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ABSTRACT Single-channel recordings provide unprecedented resolutions on kinetics of conformational changes of ion
channels. Several approaches exist for analysis of the data, including the dwell-time histogram fittings and the full maximal-
likelihood approaches that fit either the idealized dwell-time sequence or more ambitiously the noisy data directly using hidden
Markov modeling. Although the full maximum likelihood approaches are statistically advantageous, they can be time-consuming
especially for large datasets and/or complex models. We present here an alternative approach for model-based fitting of one-
dimensional and two-dimensional dwell-time histograms. To improve performance, we derived analytical expressions for the
derivatives of one-dimensional and two-dimensional dwell-time distribution functions and employed the gradient-based variable
metric method for fast search of optimal rate constants in a model. The algorithm also has the ability to allow for a first-order
correction for the effects of missed events, global fitting across different experimental conditions, and imposition of typical
constraints on rate constants including microscopic reversibility. Numerical examples are presented to illustrate the
performance of the algorithm, and comparisons with the full maximum likelihood fitting are discussed.

INTRODUCTION

The conformational changes of proteins are often modeled as

a Markov process, where the transitions between conforma-

tions are independent of history, but only on the current state.

As such, the data can be analyzed via Markov modeling to

probe the information about the underlying mechanisms. The

best-studied examples are themolecules of ion channels,where

single-channel recording, consisting of a sequence of dwell-

times at different conductance levels, provides a detailed view

on the time course of the dynamics of the channel protein.

Several approaches exist for analysis of single-channel

data. The simplest, but perhaps the most common one, is the

fitting of duration histograms. The Markov theory predicts

that the distributions of the dwell-times of a subset of states,

e.g., the closed or the open states, follow sums of exponential

functions. Therefore, fitting the histograms of open or closed

dwell-times can provide information on some aspects of the

underlying process, such as the minimal number of states, the

time constants, and proportions of the individual components.

The one-dimensional histograms do not contain correlations

between adjacent events, which is only available in the high-

order distributions (Fredkin et al., 1985) and is crucial for

identification of models with complex topologies (Rothberg

andMagleby, 1998). The use of time constants also incurs the

difficulty to allow for simultaneous fitting ofmultiple distribu-

tions across different conditions. Such problems can be

alleviated by fitting two-dimensional dwell-time distributions

with explicit kinetic schemes (Rothberg andMagleby, 1998).

More advanced techniques include the maximum likeli-

hood fitting of dwell-time sequences, the hidden Markov

modeling (HMM), and the simulation-based approach. The

dwell-time sequence approach calculates the distribution of

entire dwell-time sequences and optimizes the model so as to

maximize the probability (Horn and Lange, 1983; Ball and

Sansom, 1989; Qin et al., 1997, 1996; Colquhoun et al.,

1996, 2003). Procedures for rapid evaluation of likelihood

function and its derivatives have been developed, which

allow fast search for the maximum likelihood (Qin et al.,

1997). Essential to the success of the approach is the

correction for missed events. Due to limited-time resolution,

brief events may go undetected, and as a result, the apparent

dwell-time durations become elongated. Such distortions are

generally taken into account by appropriately correcting the

dwell-time distributions predicted from the model assuming

a fixed dead time. Both exact and approximate solutions to

the problem have been developed (Blatz and Magleby, 1986;

Roux and Sauve, 1985; Crouzy and Sigworth, 1990; Hawkes

et al., 1990, 1992; Colquhoun et al., 1996). With a first-order

correction, the full likelihood approach has been shown to

work reasonably well for a variety of channels while

maintaining the feasibility for analytical evaluations of the

derivatives of the likelihood function (Qin et al., 1996).

Hidden Markov modeling is also a full maximum

likelihood approach, but it differs from the dwell-time

sequence fitting in that it fits a model to the samples. The

model has two parts; one is the kinetics of the channel, and

the other the current amplitudes and noise statistics. The

general theory of HMM has been applied to many problems

including speech recognition, gene finding, sequence

alignment, and so on. Its application to molecular kinetic

modeling imposes some novel challenges, such as the

parameterization of rate constants, the dependence of

parameters on experimental conditions, and the characteristic

non-white noise. Several approaches have been proposed to

tackle these problems (Venkataramanan and Sigworth, 2002;

Qin et al., 2000a,b). Because noise is taken into explicit
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account, the HMM has the advantage of eliminating the need

of intermediate idealizations of raw data. The expense of

doing so, however, is the significantly increased computa-

tional load, since the probability of the model has to be

evaluated through individual samples instead of dwell-times.

The simulation-based approach exploits a different para-

digm based on iterative simulations of single-channel

currents and comparisons of the resulting dwell-time histo-

grams with the experimental ones (Magleby and Weiss,

1990a,b). The simulated currents are analyzed in a manner

identical to that used to analyze the experimental data, so that

the resulting dwell-time histograms are subject to the same

distortions that occur on the experimental ones. As a result,

problems like low-pass filtering and missed events are taken

account of implicitly. Unfortunately, the approach is com-

putationally inefficient because of the need to repeatedly sim-

ulate and idealize the data.

Themaximum likelihood fitting of dwell-time sequences is

more efficient than the HMM and the simulation approach,

and proves adequate for many problems. However, it has

a computational complexity that increases more than qua-

dratically with the size of the model and linearly with the

number of events (Qin et al., 1996). For large models and/or

long data sets, the approach can be prohibitively slow, taking

hours to days. This is the case, for example, when the gating of

the channel involves multiple subunits, and transitions within

a subunit consist of multiple steps. Problems like this can

easily result in models with tens of states. For such problems,

histogram fitting becomes a handy alternative, especially

when limited computational resources are available.

We present here an improved procedure for histogram

fitting. The approach uses iterative fitting of one-dimensional

and two-dimensional dwell-time distributions to estimate

rate constants, as has been done previously. We have greatly

speeded up the method with a derivative search for the rate

constants and compared the method to the full likelihood

method, where it is found to compare favorably in estimating

rate constants, but is much faster for large amounts of data.

Finally, the fitting programs are made available through the

QuB site.

THEORY

Dwell-time distributions

The gating of the channel is modeled as a stochastic Markov

process, x(t), with a finite state space fsi, i ¼ 1. . .Ng. The
transitions between states are described by the first-order rate

constants kij, i.e.,

Pfxðt1DtÞ ¼ sjjxðtÞ ¼ siÞg ¼ kijDt1 oðDtÞ: (1)

For ion channels, the transitions are observed as discrete

jumps between conductance levels. There may be multiple

states with the same conductance, and the transitions among

such states are not observed directly. Instead, they can only

be deduced from statistical distributions.

For convenience of notation, the rate constants are

collectively designated by a matrix Q ¼ [kij]N3N, which is

known as the infinitesimal generator matrix (Colquhoun and

Hawkes, 1982). The (i,j)th element of the matrix defines the

rate from state i to state j, and the diagonal elements are

defined so that the sum of each row equals to zero, for the

conservation of flux through state i. According to the

observable classes, the matrix is partitioned so that the states

of the same class are adjacent to each other, i.e.,

Q ¼
Qaa Qab � � �
Qba Qbb � � �
..
. ..

