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ABSTRACT Recent algorithmic advances and continual increase in computational power have made it possible to simulate
protein folding and dynamics on the level of ensembles. Furthermore, analyzing protein structure by using ensemble rep-
resentation is intrinsic to certain experimental techniques, such as nuclear magnetic resonance. This creates a problem of how
to compare an ensemble of molecules with a given reference structure. Recently, we used distance-based root-mean-square
deviation (dRMS) to compare the native structure of a protein with its unfolded-state ensemble. We showed that for small,
mostly a-helical proteins, the mean unfolded-state Ca-Ca distance matrix is significantly more nativelike than the Ca-Ca
matrices corresponding to the individual members of the unfolded ensemble. Here, we give a mathematical derivation that
shows that, for any ensemble of structures, the dRMS deviation between the ensemble-averaged distance matrix and any given
reference distance matrix is always less than or equal to the average dRMS deviation of the individual members of the
ensemble from the same reference matrix. This holds regardless of the nature of the reference structure or the structural en-
semble in question. In other words, averaging of distance matrices can only increase their level of similarity to a given refer-
ence matrix, relative to the individual matrices comprising the ensemble. Furthermore, we show that the above inequality holds
in the case of Cartesian coordinate-based root-mean-square deviation as well. We discuss this in the context of our proposal
that the average structure of the unfolded ensemble of small helical proteins is close to the native structure, and demonstrate
that this finding goes beyond the above mathematical fact.

INTRODUCTION

The majority of our knowledge about protein structure and

dynamics comes from time- and/or ensemble-averaged

experiments (Creighton, 1993). On the other hand, computer

simulations give us a microscopic picture on the level of

individual atoms and molecules. To meaningfully compare

simulation results with the experiment it is essential to

simulate protein dynamics on an ensemble level and,

furthermore, average the results in a manner that is analogous

to what happens experimentally. Recently it has become

possible to simulate ensembles of proteins in atomistic detail

on relevant timescales (Ferrara and Caflisch, 2000; Fersht

and Daggett, 2002; Garcia and Onuchic, 2003; Garcia and

Sanbonmatsu, 2001; Mayor et al., 2000; Pande et al., 2002;

Shea and Brooks, 2001; Simmerling et al., 2002; Snow et al.,

2002a; vanGunsteren et al., 2001; Zagrovic et al., 2001). This

advance is due both to a continual increase in computational

power, and to improvements in sampling methods. However,

dealing with protein ensembles creates a challenge of how to

meaningfully compare an ensemble of structures with a given

individual molecule or another ensemble. For instance, in

folding simulations one obtains several nativelike molecules,

and wishes to compare them to the experimental native

structure. Or, in the course of NMR structure refinement, one

generates an ensemble of plausible structures, and to assess

the accuracy and precision of the procedure, wishes to

compare them to the average structure or an x-ray structure.

Recently, we have simulated large ensembles of unfolded

structures for several small peptides and proteins, and

compared them to the respective native structures (Snow

et al., 2002b; Zagrovic and Pande, 2003; Zagrovic et al.,

2002a). In our analyses, we used a distance-based root-

mean-square deviation (dRMS) to carry out the comparison.

When using this measure, one represents each structure by its

Ca-Ca distance matrix and calculates the root-mean-square

deviation between the two matrices. We showed that, in the

case of mostly a-helical proteins, the mean unfolded-state

distance matrix, averaged over the entire unfolded-state

ensemble, is quite similar to the native-state distance matrix.

What is more, it is significantly more similar to the native-

state distance matrix than most individual unfolded-state

matrices. The essence of this finding is shown in Fig. 1,

where we plot the distribution of dRMS of the individual

members of the simulated unfolded-state ensemble of villin

headpiece from the native villin distance matrix. Further-

more, we show the dRMS of the average unfolded-state

distance matrix from the native-state distance matrix. Fig. 1

is based on the Ca-dRMS calculations, but a similar

conclusion is reached in the case of Cb-dRMS (Zagrovic
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et al., 2002a), as well as in the case of all-heavy-atom dRMS

(in that case, ÆdRMSæ ¼ 5.1 6 0.9 Å, whereas dRMS of the

mean unfolded distance matrix is 2.9 Å). Based on such an

analysis, we hypothesized that the average structure of the

unfolded state of small, mostly a-helical proteins is close to

the native structure (‘‘the mean-structure hypothesis’’)

(Zagrovic et al., 2002a). Finding an average distance matrix

over an ensemble of structures is in spirit analogous to what

happens in typical distance-based structural experiments

such as NMR, FRET, or EPR. In analogy with this, we

argued (Zagrovic et al., 2002a) that finding average distance

matrices and using dRMS as a metric may be one way to

capture the relevant features of ensembles of structures and

compare them with other reference structures (Stoycheva

et al., 2003).

