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ABSTRACT It is widely recognized that the cleaving rate of a restriction enzyme on target DNA sequences is several orders-
of-magnitude faster than the maximal one calculated from the diffusion-limited theory. It was therefore commonly assumed that
the target site interaction of a restriction enzyme with DNA has to occur via two steps: one-dimensional diffusion along a DNA
segment, and long-range jumps coming from association-dissociation events. We propose here a stochastic model for this
reaction which comprises a series of one-dimensional diffusions of a restriction enzyme on nonspecific DNA sequences
interrupted by three-dimensional excursions in the solution until the target sequence is reached. This model provides an optimal
finding strategy which explains the fast association rate. Modeling the excursions by uncorrelated random jumps, we recover
the expression of the mean time required for target site association to occur given by Berg et al. in 1981, and we explicitly give
several physical quantities describing the stochastic pathway of the enzyme. For competitive target sites we calculate two
quantities: processivity and preference. By comparing these theoretical expressions to recent experimental data obtained for
EcoRV-DNA interaction, we quantify: 1), the mean residence time per binding event of EcoRV on DNA for a representative one-
dimensional diffusion coefficient; 2), the average lengths of DNA scanned during the one-dimensional diffusion (during one
binding event and during the overall process); and 3), the mean time and the mean number of visits needed to go from one
target site to the other. Further, we evaluate the dynamics of DNA cleavage with regard to the probability for the restriction
enzyme to perform another one-dimensional diffusion on the same DNA substrate following a three-dimensional excursion.

INTRODUCTION

Genetic events often depend on the interaction of a restric-

tion enzyme with a target DNA sequence. Indeed, the re-

striction enzyme has first to find this sequence on DNA. This

mechanism has long remained mysterious. The simplest

model considers this mechanism as a reaction between two

point-like entities, the restriction enzyme and its target DNA

sequence, in a solute volume. However, kinetic measure-

ments of reactivity show that the reaction occurs at an

extraordinarily rapid rate, far above the three-dimensional

diffusion limit rate (Richter and Eigen, 1974; Riggs et al.,

1970). To account for this, it was proposed that the reaction

occurs via a facilitated diffusion process (Von Hippel and

Berg, 1989). The restriction enzyme first binds to DNA on

a nonspecific site, then performs a one-dimensional random

walk until it reaches the target DNA sequence. Indeed, it is

by scanning the DNA and not by diffusing in a three-

dimensional volume that the restriction enzyme reaches its

target site sequence. However, results from experiments

(Szczelkun and Halford, 1996) using two interlinked rings

of DNA (plasmid, each containing a target site for the

restriction enzyme EcoRV) rule out this possibility: the

mechanism of target site localization does not involve

a unique one-dimensional diffusion along DNA. If it were

the case, the EcoRV enzyme would cleave the DNA of only

one of the two rings, as opposed to what is observed.

Moreover, it is expected that molecular crowding of in vivo

situations must hinder any long one-dimensional scanning

process of the DNA (Wenner and Bloomfield, 1999).

To account for the fast association rate, several strategies

have been proposed and modeled from experimental data

(Berg et al., 1981; Von Hippel and Berg, 1989; Winter et al.,

1981). Four major translocation processes were identified

(we recall that translocation is the overall process by which

a protein goes from one DNA sequence to another). The first,

the sliding process, corresponds to the pure one-dimensional

diffusion as discussed above. The second, the intersegmental

transfer (Milsom et al., 2001), involves dimer proteins

having two binding sites. The restriction enzyme bound on

DNA at the first site binds its second site to a remote DNA

sequence and then dissociates from the first one. The two

other translocation processes are induced by several

dissociation-reassociation events. According to the rebind-

ing of the enzyme either near the departure site or to an

uncorrelated site, the translocation process is called hopping
or jumping (Halford and Szczelkun, 2002). Which of these

translocation processes or which combination of them

describes the mechanism of target site localization on

DNA is still an open question.

Understanding the translocation process is of great

importance as it governs the kinetics of genetic events

(Misteli, 2001). Several experimental investigations were

carried out to elucidate the pathway followed by a re-

striction enzyme to reach a single target site. Some of them
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quantify the rate of cleavage reactions, by varying the

length of the DNA strand (for a review, see Shimamoto,

1999) or the salt concentration (Winter et al., 1981;

Lohman, 1996) which affects the binding properties of

DNA-affine proteins on nonspecific sequences. These

experimental results allow one to reject the possibility of

a unique translocation process, but cannot fully describe the

structure of the combined process. Berg et al. (1981) had

proposed a theoretical approach to quantify the relevant

parameters of the localization of a single target site. Their

model describes the overall searching process comprising

the primary encounter of the enzyme with a DNA domain

and the secondary encounter of the enzyme with the tar-

get site. Here we deal with the unvisited case of two

competitive target sites to quantitatively analyze the

physical properties of the second encounter, i.e., the target

site localization of a restriction enzyme initially bounded to

the DNA. Only the study of such systems gives access to

the detailed pathway of secondary encounter with well-

defined initial conditions. Related experimental studies

with two differentiable target sites located at well-defined

positions on the DNA strand (Langowski et al., 1983; Terry

et al., 1985; Stanford et al., 2000) allow one to handle two

descriptive quantities: the preference and the processivity

of the restriction enzymes. The preference is the ratio of the

number of enzymes that react with one target site, over the

number of enzymes that react with the other target site. The

processivity is the fraction of enzymes that will react

successively with the two target sites. To extract from these

experiments physical parameters of the enzyme pathway

such as the proportion of time spent by the enzyme on the

DNA, the average number of dissociation-association

events and the average DNA length scanned before the

target site localization, it is necessary to build a reliable

physical model that can mimic the biological situation.