.
1

2
64

3
75;

where the diagonal blocks designate rates of transitions

within the classes and the off-diagonal ones between classes.

The discrete jumps observed between different conduc-

tance levels can be described by two essential probabilities.

One is the probability of transitions between states within

a class, and the other the probability to leave for another

class. They can be formulated respectively (Colquhoun and

Hawkes, 1982) as

PaaðtÞ ¼ e
Qaat; (2)

PabðDtÞ ¼ QabDt; (3)

where the (i,j)th element of Paa(t) is the probability to start

from state i and end at state j after time t without leaving the

class, and similarly, the (i,j)th element of Pab(Dt) is the

probability of a transition from state i of class a to state j of
class b in an infinitesimal time Dt.
Given the probabilities for transitions within a class and

between two classes, the distribution of an observed dwell-

time at a given conductance level follows (Colquhoun and

Hawkes, 1982) as

faðtÞ ¼ pa 3PaaðtÞ3Qa�aa 3 1; (3a)

where pa specifies the probability of the channel to enter the

states of class a at the equilibrium, �aa represents the set of the
complement states not in class a, and Qa�aa � 1 summarizes the

probability of transitions leaving class a for an unknown

destination state. That is, the distribution is given by the

entry probability into the class, multiplied by the probability

of transitions within the class, and then the probability to exit

the class.

The entry probability pa is given by (Fredkin et al., 1985)

pa ¼ paQ
�1

aa Qa�aaQ
�1

aa Q�aaa; (4)
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which defines a set of homogeneous equations, and can be

solved in combination with the probability totality con-

straint.

Similarly, the two-dimensional dwell-time distributions,

i.e., the joint probability of two adjacent dwell-times of

different classes, are given by (Fredkin et al., 1985)

fabðt; sÞ ¼ paPaaðtÞQabPbbðsÞQb�bb1; (5)

that is, the probability entering the first class,multiplied by the

probability of transitions between states within that class,

multiplied by the probability of transitions from states in the

first class to states in the second class, and so on.

In general, the higher the order of a distribution, the more

information it contains. However, there is an upper limit on

the maximal order it needs before having all the information

of the data. The limit depends on the number of observable

classes. For a process with two classes at equilibriums, there

is an elegant theory stating that the third-order distributions

do not contain more information than those of the second-

order (Fredkin et al., 1985). In the other words, the

distributions with orders higher than two are redundant,

and they can be obtained from the one-dimensional and two-

dimensional distributions. Ion channels are mostly binary,

either closed or open. The theory implies that the two-

dimensional dwell-time distributions provide a complete

information context, and therefore suffice to describe the

data at equilibriums. For this reason, we will restrict

ourselves in the following to the case of binary channels.

For binary channels, the distributions described above can

be simplified. Following the conventional notation with C
and O representing the two classes, the dwell-time

distributions can be rewritten as

fcðtÞ ¼ pcPccðtÞQco1; (6)

foðtÞ ¼ poPooðtÞQoc1; (7)

fcoðt; sÞ ¼ pcPccðtÞQcoPooðsÞQoc1; (8)

focðt; sÞ ¼ poPooðtÞQocPccðsÞQco1; (9)

and the entry probability as

pc ¼ pcQ
�1

cc QcoQ
�1

oo Qoc; (10)

po ¼ poQ
�1

oo QocQ
�1

cc Qco; (11)

where Qcc corresponds to the transitions between closed

states, Qco from closed states to open states, Qoc from open

states to closed states, and Qoo between open states.

Evaluation of dwell-time distributions

Given a set of rate constants, the dwell-time distributions can

be evaluated using standard matrix decomposition techni-

ques as previously described (Qin et al., 1997). Briefly, from

the eigenvalues and eigenvectors of a rate matrix, one can

determine the corresponding transition probability matrix as

Qaa ¼ l1A1 1 � � � lnaAna ; (12)

PaaðtÞ ¼ e
l1tA1 1 � � � elna tAna ; (13)

where na is the number of states in class a, li-values are the
eigenvalues ofQaa, and Ai values are the matrices multiplied

from the eigenvectors (Colquhoun and Hawkes, 1982). The

one-dimensional and two-dimensional dwell-time distribu-

tions are then given by

fcðtÞ ¼ +
nc

i¼1

ðpcA
ðcÞ
i Qco1Þeli t; (14)

foðsÞ ¼ +
no

j¼1

ðpoA
ðoÞ
j Qoc1Þemjs; (15)

and

fcoðt; sÞ ¼ +
nc

i¼1

+
no

j¼1

ðpcA
ðcÞ
i QcoA

ðoÞ
j Qoc1Þeli t1mjs; (16)

focðs; tÞ ¼ +
nc

i¼1

+
no

j¼1

ðpoA
ðoÞ
j QocA

ðcÞ
i Qco1Þeli t1mjs; (17)

respectively, where for simplicity of notation the closed and

open eigenvalues are designated differently with l- and m-

values, respectively. The entry probability is determined by

the linear equation

paðI�FaaÞ ¼ 0;

where the matrix Faa can be reformulated into

Fcc ¼ +
nc

k¼1

+
no

l¼1

l
�1

k m
�1

l AðcÞ
k QcoA

ðoÞ
l Qoc; (18)

Foo ¼ +
nc

k¼1

+
no

l¼1

l
�1

k m
�1

l AðoÞ
l QcoA

ðcÞ
k Qco: (19)

These equations allow the matrix to be evaluated analytically

from the expansions of Qcc and Qoo without the need to
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calculate their inversions. The dwell-time distribution

equations suggest that the one-dimensional distributions

have the form of sums of one-dimensional exponentials

whereas the two-dimensional distributions are sums of two-

dimensional exponentials.

Derivatives of dwell-time distributions

The availability of the derivatives of the dwell-time

distribution functions is essential to rapid optimization of

likelihood function as well as to accurate estimation of model

parameters. The calculation of the derivatives involves

several steps. But the central step is the calculation of the

derivatives of a matrix exponential, which follows

@

@u
PccðtÞ ¼ +

nc

i¼1

+
nc

j¼1

AðcÞ
i

@Qcc

@u
AðcÞ

j

� �
gðli; lj; tÞ; (20)

where g is a scalar function determined by the eigenvalues

(Ball and Sansom, 1989; Qin et al., 1996). From the

equation, the derivatives of the one-dimensional dwell-time

distributions can be obtained as

@

@u
fcðtÞ ¼ +

nc

i¼1

@pc

@u
AðcÞ

i Qco11pcA
ðcÞ
i

@Qco

@u
1

� �
e
li t

1 +
nc

i¼1

+
nc

j¼1

pcA
ðcÞ
i

@Qcc

@u
AðcÞ

j Qco1
� �

gðli; lj; tÞ; (21)

and the two-dimensional dwell-time distributions as

For the derivatives of the entry probability, one first

calculates the derivatives of the matrix Fcc, which can be

derived as.

