which determines the transition point between the oscilla-

tory-nonoscillatory phases for the mean-field model. The

critical surface is given by

�+
m

P0ðmÞ
j0EJð11e

�ðm1ELÞÞð11e
�mÞeEðmÞ1EJj0ðÆaæ�1

2Þ

ð11e
�ðm1ELÞ1ð11e

�mÞeEðmÞ1EJ j0ðÆaæ�1
2ÞÞ2

¼1: (20)

We also studied the response of the system to arbitrary

increases in ligand concentration by simulating the full

model, mostly for the reference energy parameters used by

FIGURE 3 Power spectrum (semilog plot) of the average activity time

series for different system sizes with EJ ¼ �4.0 and other parameters the

same as in Fig. 2. Variance of the average activity over time versus system

width is shown in the inset. The decoherence of the oscillatory phase for

larger systems is evident as the variance decreases rapidly with an apparent

stretched exponential decay with the fit of 0.25 exp(�0.1w0.64), where w is

the system width.
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Shimizu et al. (2003). These simulations were done with

different coupling strengths and for various initial ambient

concentrations of ligand.

In Fig. 4 a, we plot the response activity versus the change
in ligand concentration for several different initial concen-

trations forEJ¼�2.5.When the response curves were shifted

by subtracting the minimum activity and rescaled to range

between 0 and 1, theywerewell fit by aHill equationwithHill

coefficient ;1. The fit curves are also shown in Fig. 4 a.
Technically, gain of the signaling pathway (i.e., before the

signal affects the motor) is defined as the ratio between

fractional kinase activity change and the change in receptor

occupancy. However, experimentally, it is difficult to

measure receptor occupancy directly; therefore, the strength

of the response is often more conveniently characterized by

the sensitivity of the system, defined as the ratio between

fractional activity change and the fractional change in ligand

concentration. It is easy to see from the definitions that the

gain and sensitivity are closely related to each other, and they

are both good characterizations of the signal amplification in

the system (Sourjik and Berg, 2002b; Mello and Tu, 2003b).

Two such measures of sensitivity were considered in this

article. The first was the normalized susceptibility,

x[
1

Æaæ0
lim

Dm/0

DÆaæ
Dm

; (21)

where Æaæ0 is the prestimulus activity. x was computed

numerically by fitting the DÆaæ versus Dm curve by a quartic

polynomial passing through the origin and using the

coefficient of the linear term. The second measure was the

fractional change in activity in response to a doubling of

ligand concentration (Dm ¼ �ln 2), divided by Dm, as used

in Shimizu et al. (2003).

As expected, the sensitivity by both measures was

maximal within the same range of m0 but declined for very

large and very small m0. The m0 range for significant

sensitivity corresponded to;2 orders of magnitude in ligand

concentration, as shown in Fig. 4 b. In comparison, the

sensitivity for a system without receptor coupling is ;1

order of magnitude smaller. The sensitivity due to doubling

the ligand concentration was smaller (within 50%) than that

computed from the susceptibility, because doubling the

ligand concentration was beyond the range of linear

response. We note that the sensitivity from doubling the

ligand concentration was numerically a more robust measure

of amplification because the estimated susceptibility was

sensitive to noise for small Dm.

The response curves due to change in ligand concentration

for EJ ¼ �3.1 were similar to those seen for EJ ¼ �2.5 (data

not shown). They were associated with slightly larger

sensitivity. When the activity was rescaled to range from

0 to 1, the response curves could be fit by a Hill equation but

less closely because of noise in the response to small Dm. A

coupling strength stronger than the critical coupling, i.e., in

the oscillatory phase, was also tried (EJ ¼ �4), but the

response was very noisy, particularly for small Dm, so that

a smooth response curve could not be generated even for

larger numbers of runs.

The heightened signal gain in the model confirms the

importance of receptor coupling. However, quantitatively,

with the reference model parameters, the range of ambient

ligand concentrations over which high sensitivity exists is

only ;2 orders of magnitude, short of the four decades

observed experimentally (Sourjik and Berg, 2002b). The

extremely broad range of high sensitivity may be explained if

FIGURE 4 (a) Response curve (to a step change in ligand concentration)

for the wild-type cell (with one receptor species) with the same parameters as

in Fig. 2, and EJ ¼ �2.5. Different symbols correspond to different ambient

ligand concentrations (specified in the legend in units of Ki
d). After

subtracting the minimum activity and scaling the activity to between 0 and 1,

each data set is fitted by Hill function. The rescaled Hill functions are plotted

as curves. All the fitted Hill coefficients are;1. (b) Sensitivity of the system,

defined for doubling of the ligand concentration, plotted versus the ambient

ligand concentration in units of Ki
d for different values of coupling strength

EJ ¼ 0, �1.25, and �2.5.
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Ki
d is made to depend on methylation, as assumed in our

previous study (Mello and Tu, 2003b). The dependence of

Ki
d on methylation was also concluded from modeling of in

vitro response data by Bornhorst and Falke (2003). In terms

of the detailed behaviors of the response curves, the current

model with the reference parameters does not match the

experiments either. In particular, the activity did not approach

zero when a saturating concentration of ligand was added in

the reference model. This problem arose because with the

reference energy parameters, the activity of receptors with

methylation statem¼ 3, 4 was fairly large, even when bound

with ligand. The problem may be remedied by increasing EL

for larger m, i.e., to make EL dependent on the methylation

level. These quantitative observations suggested that the

energy form used by Shimizu et al. (2003) may be

oversimplified. We expect that both EL and Ki
d should

depend on methylation level m.

