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ABSTRACT Reconstruction of genome-scale metabolic networks is now possible using multiple different data types.
Constraint-based modeling is an approach to interrogate capabilities of reconstructed networks by constraining possible cellular
behavior through the imposition of physicochemical laws. As a result, a steady-state flux space is defined that contains all
possible functional states of the network. Uniform random sampling of the steady-state flux space allows for the unbiased
appraisal of its contents. Monte Carlo sampling of the steady-state flux space of the reconstructed human red blood cell
metabolic network under simulated physiologic conditions yielded the following key results: 1), probability distributions for the
values of individual metabolic fluxes showed a wide variety of shapes that could not have been inferred without computation; 2),
pairwise correlation coefficients were calculated between all fluxes, determining the level of independence between the
measurement of any two fluxes, and identifying highly correlated reaction sets; and 3), the network-wide effects of the change in
one (or a few) variables (i.e., a simulated enzymopathy or fixing a flux range based on measurements) were computed.
Mathematical models provide the most compact and informative representation of a hypothesis of how a cell works. Thus,
understanding model predictions clearly is vital to driving forward the iterative model-building procedure that is at the heart of
systems biology. Taken together, the Monte Carlo sampling procedure provides a broadening of the constraint-based approach
by allowing for the unbiased and detailed assessment of the impact of the applied physicochemical constraints on a
reconstructed network.

INTRODUCTION

Genome-scale models provide a comprehensive, yet concise

representation of biological reaction networks and their

functional states (Price et al., 2003a). A growing number of

genome-scale reconstructed networks for the model (Famili

et al., 2003; Reed and Palsson, 2003; Reed et al., 2003) and

infectious (Edwards and Palsson, 1999; Schilling et al., 2002)

microorganisms are becoming available. At this scale, it has

proven difficult to formulate kinetic models, which have

proven to be useful on a small scale (Hasty et al., 2002, 2001)

and thus different modeling approaches are needed. One such

approach is the constraint-based modeling approach. This

approach uses the constraints imposed on network functions

by identifiable physicochemical laws to form a solution space

which contains all candidate steady-state solutions (Covert

et al., 2004; Price et al., 2003a). Previous constraint-based

modeling studies have focused on identifying optimal states in

steady-state flux spaces (Edwards et al., 2002), potential

cellular objectives (Burgard and Maranas, 2003), minimal

necessary reaction (or gene) sets (Burgard et al., 2001), and

upon enumerating the extreme pathways (Papin et al., 2003;

Schilling and Palsson, 2000) (convex basis vectors) or

elementary modes (Schuster et al., 2000; Schuster and

Hilgetag, 1994) of the solution space. Constraint-based

modeling has proven valuable in predicting phenotypes such

as optimal growth rates (Edwards et al., 2001), lethality of

gene knockouts (Edwards and Palsson, 2000; Forster et al.,

2003), effects of gene additions and deletions (Burgard and

Maranas, 2001; Segre et al., 2002), and the endpoint of an

adaptive evolution (Ibarra et al., 2002).

A recently developed dimension within the constraint-

based modeling approach is uniform random sampling of the

steady-state flux space (Almaas et al., 2004; Wiback et al.,

2004). This approach is used to fully determine the range of

possible steady-state fluxes allowed in the network under

defined physicochemical constraints. A Monte Carlo sam-

pling procedure was applied to the metabolic network of the

human red blood cell, the modeling of which has reached an

advanced state (Jamshidi et al., 2001; Kauffman et al., 2002;

Lew and Bookchin, 1986; Mulquiney et al., 1999;

Mulquiney and Kuchel, 1999, 2003; Price et al., 2003b;

Schuster and Holzhutter, 1995; Schuster et al., 1988; Wiback

and Palsson, 2002). Monte Carlo sampling has also proven

very useful in analyzing the general properties of networks

by testing their robustness to parameter variation (Alves and

Savageau, 2000a,b,c). The approach utilized herein has the

utility to identify the selection of independent measurements

to determine the state of a biochemical network and to

predict systemic effects from the reduction in a maximal

reaction rate to simulate enzymopathies.

MATERIALS AND METHODS

Problem overview

The objectives of the Monte Carlo sampling procedure are: 1), to generate

uniform random samples of points in the steady-state flux space and 2), to

Submitted March 18, 2004, and accepted for publication June 29, 2004.

Address reprint requests to Bernhard O. Palsson, Dept. of Bioengineering,

University of California, 9500 Gilman Dr., La Jolla, CA 92093-0412.

E-mail: palsson@ucsd.edu.

� 2004 by the Biophysical Society

0006-3495/04/10/2172/15 $2.00 doi: 10.1529/biophysj.104.043000

2172 Biophysical Journal Volume 87 October 2004 2172–2186



calculate the hypervolume of this space. To accomplish these objectives the

steady-state flux solution space is enclosed by a geometric object in which

uniformly distributed random points can be readily generated and that has an

easily-calculable volume. Importantly, the shape of the chosen object needs

to fit as tightly as possible around the steady-state flux space to have a high

fraction of points that are in the geometric object and in the steady-state flux

space. A parallelepiped with the same dimension as the rank, r, of the null

space of S, is an object that meets these criteria. The parallelepiped is

represented as a matrix, B, where each column of B represents a set of

spanning edges of the parallelepiped,

B ¼
j j j
b1 . . . bi . . . br

j j j

0
@

1
A: (1)

The volume of a parallelepiped is simple to compute (Meyer, 2000),

Volume ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðBT

BÞ
q

; (2)

where the columns of B are the axes of the enclosing parallelepiped. Uniform

random samples can be generated within a parallelepiped simply by

generating uniform random weightings on all of the spanning edges between

the minimum and maximum allowed values and picking the point inside the

space based on the weightings, ai, generated on each of the basis vectors, bi,
as

v ¼ +
i

aibi; ai;min #ai #ai;max; (3)

where v is a point within the space defined by summing the weightings on

each of the basis vectors between the minimum and maximum values

allowable in the bounding parallelepiped. The Monte Carlo sampling

procedure was applied to a simple flux split to illustrate how this approach

works (Fig. 1).