The derivatives of the entry probability are then de-

termined by

@pc

@u
ðI�FccÞ ¼ pc

@Fcc

@u
: (24)

The equation has the same coefficient matrix as the one for

the entry probability itself; therefore they can be solved

together to reduce computations. Note that only the

derivatives of the closed distribution fc(t) and the closed

and open distribution fco(t,s) are described here; the

derivations of the other two distributions, the open

distribution fo(s) and the open and closed distribution foc(s,t),
are in exact parallels.

Likelihood functions

The goodness of a fit is ranked using the pseudo-likelihood

criterion as for exponential-based histogram fitting (Colqu-

houn and Sigworth, 1995). The likelihood of a one-di-

mensional fit is defined as

L1 ¼
Y
i

F
n
ðcÞ
i
c ðtiÞ3

Y
j

F
n
ðoÞ
j
o ðsjÞ; (25)

where F-values are the probabilities of dwell-times with

durations in the range of specified bins. Similarly, the

likelihood of a two-dimensional fit is given as

L2 ¼
Y
i;j

F
n
ðcoÞ
ij

co ðti; sjÞ3
Y
j;i

F
n
ðocÞ
ji
oc ðsj; tiÞ; (26)

where F-values are the joint probabilities of the pairs of

closed-and-open or open-and-closed dwell-times. For fine

bins of small durations, the probabilities are approximately

@

@u
fcoðt; sÞ ¼ +

nc

i¼1

+
no

j¼1

@pc

@u
AðcÞ

i QcoA
ðoÞ
j Qoc11pcA

ðcÞ
i

@Qco

@u
AðoÞ

j Qoc11pcA
ðcÞ
i QcoA

ðoÞ
j

@Qoc

@u
1

� �
e
li t1mjs

1 +
nc

i¼1

+
nc

j¼1

+
no

k¼1

pcA
ðcÞ
i

@Qcc

@u
AðcÞ

j QcoA
ðoÞ
k Qoc1

� �
gðli; lj; tÞemks

1 +
nc

k¼1

+
no

i¼1

+
no

j¼1

pcA
ðcÞ
k QcoA

ðoÞ
i

@Qoo

@u
AðoÞ

j Qoc1
� �

gðmi;mj; sÞe
lkt: (22)

@Fcc

@u
¼ +

nc

k¼1

+
no

l¼1

AðcÞ
k

@Qco

@u
AðoÞ

l Qoc 1AðcÞ
k QcoA

ðoÞ
l

@Qoc

@u

� �
l
�1

k m
�1

l � +
nc

i¼1

+
nc

j¼1

+
no

k¼1

AðcÞ
i

@Qcc

@u
AðcÞ

j QcoA
ðoÞ
k Qoc

� �
l
�1

i l
�1

j m
�1

k

� +
nc

k¼1

+
no

i¼1

+
no

j¼1

AðcÞ
k QcoA

ðoÞ
i

@Qoo

@u
AðoÞ

j Qoc

� �
l
�1

k m
�1

i m
�1

j : (23)
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proportional to the density functions. For large bins, they are

calculated by integrating the corresponding density functions

over the bins. Since the distributions are of sums of

exponentials, the integrals can be readily calculated by

Eqs. 14–17. The small bins can provide statistically efficient

estimates, but they may incur the problem of intensive

computations.

In practice, the likelihoods themselves may be out of

computer numeric ranges. To avoid possible overflow, the

log likelihoods are used instead, yielding

LL1 ¼ +
i

n
ðcÞ
i logFcðtiÞ1 +

j

n
ðoÞ
j logFoðsjÞ; (27)

LL2 ¼ +
i

+
j

n
ðcoÞ
ij logFcoðti; sjÞ

1 +
i

+
j

n
ðocÞ
ji logFocðsj; tiÞ: (28)

The derivatives of the log likelihoods can be written as

@LL1

@u
¼ +

i

nðcÞi

FcðtiÞ
� @FcðtiÞ

@u
1 +

j

n
ðoÞ
j

FoðsjÞ
� @FoðsjÞ

@u
; (29)

@LL2

@u
¼ +

i

+
j

n
ðcoÞ
ij

Fcoðti; sjÞ
� @Fcoðti; sjÞ

@u
1 +

i

+
j

n
ðocÞ
ji

Focðsj; tiÞ

� @Focðsj; tiÞ
@u

; (30)

where the derivatives of the probability F values in the

summations can be obtained analytically from the deriva-

tives of the dwell-time distribution functions in Eqs. 21 and

22.

Note that the likelihood functions defined above involve

multiple distributions. For one-dimensional, the likelihood

consists of both closed and open dwell-time distributions,

and for two-dimensional, it involves both closed-open and

open-closed dwell-time distributions. This is different from

the exponential-based histogram fitting where each in-

dividual histogram is fitted separately. For model-based

fitting, the distributions are not independent and need to be

fitted simultaneously. Furthermore, for global fitting of data

spanning over a range of experimental conditions, the

likelihoods can be further extended to sum over all

distributions across different individual conditions.

Maximization of likelihood functions

Estimation of model parameters is based on maximization of

the pseudo-likelihood functions for dwell-time distributions.

The optimization is carried out using the same approach as

proposed previously for maximizing the full likelihood of

dwell-time sequences (Qin et al., 1997, 1996). Briefly, the

rate constants are parameterized into

kij ¼ ½Cij�aijebijV; (31)

where Cij is the concentration of the drug that the rate kij is
sensitive to and V is the membrane potential or other global

variables such as force. Instead of solving for the rate

constants directly, the parameters aij and bij are chosen as

variables. For the rates that are independent of concen-

trations, Cij ¼ 1. Similarly, for the rates that are independent

of voltages, bij ¼ 0. In the case that the data does not span

over multiple conditions, it follows that kij ¼ aij.
The above parameterization of rate constants has the

advantage to allow for combined fitting of multiple

distributions from different experimental conditions. A

further twist in the implementation is that the variables aij
are actually represented in their exponential forms. By doing

so, it facilitates the handling of multiplicative constraints

such as the detailed balance conditions. With the new

representation, these constraints are reduced to linear

equations, which can be taken into account explicitly by

matrix decompositions.

Search of the likelihood space is performed using a quasi-

Newtonian method (Press et al., 1992). The method exploits

an approximate Hessian matrix accumulated from the first-

order derivatives and features a quadratic convergence near

the maximal point. Other optimizers were also attempted, but

they were generally inferior to the quasi-Newtonian

approach, particularly in terms of the accuracy of the

estimates. For example, the non-gradient-based simplex

method was often found to bog down when the parameters

were still far away from the true values. The problem

becomes increasingly aggravated when the parameter space

is large.

Correction for missed events

The effects of missed events on the apparent dwell-time

durations are corrected using a first-order approximation

(Roux and Sauve, 1985; Qin et al., 1996). Given a fixed dead

time td, this is done by simply correcting the rate constant

matrix,

eQaa ¼ Qaa � Eaa; (32)

eQab ¼ e
EaatdQab; (33)

where a and b are ether closed or open, but a 6¼ b, and the

matrix Eaa is the correction term given by

Eaa ¼ Qab½I� PbbðtdÞ�Q�1

bb Qba: (34)

Both the correction matrix itself and its derivatives can be

calculated analytically from the spectral expansions of the
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rate constant matrices (Qin et al., 1996). There are other

solutions, both approximate and exact, to the missed events

problem (Crouzy and Sigworth, 1990; Hawkes et al., 1992).