Overshoot in response to a strong
pulse stimulus

Another important type of temporal stimulus is a large

change of the ligand concentration for a short period of time

Dt, i.e., a pulse. During a strong pulse of attractant, the kinase
activity of the cell is highly suppressed, and in the meantime

the overall methylation level also increases by a small amount

Dm } kRDt. However, the effect of this small methylation

level change on the activity can be amplified due to receptor

coupling. As a result, instead of relaxing monotonically back

to its prestimulus level after the pulse, the activity can

overshoot to a higher value (than the prestimulus activity)

before it finally relaxes back to the prestimulus level. This

‘‘overshoot’’ phenomenon was first observed experimentally

for strong pulses (Block et al., 1982; Segall et al., 1986).

Using mean-field theory, we can show in the following that

the existence of the observed overshoot is directly related to

the signal amplification as discussed in the last subsection.

At the end of the pulse, the ligand concentration returns to

its prestimulus level, but the system is left with a small

change in the receptor methylation level distribution:

DPðmÞ � kRDt � 1: The resulting change in activity (from

the prestimulus level) can be determined approximately in

the mean-field theory by the linear expansion of the self-

consistent Eq. 9:

DÆaæ¼+
m

P0ðmÞ
@aðm;ÆaæÞ

@Æaæ

����
0

DÆaæ1aðmÞDPðmÞ
� �

; (22)

from which the activity change DÆaæ can be expressed as:

DÆaæ¼
+
m

DPðmÞaðmÞ

1�+
m

P0ðmÞ
@aðm;ÆaæÞ

@Æaæ

����
0

: (23)

The numerator in the above expression represents the direct

consequence of the stimulus; it is proportional to the small

methylation change caused by the pulse. However, the

overall activity change is amplified if the denominator

D[ 1�+
m
P0ðmÞð@aðmÞ=@ÆaæÞj0 is small also. In fact, the

same denominator appears in the expression for signal

amplification (Eq. 18). For large receptor coupling approach-

ing Ec
J ; D is found to be small, approaching 0. Therefore, due

to the same mechanism of receptor coupling, a small change

in methylation level distribution caused by a strong but short

pulse can cause a significant overcorrection of the system’s

activity right after the strong pulse, and the activity relaxes

back to its prestimulus level only when the overall methy-

lation level returns to its prestimulus level over longer times.

We have studied the response to a pulse in ligand

concentration using MC simulation with the parameters

given in Shimizu et al. (2003). The system is first run for a long

time with no ligand to equilibrate. At time t ¼ 120, a high

ligand concentration, characterized by m ¼ mp, is applied to

the system for a short duration Dt before it is turned off. Time

traces of the average activity, average methylation state, and

average ligand occupancy were recorded from t¼ 100 to t¼
130. For each set of conditions, time traces from 10 duplicate

simulations were averaged to minimize noise. The coupling

EJ ¼ �2.5 was studied in the greatest detail, for mp between

11 and �3.5 and for pulse lengths Dt between 0.05 and

0.25.Thepulse causeda suddendecrease in activity.The inter-

val in which activity was lowered was defined from the time

when the activity dropped below its prepulse average value

to the time that it returned above this value. The activity over-

shot its initial value, and the overshoot interval was defined

from the time the increasing activity surpassed its prepulse

average to the time the activity decreased back to this average.

The time integral of the deviation of the activity from its

average was determined for both the initial response and for

the overshoot.

The averaged time series of the activity and methylation

levels for a strong pulse with saturating amount of ligand (mp

¼�3.5) with a short time period (Dt¼ 0.05) are shown in Fig.

5, a and b. The overshoot in activity is rather pronounced after
the peak in average methylation level, and even a second peak

in activity can be seen in Fig. 5 b. The individual activity

relaxation rate is much faster than the methylation/demethy-

lation rates; however, the global activity relaxation rate is

affected by receptor coupling and can be lowered significantly

at strong receptor coupling (i.e., analogous to critical slowing

down in critical phenomena). Depending on the relative

strength of the methylation/demethylation rates and global

activity relaxation rate slowed by receptor coupling, the

overall decay to the prestimulus activity level may have an

oscillatory component, leading to the damped oscillation in

Fig. 5, a and b. The duration and strength of the activity

suppression and overshoot for different pulse durations are

summarized in Fig. 5, c and d. Interestingly, even though the
durations of the activity suppression and overshoot are quite
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different, the corresponding integrated strengths are always

very close to each other.

Behavior of the CheRCheB mutant strains (I):
single type of receptors

The properties of each receptor, such as its kinase activity

and binding affinity for ligand, may depend on the receptor’s

methylation level. However, it is difficult to obtain the

methylation level dependence from measurements on WT

cells because of the dynamical methylation and demethyla-

tion processes. To better understand the methylation de-

pendence, it is therefore desirable to turn off the methylation/

demethylation processes. Experimentally this is achieved by

creating mutant strains of bacteria with the methylation

enzyme CheR or the demethylation enzyme CheB or both

knocked out. In this and the next subsection, we study the

behavior of our model for such mutant strains, in which the

methylation level of each receptor is fixed.