Here, we propose a simple and general stochastic model to

describe the kinetics of target site localization of a restriction

enzyme on DNA, which explicitly combines any one-

dimensional motion along the DNA and three-dimensional

excursions in the solution. In the particular case of one-

dimensional diffusing motion, our model allows us to

recover the analytic expression for the mean time needed

for the enzyme to find a single target site on DNA given by

Berg et al. (1981). This mean time presents an optimum,

corresponding to the quickest finding strategy that can be

discussed in the cases of point-like and extended target sites.

The model explicitly gives the mean number of enzyme

visits on the DNA and the proportion of the DNA visited

until the target site is localized. For two target sites, our

model provides theoretical expressions for the preference

and the processivity factors. These expressions involve two

unknown physical parameters: the one-dimensional and

three-dimensional residence frequencies l and l#. We show

that l is easily evaluated from the confrontation of the

theoretical preference to experimental data. The second

unknown parameter l#, of minor physical relevance, is

extracted from the assumption that the searching strategy is

optimal which will be justified. The comparison of the

theoretical processivity factor to experimental data allows us

to predict the value of a dynamic-associated parameter: the

probability that after an excursion the enzyme will associate

to the same DNA substrate it has left, pr.

The article is constructed as follows: first we give the

general background of such an approach and we present the

hypothesis of our model. Then we deduce the mean search

time from the study of the density of the first time passage,

and for the cases of point-like and extended target sites we

discuss the optimal strategy for finding the target site as

quickly as possible. We give the condition of existence of

this optimal strategy as well as its quantitative character-

istics. We discuss the value of the optimal one-dimensional

frequency and evaluate finite-size effects. Equation 12 gives

the mean target site localization time for an enzyme which

starts from a random position on the DNA. The complete

distribution of the number of visits of the protein on the DNA

is explicitly determined. In particular, its mean value is given

by Eq. 18. The average number of distinct basepairs (bp)

visited on the DNA is given by Eq. 21. Second, the

preference and the processivity factors of the restriction

enzyme for two target sites, as functions of the distance

between the target sites, are obtained (Eqs. 36 and 39) and

compared with experimental results concerning EcoRV
(Stanford et al., 2000). The comparison gives us the

residence time on the DNA per binding event and other

related physical quantities. We then numerically obtain the

mean time needed for the enzyme to go from the first target

site to the second target site (using Eq. 37), and the mean

number of visits on the DNA substrate before the two target

sites are cleaved. In conclusion, we discuss the predicted

value of pr defined previously.

MODEL

We present our model in the framework of a generic protein searching for its

target site on the DNA. The case of dimer proteins which can bind

simultaneously to two target sites is not investigated to discard in-

tersegmental transfers. As a first approximation, the hopping translocation

process is assumed to be represented effectively in the one-dimensional

diffusion of the protein. Then, the pathway followed by the protein,

considered as a point-like particle, is a succession of one-dimensional

diffusions along the DNA strand and three-dimensional excursions in the

surrounding solution (Fig. 1). The time spent by the protein on a DNA strand

during each binding event is assumed to follow an exponential law with

dissociation frequency l. This law relies on a Markovian description of the

chemical bond which is commonly used. The probability for the protein to

still be bound to DNA at a random time t (knowing that it is bound at t¼ 0) is

then P(T . t) ¼ exp(�lt), and the probability that the protein leaves the

DNA at a random time T in the interval [t, t 1 dt] is P(t , T , t 1 dt) ¼ l

exp(�lt)dt.

The one-dimensional motion on DNA can be modeled from a continuous

Brownian motion with diffusion coefficient D. As it is usually done (see e.g.,

Jeltsch and Pingoud, 1998), we assume that the extremities of the DNA chain

act on the protein as reflecting boundaries. Thus, a protein when reaching an
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extremity during a binding event is reflected and continues its one-

dimensional motion. The target site sequence is a specific sequence of

basepairs (e.g., the restriction enzyme, EcoRV, recognizes the sequence

GATATC (Taylor and Halford, 1989). The reaction occurs when the reactive

domain of the protein matches the target site sequence. To a first

approximation, we model the target site sequence as being a perfect reactive
point (Fig. 2). The reaction is assumed to be infinitely fast as soon as the

protein meets the target site. Note that in this case the protein can find the

target site only by diffusing along DNA. The precise mechanism of this

elementary act is still subject to discussion. In particular, the profile of the

DNA-protein interaction potential is unknown, and could be attractive over an

extended area. It is then reasonable also to treat the case where the target site is

a zone of finite extension 2r (Fig. 3). In that case the target site can then be

reached either by diffusion along the DNA, or by coming directly from a three-

dimensional excursion. This second approach, developed further, gives rise to

strongly different behavior of the search time.

As a first approximation, the excursions are assumed to be uncorrelated in

space. Hence, when dissociating from DNA, a protein will rebind at

a random position. In other words, the probability to reach a site on DNA

after an excursion is uniformly distributed along the whole DNA molecule.

It has been suggested (Winter et al., 1981) that, for not-excessively

concentrated long molecules in solution, the DNA strands form disjoint

domains diluted in the medium. A protein which reaches such a DNA

domain will be trapped in it. In this case excursions might be correlated due

to the geometric configuration of the DNA. As the configuration of a polymer

strand in solution is a random coil, even short three-dimensional excursions

can lead to a long effective translocation of the linear position of the protein

on DNA. Consequently, a small number of long-range transitions is

sufficient to uncorrelate the protein position on DNA.