Although these solutions are more accurate (Hawkes et al.,

1990), the first-order approximation has the advantage on the

availability of its analytical derivatives. This is important

since it allows one to use fast optimization algorithms to

search the likelihood space; otherwise, one has to either

evaluate the derivatives numerically or employ non-de-

rivative-based optimizers, both of which can slow down the

fitting process significantly. The first-order approximation is

valid under the assumption that the missed event durations

are negligible compared to the apparent durations.

Examples

A few examples are presented here to demonstrate the

performance of the algorithm and its applicability to

experimental data. Examples are also given to illustrate the

limit of one-dimensional fitting and the improvement of two-

dimensional fitting. For simulation, continuous dwell-times

were generated using exponentially distributed random

numbers. Histograms of dwell-time durations were con-

structed with logarithmically scaled binning. Probabilities of

individual bins were integrated explicitly from dwell-time

distributions. Calculations of eigenvalues and eigenvectors

were performed using routines translated from EISPACK

(www.netlib.org; see also Wilkinson and Reinsch, 1971).

Several methods were implemented for search of the likeli-

hood space, including the non-gradient-based simplex

method, the gradient-based variable metric method, and the

conjugate gradientmethod. These optimizers were taken from

the book Numerical Recipes (Press et al., 1992), with

modifications on step size and exception handling. The fitting

was monitored with visual display of the predicted one-

dimensional and two-dimensional dwell-time distributions in

superimposition with experimental histograms. At the end of

fitting, the time constants and proportions of individual closed

and open components were calculated from the resultant

model. The algorithm is implemented in C/C11 with

a graphical user interface. The program is available through

the IcE/QuB software suite (www.qub.buffalo.edu).

A sequential model

A linear sequential model has the simplest topology, but

nevertheless has been successfully used to describe the

gating of many ion channels. Scheme I shows such a model

for nicotinic acetylcholine receptor (nAChR) ion channels.

The model consists of two binding steps with a single open

state. Table 1 (column 2) lists the values of the rate constants.

For simulation, a set of 89,000 events was generated for both

closed and open dwell-times, which corresponds to ;7 min

in total duration.

One essential feature of the model is that it has a single

closed state leading to the openings. Models of this kind have

no correlation between closed and open dwell-times. As

a result, the one-dimensional dwell-time distributions

contain sufficient information to resolve them. Table 1

(column 3) lists the estimation results for Scheme I obtained

by fitting the one-dimensional dwell-time histograms. As

expected, the estimates were all close to the true values of the

rate constants. Fig. 1 A shows the corresponding closed and

open dwell-time distributions predicted from the resultant

model, which superimposed well with the histograms. It is

emphasized that the model is fit to both closed and open

histograms simultaneously, and the fitting resulted in rate

constants directly, without relying on conversion from time

constants.

Different dead times were attempted to assess the

capability of the algorithm for correction of missed events.

Although both one-dimensional and two-dimensional fit-

tings were able to resolve the model, they appeared to have

different sensitivity to missed events. For one-dimensional

fitting, the algorithm worked up to a dead time td ¼ 30 ms.

This dead time was about the lifetime of the shortest closed

state and led to a nearly 60% loss of events. For two-

dimensional fitting, an even larger dead time, td¼ 40 ms, was

allowed, suggesting that the two-dimensional fitting has

a higher degree of tolerance for missed events. The full

maximum likelihood fitting of the entire dwell-time

sequence was most robust, with td ¼ 50 ms. Table 1

(columns 4–6) lists the estimates from different fittings. Fig.

1, B and C, show the histograms and the distributions

predicted from the best one-dimensional and two-dimen-

sional fits with the maximally imposed dead times. As

compared to the original distributions, the missed events

produced considerable distortions in the closed histogram,

especially on the peak of the short closures. With td ¼ 50 ms,

only a small tail of the peak remained. The algorithm,

however, was capable of extrapolating it back to recover all

the estimates. The example also illustrates that the high-order

dwell-time distributions can be more reliable in practice,

even though they may contain no more information than the

one-dimensional distributions.

A branched model

Branched models are another type of commonly used model.

These models are often useful in describing channels that

exhibit partial activity, e.g., openings from partial ligand

binding. Scheme II illustrates an example, which was

proposed for gating of Ca21-activated K1 channels

(Magleby and Pallotta, 1983). The two open states are

connected to two different closed states. As a result,

correlations arise between different closed and open dwell-

times (Magleby and Weiss, 1990b; Magleby and Song,
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1992). Fig. 2 A shows the two-dimensional dwell-time

distribution predicted by the model. The rate constants used

for simulation are given in Table 2, column 2. One essential

feature of the distribution is that the one-dimensional

sections sliced along different closed or open durations have

different appearances. This is particularly evident in the open

dwell-time distributions adjacent to the long and the short

closures. The former exhibited two distinct peaks, whereas

the latter exhibited only one. A feature like this in the two-

dimensional dwell-time distributions is indicative of the

existence of correlations between adjacent dwell-times.

A linear branched model has a complexity the same as

a linear sequential model, both of which involve a total of

2(N–1) rate constants, where N is the number of states. This

complexity coincides with the total degrees of freedom in the

one-dimensional dwell-time histograms. Therefore, it

seemed that the one-dimensional histograms had sufficient

complexity to resolve the model. Unfortunately, the problem

is complicated by the branched openings. For the particular

model in Scheme II, it has been shown that the one-

dimensional histograms cannot discriminate it from other

branched or sequential models (Magleby and Weiss, 1990b).

Furthermore, even with a fixed topology, the fitting of one-

dimensional histograms may not have a unique solution. For

example, starting with all rates equal to 100 s�1 for Scheme

II, the one-dimensional fitting correctly estimated all

parameters, as listed in Table 2, column 3. However, when

perturbing the starting values to k24 ¼ 5000, k42 ¼ 300, and

k53 ¼ 2000, the fitting converged to a different model (Table

2, column 4). The model, as opposed to the correct one, has

the fast openings arising from C2 and the slow ones from C3.

However, the model retained exactly the same maximum

likelihood. The analysis imposed a dead time td ¼ 40 ms,

which resulted in a 30% loss from a total of 500,000

simulated dwell-times.