The simplest case, which we treat in this subsection,

corresponds to the situation where there is only one type of

receptor with a unique methylation level. Most of the in vitro

experimental studies fall into this category. For this simple

situation, the general energy function Eqs. 1 and 2 can be

simplified:

H¼+
i

ELðmÞli1EMðmÞ1+
j

EJ aj�
1

2

� �" #
EJai

1+
i

mðmÞli; (24)

where m is the unique and fixed methylation level of all the

receptors. Since the dependence of the Hamiltonian on the

receptor occupancy li is linear, li can be summed over easily

in the partition function Z:

Z¼ +
fai ;lig

expð�HÞ

¼+
faig

Y
i

½11expð�ELðmÞai�mðmÞÞ�

3exp �+
i

EMðmÞ1EJ+
j

aj�
1

2

� � !
ai

" #
: (25)

For binary variable ai ¼ 0 or 1, using the identity

11exp½�ELðmÞai�mðmÞ�[½11expð�mðmÞÞ�expð�E#LaiÞ,
where E#L ¼ln½11expð�mðmÞÞ=11expð�ELðmÞ�mðmÞÞ�,
the partition function can be further simplified to

Z¼½11expð�mÞ�N +
faig

expð�HeffÞ; (26)

where the effective Hamiltonian for the activity alone is

Heff¼+
i

Eeff1EJ+
j

aj�
1

2

� �" #
ai: (27)

This is exactly the Ising model with an effective external

field Eeff given by

Eeff¼EMðmÞ1ln
11expð�mðmÞÞ

11expð�ELðmÞ�mðmÞÞ

� �

¼EMðmÞ1ln
11½L�=Ki

d

11½L�=Ka

d

" #
: (28)

The effective field Eeff depends on the ligand concentration

[L], or equivalently on the chemical potential m(m). For very
high chemical potential, or when ligand concentration is

much smaller than Ki
dð½L� � Ki

dÞ; the effective external field

FIGURE 5 Response of the system: (a) average methylation and (b)

average activity, to a short pulse (Dt ¼ 0.05) with saturating strength (mp ¼
�3.5). The response can be characterized by the durations of the immediate

activity suppression and the subsequent overshoot, and the integrated

strength of these two responses. These two measures of the response are

plotted in c and d, respectively, for different pulse duration (with the same

saturating strength mp ¼ �3.5).
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is approximately the same as the activation energy of the

vacant receptors, E0. For very low chemical potentials, or

when ligand concentration is much larger than

Ka
dð½L� � Ka

dÞ; the effective external field is approximately

the activation energy of the occupied receptors, E1. For

ligand concentrations in between, i.e., Ki
d , ½L�,Ka

d; the

effective field interpolates between these two extreme energy

values. We depict the dependence of the external field Eeff on

the external ligand concentration schematically in Fig. 6.

This reduced model for CheRCheB mutant is similar to one

studied by Shi and Duke (1998). Our model naturally

includes multiple levels of methylation as compared to the

single methylation level model of Shi and Duke, and the

derivation of this Ising-like model from a more general

model makes our model easier to compare with experiments.

Much is known about Ising model, one of the best-studied

models in statistical physics, and this knowledge can now be

directly used to understand the behavior of our system. The

behavior of the (two-dimensional) Ising model depends

strongly on the coupling strength. For coupling strength

below its critical value, the dependence of the total activity

on the external field is monotonic and continuous, passing

through 1=2 at Eeff ¼ 0. The slope of the response curve

@Æaæ=@Eeff at Eeff ¼ 0, a measure of cooperativity, increases

indefinitely as the coupling constant approaches its critical

value. For coupling constants larger than the critical value,

the dependence of Æaæ on Eeff becomes discontinuous at Eeff

¼ 0, as a gap in Æaæ opens up at Eeff¼ 0. Extra variation in the

response behavior is introduced in our model by the

dependence of the ‘‘external field’’ on the ligand concen-

tration, parameterized by the methylation level dependent

variables E0 and E1 and Ki
d: Experimentally, the detailed

response curves of activity versus ligand concentration do

show significant quantitative differences for different mutant

strains and under different experimental conditions (Borko-

vich et al., 1992; Bornhorst and Falke, 2001; Li and Weis,

2000). Qualitatively, the diversity in the response behavior

could be explained by the fact that different mutant strains

have to be characterized by different parameters (E0, E1, and

Ki
d), and different experimental conditions could also affect

the coupling strength. The ultimate test for the model would

be to explain quantitatively all the different experimental

data within the same model; for that purpose, more

controlled, quantitative experiments and better understand-

ing of how experimental conditions, such as receptor

concentrations, affect the coupling strength are needed.

The simplified mutant strain model with all the receptors

at a fixed methylation level was studied also by Monte Carlo

simulation to demonstrate the range of possible behaviors.

For these mutant strain simulations, methylation and

demethylation rates were set to 0, and all the behaviors

were determined by the Hamiltonian.

Coupling between receptors was kept weaker than the

Ising critical point. EM(m) ¼ (m � 2)Em 1 d(m � 4)Em with

Em ¼ �1.95, the same as in Shimizu et al. (2003), was used;

however, we used EL ¼ 2.5 for m ¼ 2 and EL ¼ 4 for m ¼ 3

to ensure that the activity approached 0 at saturating ligand

concentration. As can be seen from Fig. 7, increasing

receptor coupling has drastically different effects on activity

for systems with different methylation levels. The m ¼ 2

system had activity 1=2 in the absence of ligand, but addition
of even small amounts of ligand acted as an applied field to

inactivate the receptors, and receptor coupling enhanced this

inactivation. Therefore, the activities are suppressed by

strong receptor coupling for systems with low methylation

level, as shown in Fig. 7 a. The m ¼ 3 system had activity

.1=2 in the absence of ligand, so that the coupling worked

to increase the activity until the ligand concentration caused

the activity to fall below 1=2; after which the coupling

helped decrease the activity. Therefore, stronger coupling led

to steeper response curves for systems with higher

methylation level, as shown in Fig. 7 b.
Another important property of the system is the average

receptor occupancy Ælæ: Æaæ and Ælæ are strongly correlated as

receptor occupancy directly affects the receptor activity.