We now introduce three basic quantities used in this work. The first one,

P3D(t), is the probability density that the protein in the solution at time

t ¼ 0 will bind DNA at time t at a random position,

P3DðtÞ ¼ l# expð�l#tÞ; (1)

where the distribution of the time spent during an excursion is assumed to

follow an exponential law with frequency l# corresponding to a mean time

spent in the surrounding solution t# ¼ 1/l#. Accounting rigorously for the

entire law is beyond the scope of this work. Rather we concentrate here on

the characteristic time l#, which exists and is finite as soon as the system is

confined; and the exponential tail of the law, which proves to be valid in

most plausible geometries. We will show that this model captures the main

relevant characteristics of the problem.

The second quantity, P1D(tjx), is the conditional probability density that

the protein, being on the DNA at position x and at time t ¼ 0, will dissociate

at time t without any encounter with the target site. Assuming that the

dissociation rate is independent of the state of the protein, one has

P1DðtjxÞ ¼ l expð�ltÞQðtjxÞ; (2)

where Q(tjx) is the conditional probability density that the protein, starting

from the position x, does not meet the target site during its one-dimensional

diffusion. Introducing j(tjx) as the probability density of the first passage to

the target site position at time t without dissociation, one gets

QðtjxÞ ¼ 1�
R t
0
jðt#jxÞdt#.

The last quantity, �PP1DðtjxÞ; is the conditional probability density that the

protein, being on DNA at position x and at time t¼ 0, will find the target site for

the first time at time t during its one-dimensional diffusion, without leaving the

DNA:

�PP1DðtjxÞ ¼ expð�ltÞ jðtjxÞ: (3)

Given these quantities, the first passage density of the protein to the target

site can be calculated, first in the case of one target site, and then we will

extend it for two target sites.

First passage density

By calculating the first passage density, we obtain the mean time needed for

the protein to find its specific target site, as well as all associated moments.

We assume that the protein starts at t ¼ 0 linked to the DNA at position x.

We consider a generic event (Fig. 2) whose bulk number of excursions is

n�1, the residence times on DNA t1, . . . ,tn, and the excursion times

t1, . . . ,tn�1. The probability density of such an event, for which the protein

finds the target site for the first time (t ¼ time), t ¼ +n

i¼1
ti1+n�1

i¼1
ti; is

PnðtjxÞ ¼ �PP1DðtnÞP3Dðtn�1ÞP1DðtnÞ . . .
P1Dðt2ÞP3Dðt1ÞP1Dðt1jxÞ; ð4Þ

where P1D(t) and �PP1DðtÞ are averaged over the initial position of the protein

as P1DðtÞ ¼ ÆP1DðtjxÞæx and �PP1DðtÞ ¼ Æ �PP1DðtjxÞæx. We denote by M the

DNA length on the ‘‘left’’ side of the target site and by L the length on the

‘‘right’’ side of the target site. The average of a function f over the initial

position x is given by Æf ðtjxÞæx [ ð1=ðL1MÞÞ
R L
�M

f ðtjxÞdx.
To obtain the density of first passage at the target site, F(tjx), we sum over

all possible numbers of excursions and we integrate over all intervals of

FIGURE 1 A representative path of the restriction enzyme which reaches

the target site. Excursions in the solution are represented by dashed lines,

one-dimensional diffusion by continuous lines. The solid square is the target

site.

FIGURE 2 Representative view of the model. Here the protein executes

three excursions before finding the target site.

FIGURE 3 Extended target site.
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time, ensuring that t ¼ +n

i
ti1+n�1

i
ti. The average over the initial position

of the protein, FðtÞ ¼ ÆFðtjxÞæx, can be expressed as

FðtÞ ¼ +
N

n¼1

Z N

0

dt1 . . . dtn dt1 . . . dtn�1

3d +
n

i¼1

ti 1 +
n�1

i¼1

ti � tÞ
� � Yn�1

i¼1

P3DðtiÞ
" #

3
Yn�1

i¼1

P1DðtiÞ
" #

�PP1DðtnÞ: ð5Þ

Taking the Laplace transform of FðtÞ; F̂ðsÞ ¼
RN
0
dte�stFðtÞ, we obtain

F̂ðsÞ ¼ Æ ĵðl1 sjxÞæx 1� 1� Æ ĵðl1 sjxÞæx
ð11 s=lÞð11 s=l#Þ

� ��1

: (6)

ĵðsjxÞ being the Laplace transform of j(tjx). This expression completely

solves our problem for any one-dimensional motion. We will see in the next

section that the main quantities of physical interest can be extracted from this

formula.

Optimal search strategy

The relevant quantity to describe the protein/DNA association reaction is the

mean time Æmæ necessary for the protein to find the target site (see above).

This mean time is obtained from the derivative of the first passage density by

the relation

Æmæ ¼ � @F̂ðsÞ
@s

� �
s¼0

; (7)

which combined with Eq. 6 gives

Æmæ ¼ 1� Æ ĵðljxÞæx
Æ ĵðljxÞæx

1

l
1

1

l#

� �
: (8)

This expression is very general and holds for any one-dimensional motion.

Now, we calculate this quantity for a free one-dimensional diffusion. The

one-dimensional Laplace transform of the first passage probability density is

well known (see the textbooks by Redner, 2001):

if x. 0; ĵðljxÞ ¼ cosh

ffiffiffiffi
l

D

r
x

 !
� tanh

ffiffiffiffi
l

D

r
L

 !