Imposition of constraints: defining the
steady-state flux space

The imposition of constraints based on physicochemical principles defines

the steady-state flux space. At steady state, a simultaneous mass balance on

all compounds in the network requires that (Bonarius et al., 1997; Schilling

et al., 1999)

S � v ¼ 0; (4)

where S is the stoichiometric matrix representing all known reactions in the

network and v is the flux vector describing the flux through each of these

reactions. All solutions to Eq. 4 lie in the null space of S (Fig. 1 B).

The next sets of constraints used to define the steady-state solution space

are minimum and maximum flux rates through each of the reactions,

V
i

min # vi #V
i

max; (5)

where the flux, vi, through each reaction i, must lie between the V i
min and the

V i
max for that reaction. These V i

max and V i
min constraints thus segment the null

space defined by Eq. 4 (Fig. 1 B).

In this article, the elementary forward and reverse reactions are combined

into a net reaction. Reactions can thus have a negative V i
min to indicate that

the reaction is being used in the direction opposite to that defined as positive

in S. The V i
max values are generally based on experimental measurements.

For irreversible reactions, the V i
min values are set to zero, and for reversible

reactions the V i
min is set to �V i

max.

Elimination of redundant constraints

Many reaction V i
max levels cannot be reached in a steady state because the

saturation of other reactions is more constraining upon the reaction flux, vi,

than its own saturation state. Thus, many of the V i
max constraints are

redundant from a systems point of view, and do not affect the size of the

solution space. Redundant V i
max and V i

min constraints that were not needed to

define the steady-state flux space (i.e., these redundant constraints lay

outside of more constraining V i
max and V i

min constraints) were eliminated and

not needed for the generation of the sample points.

Choice of enclosing parallelepiped

Because each pair of V i
max and V i

min constraints form parallel hyperplanes,

the shape of the null space leads naturally to the choice of a high-

dimensional parallelepiped in which to enclose it. The set of possible

parallelepipeds that could be used to enclose the steady-state flux space was

chosen by forming the faces of the parallelepiped along the directions

defined by these V i
max and V i

min constraints. Since each parallelepiped is

defined by r planes which are chosen from the set of m V i
max and V i

min

planes, the number of such parallelepipeds that could be used enclose the

space is

Number of possible parallelepipeds ¼ m
r

� �
¼ m!

r!ðm � rÞ!;

(6)

where m is the number of Vmax constraints and r is the dimension of the null

space (see Fig. 1 C).

Minimizing the volume of the
enclosing parallelepiped

Checking the volume of every possible parallelepiped to find the smallest

can become prohibitive due to the large number of parallelepipeds (i.e., Eq.

6). Therefore, an alternate approach was used. This algorithm chooses its

first direction based on the set of V i
max and V i

min constraints that are the

closest together based on Euclidian distance. Then, the next direction is

chosen by determining the smallest parallelogram that can be formed by

choosing the next set of V i
max and V i

min constraints. The third direction is

chosen as the set of constraints that forms the smallest parallelepiped formed

using three sets of V i
max and V i

min constraints and so on until the

parallelepiped fully encloses the solution space (Fig. 1 D).

Uniform random sampling of points

Uniform random points were generated within the solution space by

randomly sampling within the enclosing parallelepiped. Randomly sampling

within the parallelepiped was accomplished by uniformly sampling along

each of the edges, bi, defining the parallelepiped and picking the point

resulting from the sum of this set of weightings. Each point in the space is

uniquely defined by weightings on the edges spanning the parallelepiped

(Eq. 3). The weighting, ai, on each basis vector, bi, was uniformly selected

by generating a pseudo-random number, f, between 0 and 1 and then

assigning each weight as

ai ¼ ai;min 1 f3Li; (7)
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where L is the length of the corresponding edge, bi, in the parallelepiped.

Points generated uniformly within the parallelepiped were then compared to

the set of V i
max and V i

min constraints to verify whether the point falls in the

solution space or not. If the point satisfies all constraints, it is a valid solution

and is kept in the set. If the randomly generated point does not satisfy all the

necessary constraints, it is excluded. The fraction of total points generated

that fall within the space, the ‘‘hit’’ fraction, was used to calculate the

absolute volume of the steady-state flux space (see Fig. 1 D).

Volume calculation of steady-state flux space

The volume of the steady-state flux space can be calculated by multiplying

the volume of the enclosing parallelepiped by the fraction of generated

points that falls within the solution space

Estimated volume of solution space

� Hit fraction3Volume of parallelepiped: (8)

The estimated relative error in the volume calculation obtained through the

Monte Carlo sampling procedure decreases as the number of points sampled

increases. The variance of the estimate, s2, is given as

s
2 ¼ p̂pð1� p̂pÞ

n
#

1

4n
; (9)

where p̂ is the ratio of sampled points that fall inside the solution space (hit

fraction) and n is the total number of sample points generated. The relative

error of the hit fraction estimate, e, is calculated as the ratio of the standard

deviation, s, to the mean, m,

e ¼ s

m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p
�1 � 1

N

s
; (10)

showing that the estimate improves with increasing sample size, N, as well

as a higher hit fraction, p̂, as would be expected.

FIGURE 1 Algorithm for boxing in solution

space with parallelepiped and generating uni-

form random samples. A simple flux split was

used as an example to demonstrate how the

Monte Carlo sampling procedure works (A).