They are not linearly related to each other, however, due to

the interplay between receptor coupling and the effective

local field. From the simplified partition function for our

model, the relation between the average receptor occupancy

Ælæ and the average activity Æaæ can be easily determined:

Ælæ¼�1

N

@ lnðZÞ
@m

¼ð1�ÆaæÞ ½L�
½L�1K

i

d

1Æaæ
½L�

½L�1K
a

d

; (29)

where the average activity can be formally expressed as

Æaæ ¼ �ð1=NÞð@ lnðZÞ=@EeffÞ: The above relation between

Ælæ and Æaæ is rather intuitive given that the active and inactive
receptors have different ligand binding affinities.

FIGURE 6 Behavior of a mutant strain with a single methylation level can

bemapped to an Isingmodel exactly. The dependence of the effective external

field in the reduced Ising model is shown schematically as a function of the

chemical potential m ¼ lnðKi
d=½L�Þ: At low ligand concentrations below the

dissociation constant of the inactive receptor ð½L� � Ki
dÞ; the external field is

essentially equal to the activation energy of the vacant receptor: Eeff ; E0([

EM). At high ligand concentrations above the dissociation constant of the

active receptor ð½L� � Ka
dÞ; the external field is essentially equal to the

activation energy of the ligand occupied receptor: Eeff ; E1([ EM 1 EL). In

between Ki
d and K

a
d; the external field interpolates between E0 and E1.
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For a given receptor type whose effective external fields

are E0 , 0 and E1 . 0 for its vacant and ligand occupied

states, respectively, we can study the relation between its

ligand occupancy and activity. For convenience of compar-

ison with the average activity Æaæ; we define the receptor

vacancy rate Ælær [ 1� Ælæ: Æaæ and Ælær have the same trend

for their dependence on the external ligand concentration [L]:
they both decrease from 1 to 0 as [L] increases. However,
depending on the values of E0 and E1, these two curves can

be shifted from each other, i.e., their half maximum points

occur at different ligand concentration values. The Æaæ curve
passes through the half activity point Æaæ ¼ 1=2 at Eeff ¼ 0,

which occurs at the ligand concentration

½L�¼½L��¼K
i

d

expð�E0Þ�1

1�expð�E1Þ
:

At the same ligand concentration, the receptor vacancy can

be determined from Eq. 29:

Ælæ�r ¼1�1

2

½L��

½L��1K
i

d

1
½L��

½L��1K
a

d

" #

¼1

2

expð�E0�E1Þ�1

expð�E0Þ�expð�E1Þ
�1

� �
: (30)

From the above expression, at the half activity point, the

receptor occupancy can be either close to 1 if E0/0 and

jE1=E0j � 1; or close to 0 if E1/0 and jE1=E0j � 1; or

close to 1=2 if E0 1 E1 � 0. The different types of behaviors

for Æaæ and Ælær versus [L] for different values of E0 , 0 and

E1 . 0 are illustrated in Fig. 8 a. These results can also be

explained rather intuitively from the occupancy half

maximum point, where half of the receptors have a local

field of E1 and another half have a local field of E0. In the

presence of strong receptor coupling, the receptors with

the larger absolute values of local field dominate, leading to

the average activity Æaæ to be either� 0 (if jE1j � jE0j) or� 1

(if jE0j � jE1j) at Ælæ ¼ 1=2; which leads to the separation of
the two response curves.

As shown directly in Fig. 8 b, the relation between

occupancy and activity could be highly nonlinear. In general,

for receptors with a low methylation level, the activities are

lower due to larger E1 and smaller jE0j. Therefore, the

activity curve will trail the occupancy curve. On the other

hand, for a system with high methylation level receptors,

where larger activity requires a large jE0j and smaller E1, the

occupancy curve will trail the activity curve. This general

behavior is consistent with the recent in vitro experiments by

Levit and Stock (2002).

Behavior of the CheRCheB mutant strains (II):
multiple receptor types

A more complicated situation is where there are two or more

types of receptors, each type with a unique methylation level.

Despite the existence of multiple receptor types, it can be

shown that the same simplification of Hamiltonian as in the

FIGURE 8 (a) Average activity (solid curves) and
ligand occupancy (dashed curves) versus ligand

concentration (in units of Ki
d) with EJ ¼ �1.25, EL ¼

4.0, and three different values of EM (shown in the

legend), corresponding to different values of (E0, E1):

E0 ¼�0.5, E1 ¼ 3.5 (d); E0¼�2.0, E1¼ 2.0 (n), and

E0 ¼ �3.5, E1 ¼ 0.5 (¤). Notice the different relative

relations of Æaæ and Ælær for the three different cases,

which roughly represent the general behaviors for low

(d), medium (n), and high (¤) methylation levels

respectively. (b) The nonlinear relationship between

Æaæ and Ælær is shown for the three cases in a.

FIGURE 7 Average activity of the mutant strain at

various receptor coupling strengths with different

methylation levels: (a) m ¼ 2 state, because E0 ¼
0 and E1 ¼ 2.5 are both greater than or equal to zero,

the inactivation by ligand binding is enhanced by

receptor coupling; (b)m¼ 3 with E0¼�1.95 and E1¼
2.05, depending on the ligand concentration, the

average activity spans over the full range between

0 and 1. The transition region becomes sharper as the

coupling constant is increased.
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previous subsection can be carried out by summing over the

ligand binding variable flig. However, each receptor now

has a local field, which is different for the different receptor

species and/or different methylation levels, thus giving rise

to an Ising-like model with heterogeneous local field. A

related model studied in the physics literature is the so-called

random field Ising model, where the local field is random

with zero mean and a nonzero variance. For the random field

Ising model, the system becomes ordered only at a much

higher coupling constant than that of the homogeneous

system, if at all. Intuitively, the random local field competes

with the ferromagnetic coupling, and coherence over the

whole system becomes harder to achieve. This argument is

generally applicable for our model in the case of multiple

receptor types. As a consequence, assuming the coupling

constant to be the same, the response curve of the system

with multiple receptor types is more gradual than that of the

single receptor type system. This can be easily seen from the

comparison of the response curve of the mutant with single

methylation level (Fig. 7 b), which is already very steep at

EJ ¼ �1.5, and that of the model with receptors in differ-

ent methylation states (Fig. 4 a), which is gradual even with

a much larger coupling constant EJ ¼ �2.5.