One might expect that the failure of one-dimensional

histogram fitting was due to the absence of the dwell-time

correlation information, and therefore could be avoided if that

information was used. Unfortunately, this was only partially

true. On the one hand, a high-order distribution such as the

two-dimensional histograms or the full dwell-time sequence

distribution did give different likelihood values for the two

isomericmodels obtained by the one-dimensional fitting,with

the correct one scoring a higher likelihood. On the other hand,

the fitting still failed when starting from the initial values that

bogged down the one-dimensional fitting. This was true for

both two-dimensional histogram fitting and the full maximum

likelihood approach. Examination of the likelihood surface

showed that the two isometric models were both the maxima

of the likelihood function, even though the incorrect model

has an inferior likelihood value (Fig. 2 B). Therefore, it
seemed that without the use of correlation information, the

two maximums attained identical likelihood values. The

addition of the correlation information suppressed the likeli-

hood value of the incorrect model, but did not suffice to

remove it. As a result, it became a local maximumpoint. Fig. 2

C shows the one-dimensional dwell-time distributions

calculated from the inferior model. As expected, it fits well

both the open and the closed histograms. The presence of such

TABLE 1 Parameter estimates by different approaches for

Scheme I

Rate

True

value

Estimate*

(1D)

Estimatey

(1D)

Estimatey

(2D)

Estimatey

(MIL)

k12 200 211 209 211 210

k21 500 516 522 532 524

k23 400 428 451 432 527

k32 25,000 27,882 28,981 29,165 34,657

k34 60,000 50,326 48,793 54,777 38,974

k43 240 196 184 202 149

*No dead time was imposed.
yMaximal dead times were used, with td ¼ 30, 40, and 50 ms for the one-

dimensional histogram fitting, the two-dimensional histogram fitting and

the full likelihood fitting, respectively.

SCHEME II SCHEME III
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local maximums certainly introduces additional complexity

to the fitting, which needs to be guarded carefully against

inferior local solutions.

An allosteric model

Gating of ion channels involves allosteric transitions

between multiple subunits. A faithful description of the

process usually requires many conformational states.

Scheme III illustrates such an example. The model was

modified from that proposed for gating of Shaker K1

channels (Zheng and Sigworth, 1997). The channel consists

of four identical subunits, and each subunit involves two

steps of conformational changes. The transitions between

subunits are independent except the last step of opening,

which is concerted.

The model is large in size but involves only a few free

parameters, and therefore is well suited for histogram

analysis. As a test, a sequence of ;1.2 3 106 dwell-times

was generated from the scheme. Table 3 (column 2) lists the

values of the rate constant used in simulation. Both one-

dimensional and two-dimensional histograms were fitted. A

dead time td ¼ 40 ms was imposed, which resulted in a loss

of approximately one-half of the total number of dwell-

times. Fig. 3 shows the one-dimensional histograms of the

remaining dwell-times. The nature of the allosteric tran-

sitions was taken into account by imposition of constraints

among the rate constants. There are a total of 36 such

constraints, leaving six independent variables. The final

estimates of the parameters were listed in Table 3, columns

3–4. The two-dimensional fitting successfully recovered all

parameters to a good accuracy, whereas the one-dimensional

fitting performed poorly on the rates between distant closed

states, presumably due to the existence of branched

transitions. Despite the biases on the estimated para-

meters, the one-dimensional fitting produced dwell-time

FIGURE 1 Histogram analysis of a linear

sequential model. The one-dimensional

histogram fitting sufficed to resolve the

model (A), but it is less sustainable to

missed events (B) than the two-dimensional

histogram fitting (C). The imposition of

a dead time had the most profound effect on

the short closures (the leftmost peak in the

solid histograms). The openings remained

a single exponential, but the mean time

increased. Data were simulated from the

nicotinic ACh receptor ion channel in

Scheme I. The solid lines show the overall

distributions predicted from the estimated

models, and the dotted lines represent the

individual components.
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distributions that were virtually no different from those gen-

erated by the two-dimensional fitting and fitted the histograms

well, as shown in Fig. 3. The example again demonstrates the

inadequacy of one-dimensional histograms for resolving

branched models, even in the presence of a large number of

constraints. It should be note that such ambiguity is generally

pertinent to the use of a single dataset and could be reduced if

the one-dimensional fitting is carried out for simultaneous

fitting of data obtained under a number of experimental

conditions. For this example, the two-dimensional histogram

fitting took ;1 min to converge, starting from a set of initial

values at one-tenth of the true values.

Application to experimental data

As a last example, we consider the analysis of real data from

a VR1 receptor ion channel expressed in Xenopus oocytes.
The recordings were made from outside-out patches perfused

with different capsaicin concentrations. Data were digitized

at a sampling rate of 20 kHz and lowpass-filtered to 10 kHz.

Three concentrations were chosen for combined analysis.

The idealization of the data was performed using the SKM

procedure, with resulting dwell-times at 0.1, 0.3, and 1 mM

capsaicin, respectively. A dead time of 40 ms was imposed to

correct for missed events.

Preliminary analysis (Hui et al., 2003) suggested that the

gating of the channel involves multiple closed ($5) and open

($3) states, and that all open states are accessible from each

level of ligand binding. The open time constants are invariant

to ligand concentrations, suggesting that ligand binds

exclusively to the closed channel. Scheme IV illustrates

a hypothesized model that is consistent with the observa-

tions. Four ligand-binding steps are assumed, with each

binding leading to a burst of openings interrupted by brief

closures. Multiple bindings tend to stabilize the burst, but the

activity within bursts is independent of the level of ligand

binding. Furthermore, it is assumed that the binding and

unbinding of capsaicin to different subunits is independent.

Fig. 4 shows the dwell-time distributions resulting from

the two-dimensional histogram fit. The model involves 29

states and 56 transition rates. After taking account of all

constraints, 20 independent variables remain. Table 4 lists

the values of the resultant rate constants. The fitting involves

six two-dimensional histograms, i.e., two closed-open and

open-closed distributions at three concentrations. Also

shown are the distributions of the individual closed and

open components, which were calculated from the fitted

model. There were eight distinct closed and twelve open

components, of which only the four longest closed ones

showed dependence on ligand concentration.

The two-dimensional dwell-time distributions allow de-

termination of coupling between different closed and open

components. Table 5 lists the results for the above fitted

model. Although the model predicted a large number of

components, many of them showed similar time constant

values. For clarity of comparison, the components that

exhibited similar kinetics were grouped. This gave rise to

four types of closures, namely, short (,1 ms), intermediate

(;2ms), medium (6–7ms), long (.10ms), and three types of

openings, short (,1 ms), medium (1–2 ms), and long (4–5

ms). As evident from the table, the long openings weremostly

coupled to short closures, and the short openings were mostly

to the long closures. The binding of ligand increased the

occurrences of long openings and short closures while it

suppressed the occurrences of short openings and long

closures.

It is emphasized that the model, although fits the data,

remains hypothetical and may not represent the full gating

mechanism of the channel. It is used only to demonstrate the

effectiveness of the proposed approach. For models of this

size, the full maximum likelihood approach becomes

prohibitively slow, and the histogram approach has to be

used for a fast turnaround.

DISCUSSIONS

An approach for fitting both one- and two-dimensional

dwell-time histograms has been described. It fits a kinetic

model directly and optimizes the pseudo-likelihood between

the distributions predicted from the model and the

experimental histograms. Compared to the existing ones

(Rothberg and Magleby, 1998), the method features

a significant improvement on computational efficiency. It

calculates the analytical derivatives of the likelihood

functions and applies the gradient-based optimizers such as

the variable metric method for rapid search of the likelihood

space. The method has many essential features of the full

maximum likelihood approach proposed for direct fitting of

dwell-time sequences. These include, for example, theSCHEME IV
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capability of correction for missed events, the imposition of

constraints on rate constants, and the allowance for global

fitting of data across multiple experimental conditions.