3sinh

ffiffiffiffi
l

D

r
x

 !
(9)

if x, 0; ĵðljxÞ ¼ cosh

ffiffiffiffi
l

D

r
x

 !
1 tanh

ffiffiffiffi
l

D

r
M

 !

3sinh

ffiffiffiffi
l

D

r
x

 !
: (10)

Averaging over x, we finally obtain

Æ ĵðljxÞæx ¼
1

M1 L

ffiffiffiffi
D

l

r
tanh

ffiffiffiffi
l

D

r
L

 !"

1 tanh

ffiffiffiffi
l

D

r
M

 !#
; (11)

where D is the one-dimensional diffusion coefficient. Then the mean search

time takes the form

Æmæ ¼ 1

l
1

1

l#

� �

3

ffiffiffiffi
l

D

r
ðL1MÞ

tanh

ffiffiffiffi
l

D

r
L

 !
1 tanh

ffiffiffiffi
l

D

r
M

 !� 1

8>>>><
>>>>:

9>>>>=
>>>>;
: (12)

Some comments about this expression (represented in Fig. 4) are appropriate.

1. We recover in a simple and direct way the original result of Berg et al.

(1981), obtained from a complete description of the three-dimensional

motion (Berg and Blomberg, 1976, 1977, 1978).

2. This quantity is minimum when the target site is centered (as expected

for symmetry reasons).

3. As soon as the length of the DNA strand is large enough (more

precisely as soon as
ffiffiffi
l
D

p
L � 1 or

ffiffiffi
l
D

p
M � 1), Æmæ grows linearly with

the length of the DNA strand. This mirrors the efficiency of the one-

dimensional and three-dimensional combined motion when compared

FIGURE 4 The mean search time plotted against the one-dimensional

residence frequency l. The length of DNA is 5000 bp, the three-dimensional

residence frequency is 10 s�1, and the one-dimensional diffusion coefficient

is 5 3 105 bp2/s.
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to the quadratic growth obtained in the case of pure sliding. In

particular, the boundary effects are negligible for this quantity as soon

as the overall length is large enough.

4. This expression is valid for a very large class of three-dimensional

motions. More precisely, it holds as soon as the mean first return time

t3D corresponding to the three-dimensional motion is finite and

independent of the departure and arrival points. The corresponding

expression of the mean first passage time is obtained by replacing l# by
t3D.

We now come to an important question, already present in the seminal

work of Berg et al. (1981) and recently addressed by Slutsky and Mirny

(2004), which concerns the optimum strategy for such a coupled motion.

Indeed, it seems reasonable that Æmæ is large for both l very large (in the l

infinite limit, the protein is never on the DNA), and l very small (pure

sliding limit). It has been suggested from qualitative arguments (Slutsky

and Mirny, 2004) that the mean search time is minimum when the protein

spends equal times bound to the DNA and freely diffusing in the bulk.

Here, we more precisely address this question of minimizing the mean

search time with respect to the one-dimensional frequency l. This is the

only specially ‘‘adjustable’’ (depending strongly on the structure of the

protein) parameter: l# depends on the properties of the environment and

will not vary significantly from one protein to another. The one-

dimensional diffusion coefficient D is a specific quantity, and optimizing

the search time with respect to this parameter is trivial:D should be as large

as possible (note that D and l are assumed to be independent).

The sign of the derivative at l ¼ 0 of the mean search time gives the

criterion for having a minimum as

l#. 15D
L
2
1M

2 � LM

L
4
1M

4
1 4LMðL2

1M
2Þ � 9M

2
L
2: (13)

In fact, it can be shown that this sufficient condition is also necessary. If this

condition is fulfilled, a careful analysis of the implicit equation satisfied by

the frequency at the minimum leads to the expansion for large ‘ ¼ L 1 M,

l ¼ l#� 4

ffiffiffiffiffiffiffiffiffi
Dl#

p

‘
� 8D

‘
2 � 40D

3=2ffiffiffiffiffi
l#

p
‘
3 1O

1

‘
4

� �
: (14)

Equations 13 and 14 refine the result of Slutsky—which, however, holds

true in the large ‘ limit, or more precisely for
ffiffiffi
l
D

p
l � 1. For intermediate

values of ‘, boundary effects become important and the minimum can be

significantly different.

The Æmæ value at the minimum is particularly interesting. We compare it

to the case of pure sliding where Æmsæ ¼ l2=ð3DÞ,

Æmæ
Æmsæ

¼ 6

‘

ffiffiffiffi
D

l

r
: (15)

The efficiency of the three-dimensional mediated strategy is therefore much

more important when the DNA chain is long. For example, using the l- and
D-values obtained in Results and for a DNA substrate of length 106 bp, the

mean target site localization time is given when pure sliding is 1000-fold

greater than that predicted by our model.

Further quantitative features of reactive pathways

In this paragraph, we compute two quantities which characterize more

precisely the nature of the reactive paths. These quantities are of special

interest as they could be experimentally measured using single-molecule

techniques.

The first quantity is the distribution p(N) of the number of visits on DNA

required before reaching the target site. We recall that in the initial state the

protein is bounded to the DNA, therefore N $ 1. The distribution can

be obtained by slightly modifying the expression of the first passage density

Eq. 5:

pðNÞ ¼
Z N

0

dtÆPNðtjxÞæx ¼
Z N

0

dt

Z N

0

dt1 . . . dtndt1 . . .