Besides the apparent cooperativity, the overall activity

level of the multiple receptor type system can also be greatly

affected by the receptor couplings. This is clearly demon-

strated in the recent mutant studies by Sourjik and Berg

(2002b), where CheR, CheB, or both are knocked out in the

wild-type cells, and the response of the system to methyl-

aspartate is studied in vivo by using fluorescence resonance

energy transfer. For example, the activity changes for the

same receptor, Tsr with m ¼ 2, upon ligand occupation were

found to be different in different CheRCheB mutant strains.

This is one of the evidences suggesting the existence of

strong coupling between Tar and Tsr. For this particular

example mentioned here, since the Tar receptors in different

CheRCheB mutant strains have different methylation levels,

strong coupling between Tar and Tsr leads to different

activity changes for Tsr. Indeed, incorporating such

heterogeneous receptor coupling into a mean-field theory,

we were able to fit the experimental data from all the six

mutant strains simultaneously using the same set of

parameters. The details and important implications of such

a study can be found in our original article (Mello and Tu,

2003b). However, one concern is that MFT is just an

approximation of the full model. In the following, we study

the response behavior of the hybrid model using both the

mean-field theory and the full Monte Carlo simulation. Our

emphasis in this article is to explore the consistency between

the mean-field theory and the full Monte Carlo simulation, in

particular for the parameter regime where MFT shows good

agreement with experiments.

Considering only the major chemoreceptor types Tsr and

Tar (with abundance ratio Tsr/Tsr ¼ 2:1), each mutant strain

can be characterized by two methylation levels mTar (for Tar

receptor) and mTsr (for Tsr receptors). The six mutant strains

used in the SB experiments, CheR�, CheB�, CheRChe-

B(EEEE), CheRCheB(QEEE), CheRCheB(QEQE), and

CheRCheB(QQQE), can therefore be conveniently repre-

sented as (mTar, mTsr) ¼ (0, 0), (4,4), (0,2), (1,2), (2,2), and

(3,2), respectively. In our model, each receptor has three

independent parameters E0(q, m), E1(q, m) and Ki
d(q, m),

which depend on its species label q (q ¼ 1 for Tar and q ¼ 2

for Tsr) and methylation level m. The receptor interaction is

described by four coupling constants EJ(q, q#) between the

same and different chemoreceptor species. There are eight

types of (major) chemoreceptors involved in SB’s six mutant

strains: five different Tar states (m ¼ 0, 1, 2, 3, 4) and three

different Tsr states (m ¼ 0, 2, 4). For the MC simulation, the

receptors were arranged randomly on a 65 3 65 square

lattice, and the methylation/demethylation kinetics were

turned off by setting kR ¼ kB ¼ 0. Response of these mutants

to various ligand concentrations was determined by sim-

ulating them for 1 time unit to reach equilibrium and then an

additional 15 time units to collect activity and ligand binding

data.

Following the same approach as in our previous study

(Mello and Tu, 2003b), we fit the results of the mean-field

theory of our current model to the data from all the six mutant

experiments to find the appropriate parameters for these eight

types of receptors and the coupling constants. As in our

previous study, we can fit our current MFT to all the mutant

data accurately within the experimental error. Given the

amount of data in each mutant experiment and the over-

lapping methylation states in the six different mutant strains,

the fitting problem is highly nontrivial, and the fact that one

can fit all the mutant data with a consistent set of parameters

gives us confidence in the model itself. In fact, even with the

large amount of mutant data and the simplicity of the model,

there are many possible sets of parameters within our model

that can be used to fit all six mutant experiments equally well.

We took one such set of parameters, listed in Table 1, and

simulated the full model using the Monte Carlo method to

check the accuracy of theMFT in the parameter regime that is

relevant for explaining the experiments. (The parameters are

not unique. They can also be different from those used in our

previous study (Mello and Tu, 2003b) because the model we

used here is different.)

In Fig. 9, we plot the results from Monte Carlo simulation

with the MFT parameters from Table 1 together with the

experimental data from Sourjik and Berg (2002b). It is clear

from Fig. 9 that the Monte Carlo results agree reasonably

well with the experimental results, and hence do not differ

significantly from the MFT results, which are fitted directly

to the experimental results. We chose not to show the MFT

results in Fig. 9 for clarity of the figure, with the

understanding that the MFT results are mostly within a few

percent of the experimental data. Interestingly, most of the

discrepancy between the full MC model and the MFT occurs

in the strain CheRCheB(EEEE). The detailed reason why

1590 Mello et al.

Biophysical Journal 87(3) 1578–1595



this specific strain (CheRCheB(EEEE)) shows discrepancy

is unclear, probably related to the fact that the same

parameters for Tar(EEEE) are also needed to fit data for

the CheR� strain, which is the hardest to fit because of its

extremely small activity and high sensitivity.