The two-dimensional histogram fitting offers a higher

degree of model identifiability than the one-dimensional

fitting, and in theory it should be comparable to that of the

full dwell-time sequence fitting for equilibrium data.

Numeric examples showed that the one-dimensional fitting

could resolve sequential models involving single open states.

For branched models with multiple open states, the fitting of

one-dimensional dwell-time distributions was inadequate,

even though the model has a complexity equal to that of

the one-dimensional distributions. This arises because the

correlation information between closed and open dwell-

times is not preserved in the binned histograms. Interest-

ingly, although adding the extra correlation information

improves the identifiability, the improvement may be

limited. The models that the one-dimensional histograms

fail to discriminate may remain as local maximums on the

likelihood surface. As a result, an inappropriate starting point

may lead to a false solution even with the use of high-order

distributions. This is the case for both the two-dimensional

histogram fitting and the full maximum likelihood approach,

as demonstrated with the simple five-state model for Ca21-

activated potassium channels. It remained to see whether

similar observations hold for other models.

The proposed method is most useful when the compu-

tation is intensive. For models of moderate sizes, the full

likelihood fitting is generally fast and can be used instead.

For models of large sizes, however, the full likelihood fitting

becomes computationally slow, in which case the histogram

fitting can be applied to speed up the analysis. The approach

is also useful for applications involving extensive modeling.

When a large number of models need to be evaluated,

a significant amount of time can be reduced with histogram

fitting.

FIGURE 2 Models that cannot be dis-

criminated by one-dimensional dwell-time

distributions can be resolved by high-order

dwell-time distributions, but they may

remain as local maximum solutions. (A)

The two-dimensional dwell-time distribu-

tion predicted from Scheme II for Ca21-

activated potassium channels. The exis-

tence of coupling between closed and open

dwell-times is evident from the different

appearances of the one-dimensional open

dwell-time distributions in adjacency to

different closed durations. (B) Contours of
the likelihood surface at the true solution

(top) and a local maximum point (bottom).

Each interval corresponds to 918 (top) and

38,835 (bottom) log likelihood units, re-

spectively. The local maximal solution is

inferior to the true one by;4000 units. The

axes represent the logarithms of the ratios of

the rates to their true values used in

simulation (top) or to their local maximum

solutions (bottom). (C) The one-dimen-

sional dwell-time distributions predicted

by the local maximal solution. It fits well

both closed and open histograms. The

dotted lines represent the individual com-

ponents. A dead time of 40 ms was used for

all analysis except for the plot of the

theoretical two-dimensional dwell-time dis-

tribution in A.
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The algorithm needs to be used with some care in practice.

The existence of local maxima requires that the fitting be

tested with different starting values. For branched models,

some opens may be short and some long, and few of the

fitting routines can shift this relationship during the fit.

Consequently, one can start the fits with some opens fast and

some opens slow and then reverse the start. Experience also

suggests that the fitting is particularly prone to local solutions

for large models. Therefore it is important to avoid models

with redundant states. Models with loops can be problematic,

especially when a single data set is used. The presence of

loops may make the model inherently non-identifiable. Such

models often involve more than 2NcNo free parameters,

which is the upper limit that can be extracted from a single

equilibrium data set (Fredkin et al., 1985). For loop-

containing models, multiple datasets over a wide range of

experimental conditions have to be analyzed simultaneously

to exceed the limit.

Besides the necessity to repeat fits with different initial

parameters, it is important to check the optimality of the

resultant model to avoid possible false solutions. An

uncoupled but otherwise fully connected model, as illustrated

in Scheme VI, can be used to obtain the theoretical best

likelihood for an individual data set (Rothberg and Magleby,

1998; Gil et al., 2001; Kienker, 1989). A globally optimal fit

should have its best likelihood comparable to this theoretical

best likelihood for the same data set. The fit can be further

validated by inspection of the resulting dwell-time distribu-

tions against the actual histograms. For two-dimensional

distributions, the dependency plots have been shown to be

a sensitive display for fractional difference between the

number of observed interval pairs and the numbers expected

from the model (Magleby and Song, 1992).

The choice of dead times for missed events poses another

problem. For data that is idealized with hidden Markov

modeling, it is ;2–3 times the sampling duration, irre-

spective of channel kinetics and noise. For data idealized

with threshold crossing, the value varies with the extent of

low-pass filtering. In practice, the dead time may have to be

chosen retrospectively. With the dead time too large, the

likelihood surface becomes flat, and the fitting tends to

produce nonunique solutions, which is indicative of an upper

limit to the dead time. With the current program, problems

like these have to be addressed manually. It remains

a challenge to automate the solutions.

Model-independent fitting

Although the approach has been described as a model-based

fitting technique, it allows model-independent fitting as well.

This could be useful in many cases, especially for studies of

newly identified ion channels, where an explicit knowledge

of the model is unavailable. Under such circumstances, the

exponential-based one-dimensional and two-dimensional

histogram fitting provides a good staring point. The acquired

knowledge of the time constants of the components and their

proportions is also essential to establishment of a full kinetic

scheme.

The equivalent exponential fittings can be achieved with

the proposed approach using models of special topology. For

one-dimensional histograms, a star model can be used.

Fitting of a closed histogram with N components is

equivalent to fitting the histogram using a model with N
closed states connected to a single open state as in Scheme V.

The time constants of the components are the inverses of

the opening rates, and the proportions are the relative

frequencies of closures from the common open state; i.e.,

ti ¼
1

ki
; ai ¼

k�i

k�1 1 � � � k�nc

: (35)

TABLE 2 Parameter estimates by one-dimensional and

two-dimensional dwell-time histogram fitting for Scheme II

Rate

True

value (s�1)

Estimate*

(1D)

Estimatey

(1D)

Estimate*

(2D)

Estimatey

(2D)

k12 34 34 24 34 23

k21 180 181 291 180 274

k23 285 286 333 285 381

k32 600 603 332 601 388

k24 120 117 3918 117 3850

k42 2860 2770 320 2839 323

k35 3950 3926 245 3924 185

k53 322 320 2853 320 3137

*Estimates given by one-dimensional and two-dimensional histogram

fittings starting with an initial value of 100 for all rates. A dead time of td ¼
40 ms was imposed.
yEstimates obtained with a starting value of 100 for all rates except k24 ¼
5000, k42 ¼ 300, and k53 ¼ 2000. A dead time of td ¼ 40 ms was imposed.

TABLE 3 Parameter estimates by one-dimensional and two-

dimensional dwell-time histogram fitting for Scheme III

Parameter True value (s�1) Estimate (1D) Estimate (2D)

a 1000 220 989

b 500 26 505

d 2000 1925 2036

g 1000 722 1023

kco 20,000 18,688 19,635

koc 100 95 97
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Since the proportion of a component is the area underneath

it, the exponential coefficient of the component is given by

ci ¼
kik�i

k�1 1 � � � k�nc

: (36)

The fitting of an open histogram is essentially the same, with

a star model consisting of a single closed state surrounded by

as many open states as the expected number of exponential

exponents.