3dtn�1d +
n

i¼1

ti 1 +
n�1

i¼1

ti � tÞ
� �

3
Yn�1

i¼1

P3DðtiÞ
" # Yn�1

i¼1

P1DðtiÞ
" #

�PP1DðtnÞ: ð16Þ

Finally, this distribution happens to be a geometric law with parameter

ÆĵðljxÞæx,

pðNÞ ¼ ÆĵðljxÞæxð1� ÆĵðljxÞæxÞ
N�1

: (17)

This demonstrates that the mean number of visits before reaching the target

site is

ÆNæ ¼ 1

ÆĵðljxÞæx
¼

ffiffiffiffi
l

D

r
ðL1MÞ

tanh

ffiffiffiffi
l

D

r
L

 !
1 tanh

ffiffiffiffi
l

D

r
M

 !: (18)

The form holds as

Æmæ ¼ ðÆNæ� 1Þ 1

l
1

1

l#

� �
: (19)

Note that the large N limit is transparent (Æmæ is a succession of

approximately N one-dimensional excursions of average duration 1/l and

N three-dimensional excursions of average duration 1/l#x).
The second interesting quantity is the average number of distinct

basepairs visited before the protein reaches its target site. In our continuous

description, this corresponds to the average span ÆSæ of the one-dimensional

motion. For sake of simplicity, the target is here assumed to be centered on

the DNA strand of half-length L. The average span can be expressed as the

integral over the position x on the DNA of the probability that x has been

visited before reaction. One then obtains

ÆSæ ¼
Z L

�L

L dx

Z N

0

dt F0�ðx; tÞ ¼
Z L

�L

dx F̂0�ðx; s ¼ 0Þ; (20)

where F0�ðx; tÞ is the first passage density at x with adsorbing conditions

at x ¼ 0, whose Laplace transform will be explicitly computed in the next

section in the context of competitive targets. Anticipating formula Eq. 27,

the span finally reads

ÆSæ

¼ 2

Z L

0

dx 11

cosh

ffiffiffiffi
l

D

r
ðL� xÞ

 !
sinh

ffiffiffiffi
l

D

r
ðL1x=2Þ

 !

cosh

ffiffiffiffi
l

D

r
L

 !
sinh

ffiffiffiffi
l

D

r
ðL� x=2Þ

 !
8>>>><
>>>>:

9>>>>=
>>>>;

�1

:

(21)
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Apparently, this integral form cannot be substantially simplified, but its

overall behavior, and in particular the l-dependence, is easily cleared up.

The span appears to grow monotonously from 3
4
L at l ¼ 0 to L for l / N.

This monotonicity, as opposed to the existence of a minimum for the mean

search time, is a striking feature of this quantity, plotted in Fig. 5.

Extended target site

As mentioned above, the model of a point-like target site disregards the

possibility of the protein reaching the target site directly from a three-

dimensional excursion. For this reason, we have to study the case where the

target site is an area of extension r. We will now show that this new feature

significantly changes the behavior of the searching time. The reaction is still

assumed to be infinitely fast; it occurs either when the protein reaches the

boundary of the reaction area during a sliding round, or when the protein

comes on the reaction area directly after a three-dimensional excursion.

Following the scheme already developed to derive the density of the first

passage time (Eq. 6), one obtains

F̂ðsÞ ¼ Æ ĵðl1 sjxÞæ� 1
2r

L1M

� �

3 1�
1� 2r

L1M
� Æ ĵðl1 sjxÞæ�

ð11 s=lÞð11 s=l#Þ

8><
>:

9>=
>;

�1

: (22)

where Æf æ� ¼ 1
L1M

ð
R�r

�M
f dx1

R L
r
f dxÞ. The average search time then reads

(we only give the case L ¼ M for sake of simplicity),

ÆmðrÞæ ¼ 1

l
1

1

l#

� �ð‘� rÞ
ffiffiffiffi
l

D

r
� tanh ð‘� rÞ

ffiffiffiffi
l

D

r !

r

ffiffiffiffi
l

D

r
1 tanh ð‘� rÞ

ffiffiffiffi
l

D

r ! :

(23)

For ‘ large enough, the minimum is obtained for

lmin ’
ðl#r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l#2r2 1Dl#

p
Þ2

D
: (24)

It is remarkable that the scaling lmin � l# holds true only for l# � D=r2.

For larger frequencies l#, we have lmin � 4l#2r2/D. The value of the search
time at the minimum ÆmðrÞæmin is modified. For r small we get

ÆmðrÞæmin ¼
2‘ffiffiffiffiffiffiffiffiffi
l#D

p � 2‘r

D
1Oðr2Þ; (25)

whereas for larger r the expansion reads

ÆmðrÞæmin ¼
‘

l#r
� D‘

4l#2r3
1Oð1=r5Þ: (26)

We now consider the case of two target sites to compare the model to

experimental results.

Case of two competitive target sites

The biological system (Stanford, et al., 2000) consists in integrating two

target sites for the restriction enzyme EcoRV on a 690 bp linear DNA

substrate. The position along a DNA strand of the first target site, which will

be called target 1, is fixed and equals 120 bp. The second target site, which

will be called target 2, has been placed at 54 bp, 200 bp, and 387 bp from the

first target site. Thus, three substrates (Fig. 6) were used to analyze the

kinetics of DNA cleavage. Each assay was carried out at a very low

concentration of enzyme with regard to the concentration of DNA. For

higher concentration of enzyme, the probability for two—or more—mole-

cules acting on a same DNA strand would be non-negligible. The cleavage

of DNA produces different lengths of DNA. An enzyme can cut target 1,

target 2, or both, resulting in five lengths of fragments. The authors observed

the initial formation of four of these: A, BC, C, and AB types.