The two-dimensional null space is constrained

by the Vmax planes corresponding to the three

reactions in the network (B). Once the null

space is capped off by the reaction Vmax values,

combinations choosing two of the three sets of

parallel constraints leads to forming three

potential parallelepipeds (C). The smallest of

these parallelepipeds is chosen and uniform

random points within the parallelepiped are

generated (D) based on uniform weightings on

the basis vectors defining the parallelepiped

(shown as black arrows). Points within the

solution space are kept and those that fall out of

the solution space are discarded. The fraction of

the points generated inside the parallelepiped

that fall within the solution space is called the

‘‘hit fraction.’’ The hit fraction multiplied by

the volume of the parallelepiped yields the

volume of the solution space. Probability

distributions for each of the three fluxes are

calculated from the set of points within the

solution space (D).

2174 Price et al.

Biophysical Journal 87(4) 2172–2186



Red blood cell metabolic network

The red blood cell metabolic network used in this study consists of 48

reactions utilizing 39 metabolites. Reversible reactions were not decoupled

into forward and reverse reactions, and thus were allowed to take on negative

values as discussed above. The dimension of the null space of this

stoichiometric matrix was 11. This red blood cell network differs slightly

from the one previously used to study extreme pathways (Wiback and

Palsson, 2002) in that the metabolic loads are represented as turnover

reactions, rather than as exchange fluxes and also differs from the network

studied in Wiback et al. (2004) in that it contains reversible reactions. The

V i
max values utilized in this studywere taken fromWiback and Palsson (2002),

with the V i
max of all reactions without a stated V i

max in Wiback and Palsson

(2002) being set at an arbitrarily high value of 1000 so that none of these

reactions was limiting on the system. Thus, all reaction fluxes were limited by

either a measured V i
max value or an uptake rate. The V i

min values were set to

�V i
min for reversible reactions and to zero for all irreversible reactions, unless

there was a minimum physiological demand, as detailed in the next section.

Physiologic conditions

In addition to limitations on flux values due to V i
max values, certain known

physiologic demands were used to identify the range of potential flux values.

For example, the red blood cell is obligated to produce a basal level of ATP to

run the sodium potassium pump to balance against the natural diffusion rate of

sodium and potassium that ‘‘leaks’’ through the membrane. Thus, the

minimum ATP production rate in this study was set to 1 mM/h to reflect this

fact. The maximum ATP production rate was set at 1.5, as a conservative

bound, higher than themaximumvalueobserved in awide range of calculations

based on a full-scale kinetic model (Jamshidi et al., 2001). Also, a minimal

amount of NADH production is necessary to convert Met-hemoglobin into its

functional state. The minimum NADH production rate was set to 0.4 mM/h

based on the oxidation rate of iron in hemoglobin. This minimal level of

NADPHproduction was set to 0.05mM/h for the turnover of GSSG toGSH to

combat a minimal level of reactive oxygen species. Lastly, the minimum flux

through DPGase was set to 0.3 mM/h, since this flux always operates near

saturation levels because of the high intracellular concentration of 23DPG and

the slow rate of this reaction (time constant on the order of half a day).

Convergence of statistics with
increasing samples

To determine that sufficiently large samples were taken to accurately assess

each of the statistical properties computed, samples were taken until the

statistics being assessed ceased changing with increased sample size relative

to the error deemed appropriate for the property being calculated. At the

sample sizes used in this study, completely new sets of random samples were

also taken with the results remaining unchanged for the significant figures

related, and this resampling was done numerous times. Thus, as should be

the case, all results presented herein are independent of the particular set of

uniform random samples used, and are generic properties of the metabolic

solution space. Specific details on the number of repetitions and the size of

the samples are given along with each of the calculated results in the figure

captions.

Computation and implementation

Computations for this study were performed on Dell Workstations (either

a Dell Precision 340 or Dimension 8200) or on a Linux box (Dual Athlon

MP 2400, 2 GB RAM). The program for finding the enclosing

parallelepiped and for generating points was performed using MATLAB

(The MathWorks, Natick, MA) and an interface with the linear pro-

gramming package LINDO API (Lindo Systems, Chicago, IL). As an

indication of the efficiency of the calculations, the computation of 250,000

uniform random samples within the red blood cell steady-state flux space

using the Dell workstations was performed in ,30 s. The calculation of

1,000,000 points inside the steady-state flux space was performed on the

Linux box in ,50 s. The approach herein was very fast compared to the

previous sampling approach used in Wiback et al. (2004), which describes

the calculation of 250,000 uniform points in the red blood cell metabolic

network as taking ‘‘over a week’’ of calculation (Dell Dimension 8200).

Thus, the approach presented herein represents an ;20,000-fold increase in

calculation efficiency over the approach used in Wiback et al. (2004).

Increased sampling efficiency is important because it allows for more

detailed and precise calculations, increased capacity to study improbable

regions of the steady-state flux space, and better error assessment.

RESULTS

Uniform random samples were generated within the steady-

state flux space of the in silico model of human red blood cell

metabolism. The set of candidate solutions can then be

further segmented based on additional criteria. The results

herein demonstrate how this approach can be used to 1),

provide all possible steady-state distributions for unknown

metabolic fluxes; 2), guide making informative experimental

measurements; and 3), study the systemwide effects of an

enzymopathy through lowered enzyme activity.

Distribution of flux values and
space segmentation

The set of candidate steady-state flux distributions through

each reaction in the red blood cell metabolic network were

represented as a histogram of all possible flux values and

displayed on the metabolic map (Fig. 2). Each histogram

presents one-dimensional information on its x axis, in terms

of the extent of possible values for that particular flux. The

y axis represents the ‘‘size’’ of space in the other r–1
dimensions resulting from slicing the metabolic solution

space along a specific value of the flux through the indicated

reaction. Thus the ‘‘height’’ of each histogram represents

r–1 dimensional data (see illustration in Fig. 1 D).

The histograms of steady-state flux values can be roughly

classified into four groups based on their shape:

1. Left peak, the lowest allowable flux value through the

reaction is the most probable, such as the fluxes through

AK and AMPase.

2. Right peak, the highest allowable flux value is most

probable such as the flux through reaction HK.