Technically, the consistency between the MFT and the full

model provides us with a good fitting strategy for the full MC

model. To fit the experimental data with the full MC model,

we can first use the numerically more tractable MFT, and the

resulting MFT parameters can serve as a good starting point

in the parameter space for fitting the experimental data with

the full MC simulation, which is much more computationally

intensive.

Though it is not the purpose of this article to study the SB

experimental data in detail (for that, see our previous article

(Mello and Tu, 2003a)), an observation and some spec-

ulations are in order for an interesting feature found in the

parameters listed in Table 1. There are many sets of

parameters that can give rise to similar agreement between

our model and the experimental data; the fact that we have

the coupling constants EJ(1, 1) ¼ 0 in Table 1 is purely

fortuitous. However, we did find that in general the diagonal

coupling constants, i.e., between the same type of receptor

(Tar-Tar, Tsr-Tsr) are smaller than the off diagonal coupling

constants, i.e., between Tar and Tsr. The reason could be that

in the presence of both types of receptors, the direct

interaction between Tar receptors is indeed small due to

the way the heterogeneous receptor cluster is organized.

Specifically, it could turn out that within the receptor cluster,

the neighbors of any Tar receptor are mostly Tsr receptors.

This hypothesis seems to be consistent with recent

experimental works by Sandy Parkinson’s lab (Ames et al.,

2002; Ames and Parkinson, 2004), which showed preference

of mixed team between Tar and Tsr within trimer of dimer

receptor complex. However, in the absence of Tsr receptors,

such as in the new experiments by Sourjik and Berg (2004),

Tar receptors will have to team together among themselves,

and the direct coupling between Tar and Tar could therefore

be larger. Further work is needed to incorporate the new

experimental results of Sourjik and Berg (2004) on mutants

with one type of receptor and their earlier experimental data

with both receptor types (Sourjik and Berg, 2002b) into

a unified model.

Other effects, such as using a triangular lattice (in which

receptors each have six nearest neighbors instead of four)

for these mutants were also explored. The response curves for

the triangular lattice were very close to those for the square

lattice.

SUMMARY AND DISCUSSION

We proposed a model describing the kinase activity and

adaptation process of the bacterial chemotaxis system. The

model we constructed can be considered a general model that

includes the important qualitative ingredients of the un-

derlying biology: 1), the existence of multiple methylation

levels for each receptor and their effects on kinase activity

and ligand affinity; 2), interaction between the same and/or

different types of neighboring chemoreceptors within the

receptor cluster; 3), the possible effects of receptor

conformation (activity) on the ligand binding affinity; and

TABLE 1 A set of parameter values that give a good fit between

mean-field theory and the SB data for the six mutant strains

m 0 1 2 3 4

E0(1, m) 0.864 0.310 �0.147 �8.02 �20.1

E0(2, m) 4.69 – �1.04 – �7.97

E1(1, m) 30 2.10 1.41 0.763 0.740

E1(2, m) 30 – 30 – 30

Ki
d(1, m) 2.43 21.3 18.0 0.0314 6.49 3 10�7

Ka
d(1, m) 3.7 3 109 128.9 85.4 204.2 727.1

Ki
d(2, m) 0.257 – 32539 – 24.9

Ki
d(2, m) 2.5 3 1010 – 9.8 3 1017 – 7.7 3 1017

EJ(q,q#) q# ¼ 1 q# ¼ 2

q ¼ 1 0 �4.40

q ¼ 2 �6.41 �1.38

The local parameters for each receptor type, E0, E1 (in unit of thermal

energy) and Ki
d (in unit of mM), are listed for each relevant receptor type

characterized by (q, m), where q ¼ 1 for Tar and q ¼ 2 for Tsr, and m is the

receptor methylation level. Values of Ka
d(q, m) ¼ Ki

d exp(E1 � E0) are also

included for reference; the effective dissociation constant is a complicated

combination of Ki
d and Ka

d, and it also depends on the actual activity. The

coupling constants EJ(q, q#) (listed in the lower table) depend on the

receptor species labels q and q# for two neighboring receptors.

FIGURE 9 Response curves of six different mutant strains with two

receptor species, each in a different methylation state. We first fit the mean-

field theory to the experimental data to obtain a set of parameters, for which

the full Monte Carlo simulations were carried out. The resulting MC results,

shown here as curves, agree with the experimental data, shown as symbols,

reasonably well. This agreement also implies that the MFT is a good

approximation for the full MC model for the parameters used in Table 1.
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4), the appropriate receptor methylation/demethylation

dynamics that maintains high adaptation accuracy. In many

aspects, our model is similar to previous models, especially

the one studied recently by Shimizu et al. (2003). The

uniqueness of our model lies in its generality; for example,

we have included interactions between different types of

receptors, and each receptor can have its own self-consistent

activity and ligand binding parameters depending on its

methylation level. The advantage of such a general approach

is that we can study all experiments within the same model

and at the same time different quantitative experiments can

be fitted together to determine the model parameters.

In our model, the fast kinetics that describes the ligand

binding and kinase activity of the receptors given their

methylation levels is governed by an energy functional

(Hamiltonian), whereas the slow process of receptor

methylation/demethylation is described by kinetic rate

equations. The simplification in describing the methylation

kinetics makes the simulation of our model much faster than

other stochastic models, such as the StochSim approach

(Morton-Firth et al., 1999) used in Shimizu et al. (2003); this

speedup is highly desirable for the numerically intensive task

of parameter fitting. The properties of this hybrid model,

which combines the (quasi)equilibrium description of the

fast timescale and the dynamical equations describing the

methylation process, were then studied in various regions of

the parameter space and under external stimuli that are

relevant for experimental observations. In particular, we

focused on understanding the general consequences of

receptor coupling.