The advantage of this construction is that the first cleavage process gives

a starting point to elucidate how EcoRV will cleave the second target site. In

contrast, when using constructions with one target site, the primary pathway

of the enzyme to reach the DNA domain can dominate the kinetics of the

search process. For example, in highly diluted DNA solutions, the DNA

domains are separated by long distances and then the mean time spent by the

enzyme in reaching a DNA domain will contribute in a non-negligible

manner to the total mean time needed to find the target site. Moreover, our

theoretical model supposes that the enzyme starts on the DNA and therefore

does not comprise the primary encounter. This assumption agrees with the

case of experimental substrates with two target sites.

FIGURE 6 Schematic representation of the three substrates of length 690

bp. The position of the second target site relative to the first target equals 54

bp, 200 bp, and 387 bp, respectively.

FIGURE 5 The average number of distinct DNA sites visited by the

enzyme against the one-dimensional residence frequency l. The half-

length of DNA is 100 bp which allows one to also read this number as

a percentage.
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Conditional search time density

To get a better understanding of this process we first study analytically the

distribution of the search time t of one target, for instance 2, knowing that no

reaction occurred at target 1. We denote by F1�ð2; tÞ this conditional search
time density averaged over the initial condition. We make use of the general

method developed in the first section to derive this quantity. Indeed, this

problem involves a combination of three-dimensional excursions and one-

dimensional motions, its peculiarity being that the one-dimensional motion

is a constrained diffusion, as reaction with target 1 is excluded. It suffices

then to rewrite formula Eq. 6 as

F̂1�ð2;sÞ ¼ Æ ĵ1�ðl1sj2;xÞæx

3 1�1� Æ ĵ1�ðl1sj2;xÞæx� Æ ĵ2�ðl1sj1;xÞæx
ð11s=lÞð11s=l#Þ

� ��1

:

(27)

The first factor Æĵ1�ðsj2; xÞæx is the Laplace transform of the first passage

density at 2 avoiding 1 for a standard one-dimensional diffusion, and

corresponds to the last excursion before finding the target 2. In turn, the term

proportional to ð1� Æĵ1�ðl1sj2; xÞæx � Æĵ2�ðl1sj1; xÞæxÞ=s is the Laplace

transform of the survival probability density, and comes from the succession

of nonreactive excursions on DNA. Theses quantities are obtained by

standard methods, considering successively the initial condition on fragment

A (with mixed boundary conditions), B (with absorbing boundary

conditions), and C (with mixed boundary conditions). This finally yields to

Æ ĵ1�ðlj2; xÞæx ¼
1

‘

ffiffiffiffi
D

l

r
tanh

ffiffiffiffi
l

D

r
c

 !
1

cosh

ffiffiffiffi
l

D

r
b

 !
� 1

sinh

ffiffiffiffi
l

D

r
b

 !
8>>>><
>>>>:

9>>>>=
>>>>;

(28)

and

Æĵ2�ðlj1; xÞæx ¼
1

‘

ffiffiffiffi
D

l

r
tanh

ffiffiffiffi
l

D

r
a

 !
1

cosh

ffiffiffiffi
l

D

r
b

 !
� 1

sinh

ffiffiffiffi
l

D

r
b

 !
8>>>><
>>>>:

9>>>>=
>>>>;
;

(29)

where a,b,c denote the length of fragments A,B,C respectively. This set of

equations fully describes the problem, and will be used in next section to

analyze experimental data. In particular the mean conditional search time

could be deduced straightforwardly from Eq. 27; its explicit form is not

given here for sake of simplicity.

Preference and processivity

To get quantitative measurements of the pathway of the enzyme, the authors

of Stanford et al. (2000) introduced two concepts: preference and

processivity. The value of the preference P quantifies the preferential use

of the target 2 by EcoRV. The P-value is experimentally obtained by taking

the ratio of the initial formation rate nAB of AB substrates (resulting from

cleavage at the target site 2), over the initial formation rate nBC of BC

substrates (resulting from cleavage at the target site 1):

P ¼ nAB

nBC
: (30)

The processivity quantifies the fraction of the cleaved DNA that is cleaved

first at one target site, then cleaved at the second target site during the

encounter of the DNA substrate with an enzyme. The processivity of the

restriction enzyme on the target 2 to the target 1 can be deduced from

experimental data by introducing the processivity factor fp21 ¼ (nC – nAB)/

(nC1 nAB). One can define a symmetric quantity in the same manner, which

is the processivity factor of the reaction with the target 1 and then target 2,

fp12 ¼ (nA – nBC)/(nA 1 nBC), and then the total processivity factor which

represent the fraction of both processive actions,

fp ¼
nA 1 nC � nAB � nBC

nA 1 nC 1 nAB 1 nBC
: (31)

The next sections deal with these two quantities obtained from our model by

considering the enzyme-to-target(s) association rate, namely n1, n2, n21, and

n12, which are defined by the following elementary reactions, instead of

substrate rate production:

DNA/ A1BC with rate n1

DNA/ AB1C with rate n2

DNA/ A1BC/A1B1C with rate n21

DNA/ AB1C/A1B1C with rate n12

: (32)