3. Central peak, a point in between the V i
max and V i

min is the

most probable with the upper and lower possible flux

values approaching a zero probability, such as the fluxes

through reactions PFK, PK, and LD.

4. Broad peak, a plateau of equally probable flux values

exists, such as the fluxes through NADH load and PYR

uptake.

Histograms for reactions that do not contain a zero flux

value are essential under the conditions examined. None of

these histograms can have more than one peak due to the
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convexity of the steady-state flux space. The shape of these

histograms is highly informative about how a reduction in

the allowable range of each flux would affect the remaining

size of the steady-state flux space. The percentage of the

histogram area remaining in the reduced range is the same as

the percentage of the remaining steady-state flux space.

Correlation of flux measurements: use in
designing experiments

Uniform random sampling of the steady-state flux space

allows for the calculation of the correlation coefficient (rij)
between any two fluxes (vi and vj) in the network. Thus,

sampling provides a straightforward means of not only

calculating perfectly correlated subsets (r2ij ¼ 1), but also of

identifying well-correlated, but not perfectly correlated

reaction sets. The matrix of squared pairwise correlation

coefficients for all the RBC metabolic fluxes was computed.

The fluxes can be ordered such that the ‘‘correlated reaction

sets’’ (defined here as rij
2 . 0.99) are listed in order of

decreasing number of fluxes in each set (Table 1).

The identification of the correlated reaction sets can help

guide experimental design. The measurement of any flux in

a perfectly correlated reaction set determines the steady-state

flux level through all reactions in a set. Therefore, making

a measurement of one flux in the largest correlated set,

FIGURE 2 Probability flux distributions for human red blood cell. The red blood cell model with imposed maximum and minimum constraints on each flux

was sampled using the in silico algorithm. The histograms next to each reaction represent the distribution of solutions with respect to each reaction flux. The

vertical shaded line on each plot indicates where the zero flux line is. Several general flux distribution patterns have been identified including right peak (HK),

left peak (G6PDH), central peak (PGK), and broad peak (PYR exchange). Due to the convexity of the solution space, no distribution can have more than one

peak. The flux distribution shape gives information about the sensitivity of the solution space to each constraint. If a flux distribution has a right peak,

decreasing a maximum constraint will eliminate many solutions from the valid space. Reactions that are part of the same pathway with no intermediate branch

points (PGM, EM, PK) all have the same flux distributions. Distributions shown are based on 500,000 uniformly distributed points in the steady-state flux

space. These details on these distributions can be seen in more detail in Fig. 3 (original distributions). The dotted lines in the load reactions represent the main

physiologic function of the specified metabolic load, but are not explicitly accounted for in the stoichiometric matrix.

2176 Price et al.

Biophysical Journal 87(4) 2172–2186



TABLE 1 Correlation between flux values in the solution space

Correlations were calculated between pairs of reactions in the red blood cell model using 250,000 randomly sampled points. This is used to quantify the degree of similarity between reactions. Perfect

correlation (1.00) is exhibited between reactions on the same linear pathway (TK1, TK2, TA, Xu5PE). The correlation coefficients were calculated using 1,000,000 uniform points within the steady-state flux

space. The calculation of this correlation matrix was performed three separate times with 1,000,000 points each and the maximum difference between any calculated squared correlation coefficients was 0.002.
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consisting of reactions in the pentose phosphate pathway,

essentially determines the steady-state flux distribution

through each of the nine reactions in the correlated set. In

addition, four other fluxes would also be largely determined,

with correlation coefficients.0.88. The same is true with the

measurement of any flux in a correlated set.

A second important factor to consider when choosing

fluxes for measurement to best determine the flux state of the

red blood cell is to measure a set of fluxes that are

uncorrelated to each other (r2ij values close to zero). Such a set
ensures that the flux measurements are not providing

duplicate information. Thus, by iteratively choosing to

measure fluxes that are uncorrelated to each other and to

what has already been measured, the correlation matrix

guides the selection of independent flux measurements.

A third factor that determines how informative an

experimental measurement will be is where in the solution

space the measurement falls. For example, if a flux

measurement falls in an improbable region of the histogram,

it will be much more constraining for determining the flux

state of the system than a measurement taken in a probable

region. The numerical range of flux measurement is

generally unknown before the measurement is taken, and

thus the reduction in the size of the solution space is known

only after the experimental measurement is taken. However,

this information can be taken into account using previous

experience and intuition to evaluate if a flux measurement is

likely to occur in a region deemed improbable by, and thus

highly informative to, the current status of the model.

Thus, the Monte Carlo sampling procedure provides three

important criteria for designing a set of informative

measurements to determine the state of the system:

1. How correlated is a measured flux to unknown fluxes?

2. Is the measured flux uncorrelated to the information

already known?

3. Is there any basis for expecting that a flux measurement

will fall in an improbable region of the flux histogram?

In this manner, the correlation matrix, generated by taking

uniform random samples of points in the steady-state flux

space, guides which flux measurements will likely provide

the most information about the network. Once informative

flux measurements are made, the sampling procedure can

then be used to fill in all possible steady-state fluxes through

all the remaining unmeasured fluxes in the network that are

in agreement with the experimental data.

Systemic effects of simulated enzymopathies

The sampling procedure can be used to track the network-

wide changes that occur due to changes to a single, or a small

number, of individual reactions. For example, a substantial

number of single nucleotide polymorphisms (SNPs) have

been found in genes of red blood cell enzymes, which

significantly decrease the V i
max values through many

reactions in the red blood cell (Jacobasch and Rapoport,

1996; Tanaka and Zerez, 1990). Some of these SNPs have

been correlated to chronic and nonchronic anemia (Grimes,

1980; Thorburn and Kuchel, 1985) and the systemic effects

of the two most common SNPs in the red blood cell,

pyruvate kinase (PK) and glucose-6-phosphate dehydroge-

nase (G6PDH), have recently been evaluated using a kinetic

model of red cell metabolism (Jamshidi et al., 2002).