Though adaptation happens at a much longer timescale,

receptor coupling has a very interesting effect on the

adaptation kinetics. We find that when receptor coupling

strength increases, the model loses its ability to adapt.

Instead, the activity oscillates around the preferred activity

level. In our model, we can explain such oscillations

analytically as an instability of the steady-state solution,

caused by the strong coupling strength. As the coupling

strength increases beyond a critical point, the equilibrium

model of coupled receptor activities enters the symmetry

broken phase, where there is a range of activity that is

energetically unstable. This unstable activity range increases

as the coupling strength increases. If the activity to which the

system tries to adapt falls in this unstable range, the steady

state with the preferred activity becomes unstable, and the

activity instead oscillates between the two extremes of the

activity gap.

The existence of the oscillatory phase is due to the

interplay of perfect adaptation and strong receptor interaction

and should be a general phenomenon independent of other

details of the model. However, for a given cell, even if

oscillations exist locally within the receptor cluster, the total

activity variation will be damped by phase decoherence of

such oscillations in different parts of the receptor cluster.

Experimentally, for wild-type cells, the coupling constants

may be well below the threshold for the oscillation, and any

oscillation would be further eliminated or damped by

measurements averaging over many independent individual

cells. Therefore, any possible verification of the oscillatory

phase would have to involve manipulating the coupling

strength (e.g., by overexpressing the receptor complex

proteins) and making single cell measurements. Other more

specific, quantitative predictions based on our current model

can only be made once the parameters of the model are

determined.

It is generally accepted that receptor coupling could induce

higher signal gain, as demonstrated here and in several

previous studies (Bray et al., 1998; Duke and Bray, 1999;

Shimizu et al., 2003; Mello and Tu, 2003b).

In addition, we find that the same mechanism for high

signal gain in response to sustained ligand concentration

change also seems to be responsible for the observed

overshoot in the cell’s response to a strong pulse. The pulse

response study is very important in understanding the

bacterial chemotaxis strategy (Segall et al., 1986).

A bacteria cell achieves chemotaxis by temporal compar-

ison, i.e., comparing its present environment, characterized

by the current ligand concentration, to its environment of the

recent past, ‘‘memorized’’ by the receptor methylation level.

The overshoot in pulse response can be therefore considered

as the ‘‘memory’’ of a past event (a short pulse of ligand).

Such memory persists for a few seconds for the cell to decide

whether the situation has improved over that time period. As

we can see here, receptor coupling not only amplifies the

current signal, it also reinforces the memory so that the

system can carry out the appropriate comparison and

therefore make the correct decision.

FIGURE 10 Effect of adding a saturating amount of attractant at t¼ 20 to

an initially depleted environment. The reference parameters (Shimizu et al.,

2003) (see main text) are used, except for EJ ¼ �1.5, a value close to the

highest cooperativity that does not present oscillatory behavior. The initial

receptor population is uncorrelated and has Æmæ ¼ 2 (see text for details).
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The general concept of receptor coupling introduces

another layer of complexity in modeling the bacterial

chemotaxis process, i.e., different chemoreceptor species

may interact with each other. Interaction between heteroge-

neous receptors was shown to be important in interpreting

(Mello and Tu, 2003b) the recent in vivo response data

(Sourjik and Berg, 2002b). The receptor coupling affects the

overall activity and the sensitivity of each type of receptor

involved. In general, heterogeneity, caused by either the

existence of multiple types of receptor or multiple methyl-

ation levels of a given receptor type, reduced the Hill

coefficient of the response curve. However, a low Hill

coefficient in the response curve does not mean low gain

because the gain is defined for small changes in external

stimulus, far away from the steepest part of the response

curve, where Hill function is most useful. In fact, as found in

our previous study (Mello and Tu, 2003b), the signal

amplification could come from receptors that are not directly

bound to the ligand because of a large coupling between

different types of receptors and the high sensitivity of these

receptors maintained by the adaptation process. An impor-

tant issue in bacterial chemotaxis is signal integration, i.e.,

how would the cell combine different sources of information

represented by the presence of different chemoattractants (or

repellents) in the medium (Khan et al., 1995; Adler and Tso,

1976)? The effects of heterogeneous receptor coupling on

signal integration are expected to be extremely interesting

(Gestwicki and Klessing, 2002).

Qualitatively, the inclusion of receptor coupling makes it

easier to understand several key in vitro response experi-

ments.

The different levels of cooperativity, often characterized

by different Hill coefficients of the response curves

(Bornhorst and Falke, 2001; Li and Weis, 2000), observed

in different in vitro experiments, may be explained by their

difference in receptor coupling strength. However, how

receptor coupling strength depends on various protein

concentrations (e.g., receptor CheW and CheA) and other

parameters of the system remains a challenge.

Another important consequence of receptor coupling is the

difference between receptor occupancy and the kinase

activity. If the receptors are not coupled to each other, then

receptor occupancy and activity indeed depend on each other

linearly. However, if the coupling is strong enough, the

activities of the occupied and the unoccupied receptor

strongly affect each other, and depending on the relative

activity (inactivity) of the unoccupied (occupied) receptors,

the dependence of kinase activity on ligand concentration

can be shifted away from that of the receptor occupancy, as

observed experimentally (Levit and Stock, 2002). As

a consequence, one should not use the receptor occupancy

curve to infer activity, or vice versa.FIGURE 11 The joint distributions for methylation levels of two

neighboring receptors P(m1, m2) for ligand concentrations: (a) [L] ¼ 0 and

(b) [L] ¼ N. Difference between the joint distribution P(m1, m2) and the

product of the single site methylation distribution P(m1)P(m2) for ligand

concentrations: (c) [L] ¼ 0 and (d) [L] ¼ N. Notice the negative values for

P(m1, m2) � P(m1)P(m2) along the diagonal line (m1 ¼ m2), which indicates

anticorrelation between m1 and m2.
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Now that we have a general model that is capable of

explaining various in vitro and in vivo experiments

individually, the next step is to incorporate more and more

high-quality quantitative data, from both the in vitro

biochemistry type experiments and the in vivo experiments

for different mutant strains and eventually wild-type cells,

into a unified model with a consistent set of parameters. For

many existing experiments, the data are consistent with the

general properties of the model itself, and they impose

important constraints for the parameters of the model. For

example, from in vitro studies (Bornhorst and Falke, 2001;