We assume that a restriction enzyme hits a DNA molecule at site x with

homogeneous probability per unit time kdx/(L 1 M). The enzyme

concentration is chosen sufficiently small so that multiple encounter events

are negligible. Consequently, a fragment BC (or AB) can be cut into B and C

(or A and B) only if the enzyme which cleaves the DNAmolecule to give BC
(or AB) remains on this fragment (the probability of this event, depending in

detail on the chemical mechanism, will be denoted pinit) and then finds the

site 2 (or 1). The reaction rates are then

n1 ¼ k

Z t

�N

dt#

Z
DNA

dx

L1M
F2�ð1; x; t � t#Þ

¼ kÆF̂2�ð1; x; s ¼ 0Þæx (33)

and

n12 ¼ kpinit

Z t

�N

dt#Fð1; 2; t � t#Þ

3

Z t#

�N

dt$

Z
DNA

dx F1�ð2; x; t#� t$Þ

¼ kpinitF̂ð1; 2; s ¼ 0ÞÆF̂1�ð2; x; s ¼ 0Þæx; (34)

where the quantity Fz(y,x,t) is the first passage density at point y at time t

starting from x and avoiding z. This quantity is accessible analytically using

Eq. 27. The quantity F(y,x,t) is the first passage density at point y at time t
starting from x. The two other rates n2 and n21 are straightforwardly obtained

by permutation of symbols 1 and 2. One is now able to derive the

processivity and preference factors.
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RESULTS

We recall that the lengths of fragments A, B, and C are

denoted by the lower-case letters a, b, and c, respectively.
First, we evaluate the one-dimensional frequency l from the

comparison of the theoretical preference to experimental

data. Then, using the value of l# which satisfies the optimal

searching time (this assumption is justified below), we

deduce several quantities related to the enzyme pathway

which links the first target site to the second one. Last, by

comparing the analytical expression of the processivity

factor to experimental data, we introduce a dynamic-

associated parameter: the probability that after an excursion

the enzyme will associate to the same DNA substrate it has

left, pr.

Preference

The preference for the target site 1 over site 2 is given by

P ¼ E2

E1

¼ nAB

nBC
¼ n2 � n12

n1 � n21
¼ ÆF̂1�ð2; x; s ¼ 0Þæx

ÆF̂2�ð1; x; s ¼ 0Þæx
; (35)

where nx ¼ dx/dt is the rate for forming the species x, which
can be measured experimentally. Explicitly,

P ¼
tanh

ffiffiffiffi
l

D

r
c

 !
1 cosh

ffiffiffiffi
l

D

r
b

 !
� 1

 !
sinh

ffiffiffiffi
l

D

r
b

 !,

tanh

ffiffiffiffi
l

D

r
aÞ1 cosh

ffiffiffiffi
l

D

r
b

 !
� 1

 !
sinh

ffiffiffiffi
l

D

r
b

 !,
:

 

(36)

This form which expresses the preference as function of b,
and reveals in particular that the preferred target site is the

closest to the middle of the molecule, well fits the

experimental data (Fig. 7) and allows one to determine the

only free parameter
ffiffiffiffiffiffiffiffiffi
l=D

p
. The best fit is obtained forffiffiffiffiffiffiffiffiffi

l=D
p

¼ 8:7 3 10�2 bp�1. For a representative fast one-

dimensional diffusion coefficientD¼ 53 105 bp2/s (Erskine

et al., 1997), the one-dimensional frequency is l ¼ 37.5 s�1.

Then the average time spent by the restriction enzyme on

DNA per visit equals 0.027 s and the average distance

scanned per visit (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16D=pl

p
) is 260 bp. Using Eq. 21, we

obtain a representative average number of distinct sites visited

on the DNA during the searching process, ÆSæ ’ 320 bp.

Enzyme pathway

A further analysis requires us to know the value of the

parameter l#, which depends strongly on experimental

conditions, such as DNA concentration. It could be obtained

experimentally as the protein/DNA association rate, and we

here choose a typical value corresponding to the optimal

search strategy, i.e., l¼ l#. This assumption is supported by

the fact that the target site localization is several orders-of-

magnitude faster than the diffusion limit. Using the same

calculation as from Eqs. 5–12 without averaging on the

initial position of the enzyme, we obtain the mean time

needed by the restriction enzyme to go from the target 1 to

the target 2,

Æmæ ¼ 1� 1

cosh

ffiffiffiffi
l

D

r
b

 !
0
BBBB@

1
CCCCA

3

ðb1 cÞ 1

l
1

1

l#

� �

tanh

ffiffiffiffi
l

D

r
b

 !
1 tanh

ffiffiffiffi
l

D

r
c

 !� 1

l#

0
BBBB@

1
CCCCA: (37)

Then the average search time of the target 2 for a reactive

pathway of an enzyme starting from the target 1, with

intersite space of 54 bp, is by using the formula from Eq. 37:

Æmæ ’ 0:016 s. The average number of DNA visits before the

processive cleaving is, using Eq. 19’s formula, N ’ 1:3. The
same quantities for the other intertarget site distances,

namely 200 bp and 387 bp, are, respectively, Æmæ ’ 0:072 s,
N ’ 2:4; and Æmæ ’ 0:10 s, N ’ 2:9.

FIGURE 7 The preference of the protein for the target site 2 over the

target site 1. The solid line represents the fitted solution which givesffiffiffiffiffiffiffiffiffi
l=D

p
¼ 8:73 10�2 bp�1. The two dashed lines correspond to the limit

cases when there is no sliding (straight line, l ¼ N) and when there is only

sliding (upper line, l ¼ 0). The other parameters were drawn from

experimental data (‘ ¼ 690 bp).
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Processivity

Using the previous results, the processivity factor takes the

form

fp ¼
n12 1 n21

n1 1 n2
¼ pinitF̂ð1; 2; s ¼ 0Þ: (38)

Here we have to refine the derivation of F̂ð1; 2; s ¼ 0Þ, i.e.,
the probability to ever reach 1 starting from 2. The crucial

point is about the dilution approximation, hence we treat the

case of one single enzyme. We take into account the fact that

during each three-dimensional excursion the protein can

escape, therefore being definitely lost. We introduce by pr

the probability of return after a three-dimensional excursion.