Defects in glycolytic enzymes were simulated to demon-

strate how a 75% reduction in their normal operating range

(though a decreased V i
max) would affect the network. For

each reaction, an enzymopathy was simulated by setting a

reduced maximum flux for the reaction, V i
max;restricted, as

V
i

max;restricted ¼ V
i

min;effective 1
V

i

min;effective � V
i

max;effective

4
; (11)

where V i
max;effective and V i

min;effective were the maximum and

minimum flux values achievable in the unaltered system.

The percentage of the steady-state flux space remaining after

restricting each of these reactions to one-quarter their normal

operating range is shown in Table 2. As discussed above, the

shape of the flux histograms, shown in Fig. 2, are a means for

immediately determining the impact of a reduction in the

allowable range of any flux. Such impact can be evaluated by

comparing the reduction in the size of the steady-state flux

space seen in Table 2 with the histograms shown in Fig. 2. A

reduction in the V i
max of a reaction that has a right peak

distribution will reduce the size of the steady-state flux space

more than a reduction in the V i
max of a reaction with a left

peak distribution.

The restriction of one reaction flux, such as occurs with an

enzymopathy, can have a profound effect on the behavior of

the network as a whole, affecting the functioning of many

other reactions. Results from a simulated enzymopathy

through the PK reaction, the most common enzymopathy in

the glycolytic pathway (Tanaka and Zerez, 1990), are shown

as an example.

The V i
max through PK was reduced such that the allowable

flux range is decreased first to one-half and then to one-

quarter of the original range. The systemic effects of the

simulated enzymopathy through the PK reaction greatly

affected the probability distributions through many reactions

in the red blood cell metabolic network (Fig. 3). For

example, the probability distribution for glucose uptake

changed from being a right peak distribution to being a

central peak distribution, meaning that its normal operating

range in the red blood cell changed from being in its most

probable region to being in an improbable operating region

of the steady-state flux space. With the PK range constrained

to one-quarter of the original range, the maximum possible

value for glucose uptake also decreased, making the previous

upper range impossible to the network.
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Constraining the range of allowable PK values to one-

quarter of the original range significantly changed the

correlations between many metabolic fluxes (Table 3). For

example, the correlation between glucose uptake and the flux

through the pentose phosphate pathway increased dramati-

cally, with the r2 value between HK and G6PDH increasing

by 0.79. This change in correlation is due to the limitation on

the steady-state flux allowable through glycolysis due to the

decreased capacity of PK. The increase in the correlation

between two fluxes can be seen in the example of G6PDH

versus HK and GAPDH versus TPI (Fig. 4). A high

correlation coefficient implies that the shape of the two-

dimensional histogram will be narrow, whereas a low

correlation coefficient implies that the two-dimensional

histogram will be broad. In the case of G6PDH versus HK,

the PK enzymopathy causes the r2 value to increase

significantly. In the case of GAPDH versus TPI, the r2

value decreases significantly with the simulated PK

enzymopathy. Also of interest, the direction of the ridge

representing the most probable values with the simulated PK

enzymopathy changes direction significantly compared to

the dominant direction of the correlation without the PK

enzymopathy.

DISCUSSION

Uniform random sampling of a constrained steady-state flux

space allows for an unbiased appraisal of the effects of the

imposed physicochemical constraints on the possible

functional states of a reconstructed metabolic network. The

computation and analysis of uniform random points for the

metabolic network of the red blood cell under the conditions

of its nominal physiologic demands yielded the following

key results:

1. Probability distributions were computed for fluxes

through all reactions, characterizing the feasible steady-

state flux space.

2. Pairwise correlation coefficients were calculated between

all fluxes, determining the level of independence between

any two fluxes, and identifying highly correlated reaction

sets.

3. The systemwide effects of the change in one (or a few)

variables (i.e., a simulated enzymopathy or setting a flux

range based on measurements of physiological consid-

erations) were computed, showing that not only do

the ranges of allowed flux values change throughout the

network, but also their probability distributions and

the correlations between metabolic fluxes.

Uniform random samples were used to calculate probability

distributions for every flux in the red blood cell metabolic

network. These probability distributions help to quantify the

nature of all possible network flux states that satisfy the

applied constraints, physiological demands, and experimen-

tal data without any additional assumptions (such as optimal

behavior), and create a framework in which to place

experimental results in the context of total network

capabilities. The shape of the distributions are highly

informative about:

1. The impact a lower V i
max will have on the size of the

steady-state flux space, and thus on how constraining to

the system a reduced flux capacity through a specific

reaction would be.

2. The reduction in the steady-state flux space based on

additional experimental measurements.

TABLE 2 Effects of simulated enzymopathies in glycolytic enzymes on steady-state flux space

Glycolytic enzymes V i
max Constraining?

Systemic

V i
max

Systemic

V i
min

Restricted

V i
max

Percentage of steady-state

flux space remaining

Hemolytic

anemia?*

Hexokinase (HK) 1.5 Yes 1.50 0.48 0.74 0.02% Yes

Phosphofructokinase (PFK) 250 No 1.58 0.31 0.63 0.21% Variable

Triose phosphate

isomerase (TPI)

1000 No 1.58 0.31 0.63 0.21% Yes

Aldolase (ALD) 1000 No 1.58 0.31 0.63 0.21% Yes

Lactate dehydrogenase (LDH) 1000 No 2.81 0.09 0.77 0.56% No

Pyruvate kinase (PK) 250 No 3.21 1.17 1.68 0.83% Yes

Enolase (EN) 1000 No 3.21 1.17 1.68 0.84% Yes

Phosphoglucoisomerase (PGI) 1000 No 1.48 �0.77 �0.21 1.0% Yes

Phosphoglycerate kinase (PGK) 1000 No 2.91 0.87 1.38 2.2% Usually

Diphosphoglycerate

phosphatase (DPGase)