The two-dimensional dwell-time distributions comprise

two-dimensional exponentials with a total of 2NcNo degrees

of freedom, where Nc and No are the number of closed and

open components, respectively. The fitting of the two-

dimensional histograms therefore requires a model involving

the same number of parameters. One-such model is the fully

connected but uncoupled one, as shown in Scheme VI.

The model is fully uncoupled, thereby ensuring its

identifiability. The equivalent exponential fittings can be

obtained by fitting the model to the two-dimensional dwell-

time histograms, and then calculating the time constants and

coefficients of the two-dimensional exponentials. The

proportions of the individual two-dimensional components

can be determined from the volume underneath each

component.

The two-dimensional fitting described above assumes no

knowledge of equilibrium. If the system is known at

equilibrium, the rates of transitions that occur on a closed

loop need to satisfy the detailed balance condition, which will

lead to a reduction in the degrees of freedom of the model.

This can potentially be used as a test for equilibrium. The

fitting of two-dimensional histograms based on uncoupled

models also alleviates the problem of handling constraints.

With exponential fitting, there are a number of constraints that

need to be imposed. These include the probability totality

constraint and the constraints for self-consistency between

marginal probabilities. Handling of these constraints is not

straightforward as they are highly nonlinear in the parameters.

With the use of a fully connected but uncoupled model,

however, the constraints become implicitly satisfied.

Comparison to the full maximum-likelihood fitting

Although the one-dimensional histograms have limitations

on the use of correlation information, the two-dimensional

histograms, in theory, contain all information of the data for

binary channels. This raises the question about the differ-

ences between the two-dimensional fitting and the full

likelihood fitting of the dwell-time sequences, both of which

utilize the correlation information between dwell-times.

For comparison, data were simulated from the model in

Scheme II, and the different fitting approaches were applied

to re-estimate the rate constants. A dead time of td ¼ 40 ms

was used in all cases. Fig. 5 shows the mean deviations of the

estimates from their true values and the corresponding time

for each approach. The one-dimensional fitting is inadequate

to resolve the model in general, but it nevertheless converged

to the correct model given appropriate starting values. The

full likelihood fitting has the least variances, which is in good

agreement with the theory that the maximum likelihood

approach is the most efficient estimator. For all three fittings,

increasing data length reduces the estimation deviations, and

the reduction is approximately inversed to the number of

events. For this particular example, an ;10% of mean error

FIGURE 3 Dwell-time histograms and their best one-dimensional and

two-dimensional fits (solid lines) for the allosteric model in Scheme III. The

dotted lines superimposed on the histograms represent the individual

components calculated from the two-dimensional fit. The one-dimensional

and two-dimensional fits were virtually identical in the overall distributions.

However, they differed in the individual closed components. Most closed

components had a negligible occurrence, except the ones that constituted the

two major peaks at t ¼ 0.038 and 52 ms, respectively.
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could be achieved with ;4000 events for the two-

dimensional histogram fitting and ;8000 events for the

one-dimensional fitting, respectively. Therefore, when the

number of events is abundant, the histogram fitting could

attain estimates with acceptable accuracy. On the other hand,

the computational cost of both one-dimensional and two-

dimensional fittings are independent of data length, whereas

the time of the full likelihood fitting increases proportionally.

It should be noted that the histogram fitting applies only to

channels at equilibrium. For channels that inactivate or with

nonstationary stimuli, the full dwell-time sequence likeli-

hood fitting has to be used. The analysis of these channels

depends on the starting probability, and the time dependence

of the data is lost after binning. In addition, histogram fitting,

as described above, allows for data exhibiting only two

conductance levels. The approach could be extended to

multiple channels or single channels with substates, but there

are usually a limited number of dwell-times for the high

conductance levels, which may limit the quality of histo-

grams, and in turn the accuracy of the estimates.

Model identification

The goal of kinetic analysis is the establishment of a model

that can best describe the experimental data. Unfortunately,

the problem has no analytical solution. It is relatively easy to

find a model that gives the maximum likelihood at any single

condition. For example, a fully connected and uncoupled

model is always one of the candidates given a fixed number

of states. The difficulty of the problem is to find a common

FIGURE 4 Single-channel analysis of

a VR1 receptor ion channel. The two-

dimensional histograms constructed from

three different ligand concentrations were fit

simultaneously with a model showing in-

dependent ligand binding but partial open-

ings. The solid lines superimposed on the

histograms correspond to the one-dimen-

sional dwell-time distributions predicted

from the resultant model. The dotted lines

represent the individual components. There

were a total of 8 closed and 12 open

components at each concentration, of which

only four closed components exhibited

concentration-dependent time constants.

The other components including all open-

ings varied in their proportions as the ligand

concentration changed. A dead time of 40

ms, corresponding to two sampling dura-

tions, was imposed for the analysis.
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model that gives the maximum likelihoods under all

conditions.

One simple approach to the problem is perhaps an

exhaustive search over all models. Although possible, the

approach can be time-consuming even with the fast fitting

procedure presented here. This is because the number of

candidate models can be astronomically large even for

a moderate size and it increases more than exponentially with

the number of states. Therefore, it is always important to

limit candidate models by making use of a priori in-

formation. The size of the model can be determined from the

minimal number of components in the dwell-time distribu-

tions. Experience suggests that two-dimensional histograms

provide more reliable estimates than one-dimensional histo-

grams. Some components that are located close to each other

in one-dimensional histograms may be separated in the two-

dimensional histograms if their adjacent components are

resolvable. The connections between the states are more

difficult to determine and require comparisons of a large

number of candidate models. Some aspects of the in-

formation may be deduced from the stimulus-dependence of

the component results. For example, the components that

remain at a saturated stimulus likely reside in the stimulus-

independent regions of the model. The variability of the time

constants of the components indicates whether the compo-

nents are directly involved in stimulus-dependent transitions.

Information may also come from other sources such as the

structure of the channel and its biophysical and biochemical

properties. In general, multiple sources of information

TABLE 4 Parameter estimates by two-dimensional dwell-time

histogram fitting for Scheme IV

Rate (s�1) Estimate (2D) Rate (s�1) Estimate (2D)

k01 51 k59 1924

k10 5 k95 1018

k15 57 k9,13 112

k51 4261 k13,9 213

k26 140 k5,17 825

k62 1860 k17,5 5161

k37 589 k9,21 98

k73 1940 k21,9 1245

k48 15 k13,25 117

k84 15 k25,13 8200

Only the independent rates are listed.