Rigorously this quantity depends on physical parameters

such as the DNA length and the typical size of its attractive

domain. As the lengths of DNA substrates are constant in the

experiments of Stanford et al. (2000) for which b1 c ¼ 570

bp, we consider a constant pr. We finally obtain

fp ¼ pinit ĵðlj2; 1Þ1prÆ ĵðljxÞæxð1� ĵðlj2; 1ÞÞ
1� pr 1prÆ ĵðljxÞæx

� �
; (39)

where Æ ĵðljxÞæx is given by the Eq. 11 with L¼ c andM¼ b,
and ĵðlj2; 1Þ is the Laplace transform of the first passage

density at 2, starting from 1 which is given by Eq. 10 with

x ¼ M ¼ b,

ĵðlj2; 1Þ ¼ cosh

ffiffiffiffi
l

D

r
b

 !
: (40)

Using the value of l obtained previously, there are two

unknown parameters: pinit and pr. They can be determined

from the experimental data (Fig. 8); the best fit is obtained

for pinit ¼ 0.5 and pr ¼ 0.85. However, these values cannot

be very accurate, as used to be the case when estimating two

parameters by fitting experimental data with theoretical

results.

We will discuss some possible hypotheses arising from the

two last fitted parameters in Conclusion, following.

CONCLUSION

So far, experimental investigations have allowed one to

discriminate between two translocation processes, pure

sliding or pure jumping. To obtain quantitative measure-

ments for such a compound translocation process, it is

necessary to build a physically reliable model, as Berg et al.

(1981) did for a single target site. The model presented here

permits us to obtain numerous quantities determining the

pathway followed by a restriction enzyme in finding one

target site or two competitive target sites on DNA, by a series

of one-dimensional diffusion periods (sliding) followed by

three-dimensional excursions ( jumping). The corresponding

mean search time shows that such a two-step process is faster

than pure sliding or pure three-dimensional diffusion. The

existence and the optimization of such a search time is

discussed. The length dependence of the optimum was

obtained.

Using the preference data from assays on EcoRV
(Stanford et al., 2000), we quantify the parameter character-

izing the pathway of EcoRV, namely the one-dimensional

residence frequency l. Other quantities were extracted from

this parameter: the mean distance scanned by the restriction

enzyme during one binding event (260 bp), the distribution

of the number of visits on DNA before cleaving the target

site, and the average number of distinct DNA sites visited. It

should be noticed that the small value of the mean distance

scanned might be due to the assumption of a perfect reactive

target site which leads to an overestimated l. In fact, an

imperfect reactive target site would decrease the preference.

Using the data on processivity for EcoRV, we introduce two
secondary parameters characterizing the detailed pathways

of the restriction enzyme after DNA cleavage. These

parameters come into play when more than one target site

is present on the DNA. The first parameter is the probability

for the enzyme to stay (after cleavage with a target site) on

the DNA strand which harbors the second target site. It was

assumed that this probability equals one-half as the DNA

sequences which border the target site are almost symmetric.

Our best fit suggest that the probability is fairly 0.5,

justifying the common assumption. The second parameter

pr is the probability for the enzyme to rebind on the cleaved

DNA strand it had left during an excursion. Because of the

short length of DNA substrates, it is assumed that the

enzyme is ‘‘lost’’ after the dissociation from the DNA. This

means that the enzyme rebinds unvisited DNA substrates

after each three-dimensional excursion. Therefore, this

probability had been previously assumed to be negligible.

FIGURE 8 The processive action of the restriction enzyme. Dashed lines

represent two fitted solutions of the model of Stanford, et al. (2000) with

pure sliding. The two solid lines represent the solutions of our model forffiffiffiffiffiffiffiffiffi
l=D

p
¼ 8:7 3 10�2 bp�1 and pinit¼ 0.5: one for pr¼ 0, and the other one

which passes near experimental points for pr ¼ 0.85.
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Our model reveals that this probability is high (0.85) which

shows that the enzyme frequently rebinds to the same DNA

substrate. The high value of pr may be explained by the fact

that the fragment length ‘ (which is here b 1 c ¼ 570 bp) is

significantly larger than the persistence length (150 bp). The

configuration of the DNA is therefore close to a globule, in

which the protein can be trapped and hence escape with

a rather low probability. However, pr may be overestimated

because of our assumption of neglecting the correlations

between the starting and finishing points of the three-

dimensional excursions. Indeed, these correlations would

result (for small values of the intertarget distance b) in

increasing the processivity factor, and therefore lowering pr.

Note that an imperfect reaction would lower the processivity,

as in this case the enzyme can pass through the target site

without a reaction, therefore increasing the probability of

a definitive departure from the DNA strand.

The present model classifies the stochastic pathway

followed by a restriction enzyme searching for its target

site, by quantifying the dynamical parameters. Our work is in

the framework of stochastic dynamics which dictates the

biological processes occurring in the highly structured and

crowded medium of in vivo systems. Moreover, this model

can be helpful for generic situations where a protein has to

find a target site on a DNA substrate, e.g., the numerous

transcription factors needed to trigger the gene activation.
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