0.52 Yes 0.52 0.3 0.36 29% No

Diphosphoglyceromutase (DPGM) 12 No 1.43 0.3 0.58 47% No

Several conditions have been identified that decrease the effectiveness of enzymes in the red blood cells. The effect of a reduction in the possible steady-state

ranges of fluxes on the steady-state flux space as a whole was simulated by decreasing themaximum allowable reaction flux through the reaction catalyzed by the

given enzyme. The columns of the table show: 1), the enzyme defect being simulated; 2), the corresponding V i
max; 3), whether the V i

max is constraining on the

system; 4), the actual maximum flux rate for the reaction in the network; 5), the actual minimum flux rate (V i
min) for the reaction in the network; 6), to what extent

V i
max is restricted to constrain the allowable flux range for the reaction to one-quarter of its original value; 7), the percentage drop in the volume of the steady-state

flux space corresponding to the simulated enzymopathy; and 8), whether defects in an enzyme had been experimentally determined to cause anemia or not.

*Taken from Tanaka et al. (1990).
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It may prove to be true that fluxes that are in improbable

regions are likely to require other factors than those modeled

(such as a high degree of regulation, or additional

physicochemical constraints) to maintain them in the

experimentally measured operating state of the cell.

The degree of dependence between all of the fluxes in the

red blood cell metabolic network was determined by

calculating correlation coefficients from the uniform random

samples. Different methods have been used to calculate

correlated subsets in a metabolic network, including extreme

pathway analysis (Papin et al., 2002; Price et al., 2002),

elementary mode analysis (Pfeiffer et al., 1999), and the

linear programming-based flux-coupling finder (Burgard

et al., 2004). The correlated reaction subsets calculated by

extreme pathway and elementary modes correspond only to

sets that are perfectly correlated. The sets calculated using

the flux-coupling finder (Burgard et al., 2004) are more

informative and scalable to larger networks. In contrast to

previous methods, the direct calculation of correlation

coefficients from the Monte Carlo sampling procedure

allowed for the stratification of pairwise correlations among

all fluxes between 0 and 1 (r2ij) or between �1 and 1 (rij).
Thus, the unbiased degree of independence can be de-

termined for any two fluxes under any set of conditions.

Experimental design can be guided from the results of

uniform random sampling within a constrained metabolic

solution space. Both the probability distributions and the

calculated correlation coefficients are condition-dependent,

and thus change with the addition of more experimental data.

One implication of this fact is that it is best to include as

much known information as possible into the model before

sampling. Subsequently, the model predicts which combi-

nations of measurements provide independent information

and which fluxes are correlated to the highest number of

FIGURE 3 Systemic effects of simulated enzymopathy in pyruvate kinase. Pyruvate kinase catalyzes the reaction from PEP to pyruvate. Using the Monte

Carlo sampling technique, the probability distribution of all fluxes in the red blood cell were shown (solid line). The allowable range of the PK reaction was

decreased to 0.5 (dashed line) and 0.25 (dotted line) of its original range by decreasing its effective V i
max. All of the curves were normalized such that the highest

point in each of the curves is the same. The actual volume of the steady-state flux space being sampled and represented in each histogram is 6.83 10�5 (mM/

h)11 for the original solution space, 2.1 3 10�5 (mM/h)11 (31% of original space) for PK range decreased in one-half, and 5.6 � 10�7 (mM/h)11 (0.83% of

original solution space) for the PK range decreased to one-fourth. The effect of the simulated PK enzymopathy was different for different reactions, ranging

from virtually no change (NH3 exchange) to significant shift in shape and magnitude (HK, PGK). Each distribution shown accounts for 100,000 uniformly

distributed points within the steady-state flux space.
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TABLE 3 Change in flux correlations for simulated PK enzymopathies

Difference between the new squared correlation coefficient of the steady-state flux space with the V i
max of PK decreased so that the flux range of PK was decreased to one-quarter of its initial range. The

correlation matrices for each case (full PK flux range and one-quarter PK flux range) were calculated using 1,000,000 uniformly random points in the steady-state flux space. To give an indication of an error

in the estimates, the difference matrix was calculated twice from independent samples of 1,000,000 points each. The maximum change in any calculated difference as reported in this table was 0.002.
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other fluxes under the studied conditions. Since the choice of

fluxes to measure providing independent information can

change with the experimental conditions, it is important that

the Monte Carlo sampling procedure be used iteratively to

determine which flux measurements are the most indepen-

dent at each step. Thus, following the results of one set of

experimental measurements, the sampling procedure can be

redone to reevaluate the most important measurements given

what is already known. Of course, those fluxes that are

perfectly correlated (rij ¼ 1) will remain perfectly correlated,

regardless of condition. The volume of the solution spaces

also changes, giving a quantitative measure for how many

potential steady-state fluxes are in agreement with the

measured data. As the volume of the steady-state flux space

approaches zero, the internal flux distribution inside a cell is

determined. Other constraint-based methods also exist for

guiding experimental design and could perhaps be used in

conjunction with the method proposed herein. One such

method enables the calculation of the optimal set of fluxes to

measure to minimize the impact of experimental error on the

prediction of the steady-state flux state (Savinell and Palsson,

1992a,b).

The effects of enzymopathies on the capabilities of

a metabolic network can be studied using the Monte Carlo

sampling procedure. Single nucleotide polymorphisms

(SNPs) or other genetic defects can impair enzyme function.