TABLE 5 Coupling between closed and open components

for Scheme IV

Components

Coupling (%)

(0.1 mM)

Coupling (%)

(0.3 mM)

Coupling (%)

(1 mM)

CSOL 10 18 35

CM1OL 3 6 5

CM2OL 4 2 1

CLOL 2 1 1

CSOM 12 15 18

CM1OM 9 17 15

CM2OM 11 7 2

CLOM 9 3 1

CSOS 8 8 8

CM1OS 8 15 13

CM2OS 9 6 2

CLOS 15 4 1

The coupling was measured as the relative proportions of the volume of

a given pair of two-dimensional exponentials in the two-dimensional dwell-

time distribution. Key: CS, CM1, CM2, and CL represent the closed

components with time constants in the ranges of,1,;2, 6–7, and.10 ms,

respectively. OS, OM, and OL are the open components with time constants

in the ranges of ,1, 1–2, and 4–5 ms, respectively. CS and CL each consist

of three components, CM1 and CM2 have single components, and OS, OM,

and OL each contain four components.

FIGURE 5 Comparisons of the one-dimensional and two-dimensional

histogram fittings with the full likelihood fitting of dwell-time sequences. (A)
Mean errors of the estimates of parameters. Increasing data length reduced

the estimation variances, and the reduction was approximately inversely

proportional to the square-root of the number of events. The full likelihood

fitting has the least variances among the three approaches, but the differences

become relatively insignificant when the number of dwell-times is large. The

mean errors are determined by s ¼ 1
n+i

jqi � qij=qi; where n is the number

of rates, q-values are the true values of the rates used in simulation, and

�qq-values are the corresponding estimates. (B) Computational times of the

fittings. The histogram fittings had a complexity virtually independent of

data length, whereas the full likelihood approach increased proportionally.

Analysis was based on data simulated from the five-state model for Ca21-

activated K1 channels in Scheme II. A dead time td ¼ 40 ms was used

throughout all tests. Results were averaged from 10 independent data sets,

which were generated with different random seeds.
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have to be combined to reach a mechanistically coherent

model.
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This work was supported by grants R01-RR11114 and R01-GM65994 from

the National Institutes of Health.

REFERENCES

Ball, F. G., and M. S. P. Sansom. 1989. Ion-channel gating mechanisms:
model identification and parameter estimation from single channel
recordings. Proc. R. Soc. Lond. B Biol. Sci. 236:385–416.

Blatz, A. L., and K. L. Magleby. 1986. Correcting single channel data for
missed events. Biophys. J. 49:967–980.

Colquhoun, D., C. J. Hatton, and A. G. Hawkes. 2003. The quality of
maximum likelihood estimates of ion channel rate constants. J. Physiol.
547:699–728.

Colquhoun, D., and A. G. Hawkes. 1982. On the stochastic properties of
bursts of single ion channel openings and of clusters of bursts. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 300:1–59.

Colquhoun, D., A. G. Hawkes, and K. Srodzinski. 1996. Joint distributions
of apparent open and shut times of single-ion channels and maximum
likelihood fitting of mechanisms. Philos. Trans. R. Soc. Lond. A Math.
Phys. Eng. Sci. 354:2555–2590.

Colquhoun, D., and F. J. Sigworth. 1995. Fitting and statistical analysis of
single channel records. In Single-Channel Recording. B. Sakmann and
E. Neher, editors. Plenum Publishing, New York. 483–587.

Crouzy, S. C., and F. J. Sigworth. 1990. Yet another approach to the
dwell-time omission problem of single-channel analysis. Biophys. J.
58:731–743.

Fredkin, D. R., M. Montal, and J. A. Rice. 1985. Identification of
aggregated Markovian models: application to the nicotinic acetylcholine
receptor. Proc. Berkeley Conf. Neymann Kiefer.

Gil, Z., K. L. Magleby, and S. D. Silberberg. 2001. Two-dimensional
kinetic analysis suggests nonsequential gating of mechanosensitive
channels in Xenopus oocytes. Biophys. J. 81:2082–2099.

Hawkes, A. G., A. Jalali, and D. Colquhoun. 1990. The distributions of the
apparent open times and shut times in a single channel record when brief
events cannot be detected. Phil. Trans. R. Soc. Lond. A. 332:511–538.

Hawkes, A. G., A. Jalali, and D. Colquhoun. 1992. Asymptotic
distributions of apparent open times and shut times in a single channel
record allowing for the omission of brief events. Phil. Trans. R. Soc.
Lond. B. 337:383–404.

Horn, R., and K. Lange. 1983. Estimating kinetic constants from single
channel data. Biophys. J. 43:207–223.

Hui, K. Y., B. Y. Liu, and F. Qin. 2003. Capsaicin activation of the pain
receptor, VR1: multiple open states from both partial and full binding.
Biophys. J. 84:2957–2968.

Kienker, P. 1989. Equivalence of aggregated Markov models of ion-
channel gating. Proc. R. Soc. Lond. B Biol. Sci. 236:269–309.

Magleby, K. L., and B. S. Pallotta. 1983. Calcium dependence of open and
shut interval distributions from calcium-activated potassium channels in
cultured rat muscle. J. Physiol. 344:585–604.

Magleby, K. L., and L. Song. 1992. Dependency plots suggest the kinetic
structure of ion channels. Proc. R. Soc. Lond. B Biol. Sci. 249:133–142.

Magleby, K. L., and D. S. Weiss. 1990a. Estimating kinetic parameters for
single channels with simulation—a general method that resolves the
missed event problem and accounts for noise. Biophys. J. 58:1411–1426.

Magleby, K. L., and D. S. Weiss. 1990b. Identifying kinetic gating
mechanisms for ion channels by using two-dimensional distributions of
simulated dwell times. Proc. R. Soc. Lond. B Biol. Sci. 241:220–228.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1992.
Numerical Recipes in C. Cambridge University Press, Cambridge, UK.

Qin, F., A. Auerbach, and F. Sachs. 1996. Estimating single channel kinetic
parameters from idealized patch-clamp data containing missed events.
Biophys. J. 70:264–280.

Qin, F., A. Auerbach, and F. Sachs. 1997. Maximum likelihood estimation
of aggregated Markov processes. Proc. R. Soc Lond. 264:375–383.

Qin, F., A. Auerbach, and F. Sachs. 2000a. A direct optimization approach
to hidden Markov modeling for single channel kinetics. Biophys. J.
79:1915–1927.

Qin, F., A. Auerbach, and F. Sachs. 2000b. Hidden Markov modeling for
single channel kinetics with filtering and correlated noise. Biophys. J.
79:1928–1944.

Rothberg, B. S., and K. L. Magleby. 1998. Investigating single-channel
gating mechanisms through analysis of two-dimensional dwell-time
distributions. Meth. Enzymol. 293:437–456.

Roux, B., and R. Sauve. 1985. A general solution to the time interval
omission problem applied to single channel analysis. Biophys. J. 48:
149–158.

Venkataramanan, L., and F. J. Sigworth. 2002. Applying hidden Markov
models to the analysis of single ion channel activity. Biophys. J. 82:
1930–1942.

Wilkinson, J. H., and C. Reinsch. 1971. Linear algebra. In Handbook for
Automatic Computation, Vol. II. Springer-Verlag, New York.

Zheng, J., and F. J. Sigworth. 1997. Selectivity changes during activation of
mutant Shaker potassium channels. J. Gen. Physiol. 110:101–117.

Histogram Fitting 1671

Biophysical Journal 87(3) 1657–1671