Li and Weis, 2000), we know that the activities of the system

can always be suppressed to zero by saturation with ligand

regardless of the methylation level. This observation sets

constrains for the intrinsic energies of the model, i.e.,

E1(m) . 0 for all m.
There are other cases where different experiments seem

inconsistent with each other. For example, as reported in the

in vitro experiments by Levit and Stock (2002), the receptor

occupancy curves seems to be nearly independent of the

methylation level of the receptor. However, in the recent in

vivo experiments by Sourjik and Berg (2002b), the response

curves of the wild-type cell seems to shift consistently

toward larger ligand concentration with increasing ambient

ligand concentration. This implies that for the receptors with

higher methylation level, which are present in greater

quantities at the high ambient ligand concentration, the

ligand affinity is lower, i.e., larger dissociation constant Kd

for larger m. As shown in our previous work (Mello and Tu,

2003b), the dependence of Kd on m together with adaptation

is crucial for the system’s high sensitivity over a large range

of ambient ligand concentrations. Whether we can in-

corporate these findings from different experiments within

the same model or whether we will need new ingredients for

our model remains an interesting challenge.

APPENDIX: THE SECOND ORDER MEAN-FIELD
THEORY

To study correlations between nearest neighbor receptors, we can introduce

a second order mean-field theory that treats the nearest neighbor correlation

explicitly. For this purpose, we define P(m, m#, t) as the joint distribution of
a pair of neighboring receptors having methylation levels m and m#. To
determine the dynamics of P(m, m#, t), we need to know the activity of

a receptor with methylation level m and with one of its neighbors having

methylation level m#, defined as a(m, m#). a(m, m#) can be written as

aðm;m#Þ ¼ +
m1 ;m2 ;...;mj0�1

Yj0�1

j¼1

PðmjjmÞ
" #

3
11e

�ðm1ELÞ

11e
�ðm1ELÞ1ð11e

�mÞe
EðmÞ1EJððaðm#;mÞ1 +

j0�1

j¼1

aðmj ;mÞ�j0=2Þ
;

(31)

where m#js with j ¼ 1, 2, . . . , j0 � 1 are the methylation levels of all the

neighboring receptors except for m# (j0 ¼ 4 for square lattice is used in this

article). The conditional probability of a receptor in statem having a neighbor

in state m# is given by P(mjm#) ¼ P(m, m#)/P(m#) with

PðmÞ ¼ +
m# Pðm;m#Þ:

The above equation for all m 2 [0, 4] and m# 2 [0, 4] and the dynamical

equations governing the flow of P(m, m#, t) in the (m, m#) space determine

the dynamics of the simplest second order MFT:

The main purpose of this more complicated MFT is to look for correlation

in methylation levels between nearest neighbors, which was observed in our

Monte Carlo simulations. This correlation has a simple intuitive explanation,

but the MFT here provides us a quantitative measure of such correlation.

The effect of methylation correlation on the mean activity of a receptor is

evident from Eq. 31. For a receptor with methylation m, if the methylation

levelm# of its neighbor is increased, the activity a(m#,m) for that neighbor is
higher, which results in an increase in the activity for the receptor with

methylation levelm through receptor coupling. The increased activity makes

the receptor prone to lose methyl groups, i.e., decreasing m according to Eq.

10 leading to anticorrelation between m and m#.
Fig. 10 shows the time evolution of average methylation, activity,

receptor occupancy, and methylation correlation between neighbors, defined

as

Cmb +
4

m;m#¼0

4ðm� ÆmæÞðm#� ÆmæÞPðm;m#Þ

¼ +
4

m;m#¼0

4mm#ðPðm;m#Þ�PðmÞPðm#ÞÞ: (33)

The anticorrelation between neighbors emerges from an initially un-

correlated distribution, and its final value depends on the ligand

concentration and the coupling constant. Fig. 11, a and b, show the overall

methylation distribution of all the neighboring receptor pairs P(m1, m2) for

the two extreme cases of zero and saturating ligand concentrations. In Fig.

11, c and d, the difference between the joint distribution P(m1, m2) and the

product of the single site methylation distribution P(m1)P(m2) (as the joint

distribution would be in a totally uncorrelated situation) are plotted. The

anticorrelation is evident as the populations of them1¼ m2 states are smaller

than it would be in the uncorrelated situation.
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dPðm;m#; tÞ
dt

¼ kBaðm1 1;m#ÞPðm1 1;m#Þ � kRaðm;m#ÞPðm;m#Þ1 kR½1� aðm� 1;m#Þ�Pðm� 1;m#Þ

� kBaðm;m#ÞPðm;m#Þ1 kR½1� aðm#� 1;mÞ�Pðm;m#� 1Þ � kBaðm#;mÞPðm;m#Þ

1 kBaðm#1 1;mÞPðm;m#1 1Þ � kR½1� aðm#;mÞ�Pðm;m#Þ: (32)
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