This impairment can be the result of such factors as an

enzyme having a lowered V i
max or by a lower rate constant

which can effectively lower the allowable maximum flux

based on the concentration of the substrates in the red blood

cell. Importantly, since the probability distributions of

individual fluxes and the correlations between them change

under differing conditions, the Monte Carlo sampling

procedure can be used to study both normal and pathological

cases under a variety of different environments. Clinical

outcomes of enzymopathies can obviously involve a great

many factors outside of those modeled. However, model-

driven studies describe the impact of an enzymopathy on the

known metabolic network uncoupled from other consider-

ations. Thus, model-driven assessments provide evidence for

whether or not a metabolic explanation is sufficient to

account for a clinical outcome or not. Indeed, the apparent

lack of an explanation for a clinical outcome based on what

is known about a metabolic network can lead to novel

biological understanding and provide a basis for novel

hypotheses. One example of this is the observation that the

maximal enzymatic activity of G6PDH vastly exceeds what

seems to be needed in the network (Salvador and Savageau,

2003).

Constraining the flux range for the glycolytic enzymes

showed a general trend seen that those simulated enzymo-

pathies that severely restricted the steady-state flux space

had been shown experimentally to cause anemia, whereas

those that were less restrictive did not (Table 2). The

exception to this trend was lactate dehydrogenase (LDH),

the inhibition of which greatly restricted the steady-state flux

space, but which has not been found to lead to anemia

(Tanaka and Zerez, 1990). This may be because restriction

of LDH does not significantly restrict the glycolytic rate,

since pyruvate can leave the cell as the endpoint of gly-

colysis. However, the restriction of LDH does affect the

cell’s ability to control NADH levels. Another observation

was that, although G6PDH is by far the most common

enzymopathy in the red blood cell, only a small fraction of

G6PDH enzymopathies lead to anemia. Although fewer in

number, a higher fraction of PK enzymopathies than G6PDH

enzymopathies lead to anemia. This fact may be attributable,

in part, to the fact that restricting PK is generally much

more constraining on the metabolism as a whole than is

G6PDH.

Strong similarities were seenwhen comparing the results of

the simulated enzymopathies with results from an interesting

earlier study using a full-scale kinetic model of glycolysis

(Holzhütter et al., 1985). In Holzhütter et al. (1985), a kinetic

model of glycolysis was used to study the impact of lowering

enzyme activity in a ‘‘metabolic homeostasis function.’’ Of

the reactions studied in Holzhütter et al. (1985), one of them,

HK, was found using the Monte Carlo sampling procedure to

FIGURE 4 Effect of simulated enzymopathy

on correlation between other fluxes in network.

Decreasing the maximum reaction rate of PK

decreases the number of valid steady-state

solutions. Solutions for the simulated PK

enzymopathy are a subset of those without the

simulated PK enzymopathy. Thus, the areas

under the curve as shown are not representative.

In each case, the size of the solution space with

the enzymopathy is 0.83% of the size of the

solution space without the enzymopathy. The

PK enzymopathy can increase or decrease the

correlation between sets of reactions. The

correlation between HK and G6PDH goes from

0.06 up to 0.85 when the range of PK values is

reduced to 25% (A), whereas the correlation between TPI and GAPDH decreased from 0.83 to 0.07 (B). The plots were generated using 300,000 uniformly

distributed points within the steady-state flux space.
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have a right peak distribution, trailing off to zero probability

as the flux level through this reaction decreased, and another

of the reactions, AK, was left peak, trailing off to zero

probability as the flux level through this reaction increased.

The kinetic model predicted that constricting HK had the

most impact on the homeostasis of the red blood cell and that

restrictions of AK had the least, just as predicted with the

distributions givenwith theMonte Carlo sampling procedure.

The fluxes shown by the kinetic model to have effects on

homeostasis between the extremes of HK and AK, all had

either central peak distributions, or were constrained such that

the difference in probabilities over the flux range were not

highly variable, matching expectations from the sampling

procedure. Thus, results of the Monte Carlo sampling

procedure corresponded well to results from a kinetic model

which requires measurement of a large number of kinetic

enzyme data to formulate. The need for few kinetic

parameters becomes essential as the Monte Carlo sampling

procedure is applied to organisms where kinetic data is much

sparser than in the well-characterized red blood cell.

The uniform distribution of points within the solution

space used in this study is not meant to imply that the flux

steady states of cells in a population are likewise distributed

uniformly within the range of allowable steady states.

Indeed, it seems highly unlikely that a population of cells

would be distributed uniformly in this manner, since certain

regions of the solution space are expected to be preferred or

excluded based on additional, unmodeled demands and

physicochemical constraints under which cells operate.

Rather, uniformity is used to clearly grasp the implications

of applying the physicochemical constraints to the recon-

structed metabolic network. Although not utilized for the

purposes of this study, the Monte Carlo sampling procedure

could potentially be used to study distributions of popula-

tions in cells. The informative aspect of such an approach

would be to see how the population density deviated from

a uniform distribution within the range of allowable steady

states for the in silico cell. By identifying which portions of

the steady-state flux space were favored within the

population of cells, hypotheses for the preferred states could

be formed and the importance of additional physicochemical

constraints could be assessed.

Although the present study focused on studying the

steady-state flux space, the approach detailed herein can be

equally well applied to study concentration or kinetic spaces

associated with a reconstructed biochemical network. Also

any additional physicochemical law can be used to further

confine sets of candidate solutions. If the imposed constraints

can be represented as linear equations, they can be easily

implemented into this framework and, aside from computa-

tional limitations, uniform random sampling can easily be

done within the space. Once the set of candidate solutions

are generated, any type of nonlinear constraint, such as

stemming from regulation or thermodynamics, can be

applied as a postprocessing step (as long as dimensionality

of the space is not reduced) by eliminating candidate

solutions that do not satisfy the imposed constraint.

Although ‘‘elimination’’ algorithms such as the one used

in this study have certain advantages for sampling smaller

networks, it is likely that any ‘‘elimination’’ approach to

sampling will be inadequate for sampling genome-scale

networks. This difficulty in generating samples in high-

dimensional objects occurs because the ratio of the size of an

enclosing object to the size of the enclosed object increases

rapidly as dimension increases. However, genome-scale

networks can be sampled (Almaas et al., 2004) using

alternate, but similar, methods for generating the set of

candidate solutions, such as Monte Carlo Markov-chain

samplers (Chen and Schmeiser, 1993; Kaufman and Smith,

1998; Lovasz, 1999; Zabinsky et al., 1993), and such

methods have been well studied and continue to improve.

Thus, the methods described herein for analyzing uniform

random samples from solution spaces can be utilized for

studying genome-scale networks.

Taken together, uniform random sampling provides a

broadening of the constraint-based approach by allowing

for the unbiased and detailed assessment of the capabilities

of reconstructed networks subject to the imposition of

physicochemical constraints. Uniform random sampling of

solution spaces allows for a detailed framework in which to

design experiments to determine the operating state of the

cell, a context in which to study the resulting experimental

data, as well as detailed insight into what network behaviors

are allowed by the imposition of the stated constraints upon

the reconstructed network. Clearly understanding model

predictions is important because a cell-scale model provides

the most compact and quantitative representation of a large-

scale hypothesis of how a cell works. Thus, the Monte Carlo

sampling procedure coupled with ongoing network re-

construction provides a powerful engine to drive experi-

mental work and the iterative model-building process that is

at the heart of systems biology.
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TABLE 5 Reactions

Abbreviation Enzyme Chemical reaction

Glycolysis and Rapoport-Leubering shunt

HK Hexokinase GLU1 ATP/ G6P1 ADP

1 H

PGI Phosphoglucoisomerase G6P 4 F6P

PFK Phosphofructokinase F6P 1 ATP / FDP 1 ADP

1 H

ALD Aldolase FDP 4 GA3P 1 DHAP

TPI Triose phosphate isomerase DHAP 4 GA3P

GAPDH Glyceraldehyde phosphate

dehydrogenase

GA3P 1 NAD 1 Pi 4
13DPG 1 NADH 1 H

PGK Phosphoglycerate kinase 13DPG 1 ADP 4 3PG

1 ATP

DPGM Diphosphoglyceromutase 13DPG 1 / 23DPG 1 H

DPGase Diphosphoglycerate

phosphatase

23DPG 1 H2O / 3PG 1 Pi

PGM Phosphoglyceromutase 3PG 4 2PG

EN Enolase 2PG 4 PEP 1 H2O

PK Pyruvate kinase PEP 1 ADP 1 H / PYR

1 ATP

LDH Lactate dehydrogenase PYR 1 NADH 1 H 4 LAC

1 NAD

Pentose phosphate pathway

G6PDH Glucose-6-phosphate

dehydrogenase

G6P 1 NADP / 6PGL

1 NADPH 1 H

PGL 6-phosphoglyconolactonase 6PGL 1 H2O 4 6PGC 1 H

PDGH 6-phosphoglycoconate

dehydrogenase

6PGC 1 NADP / RL5P

1 NADPH 1 CO2

R5PI Ribose-5-phosphate

isomerase

RL5P 4 R5P

Xu5PE Xylulose-5-phosphate

epimerase

RL5P 4 X5P

TKI Transketolase I X5P 1 R5P 4 S7P 1 GA3P

TA Transaldolase GA3P 1 S7P 4 E4P

1 GA3P

TKII Transketolase II X5P 1 E4P 4 F6P 1 GA3P

Adenosine nucleotide metabolism

PRPPsyn Phosphoribosyl

pyrophosphate synthetase

R5P 1 ATP / PRPP

1 AMP

PRM Phosphoribomutase R1P 4 R5P

HGPRT Hypoxanthine guanine

phosphoryl transferase

PRPP 1 HX 1 H2O / IMP

1 2Pi

AdPRT Adenine phosphoribosyl

transferase

PRPP 1 ADE 1 H2O /
AMP 1 2Pi

PNPase Purine nucleoside

phosphorylase

INO 1 Pi 4 HX 1 R1P

IMPase Inosine monophosphatase IMP 1 H2O / ADO 1 Pi

1 H

AMPDA Adenosine monophosphate

deaminase

AMP 1 H2O / IMP 1 NH3

AMPase Adenosine monophosphate

phosphohydrolase

AMP 1 H2O / ADO

1 NH3

ADA Adenosine deaminase ADO1 H2O/ INO1 NH3

AK Adenosine kinase ADO 1 AMP / ADP

1 AMP

ApK Adenylate kinase 2ADP 4 ATP 1 AMP

TABLE 4 Metabolites

Abbreviation Metabolite

GLC Glucose

G6P Glucose-6-phosphate

F6P Fructose-6-phosphate

FDP Fructose-1,6-diphosphate

DHAP Dihydroxyacetone phosphate

GA3P Glyceraldehyde-3-phosphate

13DPG 1,3-Diphosphoglycerate

23DPG 2,3-Diphosphoglycerate

3PG 3-Phosphoglycerate

2PG 2-Phosphoglycerate

PEP Phosphoenolpyruvate

PYR Pyruvate

LAC Lactate

6PGL 6-Phosphogluco-lactone

6PGC 6-Phosphogluconate

RL5P Ribulose-5-phosphate

X5P Xylulose-5-phosphate

R5P Ribose-5-phosphate

S7P Sedoheptulose-7-phosphate

E4P Erythrose-4-phosphate

PRPP 5-Phosphoribosyl-1-pyrophosphate

IMP Inosine monophosphate

R1P Ribose-1-phosphate

HX Hypoxanthine

INO Inosine

ADE Adenine

ADO Adenosine

AMP Adenosine monophosphate

ADP Adenosine diphosphate

ATP Adenosine triphosphate

NAD Nicotinamide adenine dinucleotide

NADH Nicotinamide adenine dinucleotide (R)

NADP Nicotinamide adenine dinucleotide phosphate

NADPH Nicotinamide adenine dinucleotide phosphate (R)

H Hydrogen ion

Pi Inorganic phosphate

NH3 Ammonia

CO2 Carbon dioxide

H2O Water
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