The issue of averaging of molecular structures arises in

experiments as well. In the context of NMR refinement, it is

customary to find the Cartesian coordinates of the average

refined structure by linearly averaging the corresponding co-

ordinates of the individual members of the refined ensemble

after superposition (Brünger, 1992). This average structure

is then typically compared with the individual members

of the refined ensemble or some other independent structure,

such as an x-ray structure of the samemolecule, by calculating

Cartesian coordinate-based root-mean-square deviation

(RMSD).

In this study we analyze in what way does averaging affect

the dRMS or RMSD comparison. We show mathematically

that for any ensemble of distance matrices and any choice of

a reference matrix, the dRMS between the ensemble-aver-

aged matrix and the reference matrix is always less than or

equal to the average dRMS of individual members of the en-

semble and the reference matrix:

dRMSðÆÃkæN; B̃Þ# ÆdRMSðÃk
; B̃ÞæN: (1)

Here Ã
k
denotes the distance matrices in the ensemble

(k¼ 1 toN, the total number of structures in the ensemble), B̃

is the reference distance matrix, and Æ æN stands for the

ensemble average over all N structures in the ensemble. In

other words, in the context of comparing the native state with

the unfolded state, the mean unfolded-state distance matrix

will always be closer to the native-state distance matrix than

the individual unfolded-state distance matrices on average:

the position of the arrow in Fig. 1 will always be to the left of

(i.e., less than) the mean of the distribution.

Furthermore, we extend the above inequality to the case of

Cartesian coordinate-based averaging and the RMSD

similarity measure:

RMSDðÆAkæN;BÞ# ÆRMSDðAk
;BÞæN; (2)

where Ak denotes the structures in the ensemble (k ¼ 1 to N,
the total number of structures in the ensemble), B is the

reference structure, and Æ æN stands for the ensemble average

over all N structures in the ensemble. Note that in the case of

RMSD calculation all structures need to first be optimally

aligned to the same structure.

We conclude by discussing the implications of this result

in the context of our findings about the structure of the un-

folded state of proteins (Zagrovic et al., 2002a; Snow et al.,

2002b; Zagrovic and Pande, 2003). We show that the

nativeness of the unfolded-state ensembles in our simu-

lations extends beyond the consequences of the above

mathematical fact. Indeed, we show that from a large set of

potential reference structures, the native-state structure is the

one that is closest in the dRMS sense to the mean unfolded-

state distance matrix.

METHODS

Using a heterogeneous computer cluster we have generated thousands of

tens of nanoseconds long, independent trajectories for the villin headpiece

molecule (McKnight et al., 1997; Zagrovic et al., 2002b). The folding

simulations were initiated from fully extended conformations (f ¼ �135�,
c ¼ 135�) with N-acetyl and C-amino caps. The equilibrium simulations

were started from the experimental NMR structure of the molecules (PDB

code 1VII, average structure) (McKnight et al., 1997). The simulations, run

using Tinker biomolecular simulation package, involved Langevin dynam-

ics in implicit GB/SA solvent (Qiu et al., 1997) (velocity damping parameter

of g ¼ 91 ps�1, to match that of water) with a 2-fs integration step, at 300 K.

Bond lengths were constrained using RATTLE (Andersen, 1983). No

cutoffs were used for electrostatics. The protein was modeled using the

OPLSua force field (Jorgensen and Tirado-Rives, 1988). Using the same

approach, we have also simulated the equilibrium behavior of the

experimental villin headpiece structure. The molecule was stable with

respect to both secondary and tertiary structure (Zagrovic et al., 2002a,b).

Therefore, in our comparison with the unfolded-state ensemble (see Fig. 1),

we have used the ensemble-averaged distance matrix from the ensemble of

structures at 20 ns in our native state, equilibrium simulations, as our

representation of the native structure. The structures were output for analysis

every 1 ns of simulated time. The simulations were carried out on ;10,000

processors as a part of our ongoing Folding@Home distributed computing

FIGURE 1 Distribution of dRMS from the native Ca-Ca distance matrix,

dRMS(nat, unf), for all individual unfolded molecules in the villin data set at

the 27-ns time point (a total of 5213 structures from as many independent

simulations). Similar results are obtained at all other time points sampled in

our simulations after the molecules collapse to a compact unfolded state. The

arrow marks the dRMS from the native matrix of the mean distance matrix

based on the entire unfolded ensemble at 27 ns (dRMS(MM, nat), whereMM

denotes the mean unfolded matrix and nat denotes the native matrix). The

dRMS distribution is binned with 0.1-Å resolution.
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project, and involved a total of about a quarter of a trillion (2.5 3 1011)

integration steps. This corresponds to ;1000 single CPU years (500 MHz).

To compare structures (i.e., distance matrices) we have used dRMS,

distance root-mean-square deviation, defined as:

dRMSðÃ; B̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nðn� 1Þ +
n

i¼1

+
n

j¼1

ðAij � BijÞ2
s

; (M1)

where Aij ¼ kr~i � r~jk refers to the Euclidean distance between atoms i and j

in structure A (i.e., Aij is the element of the distance matrix Ã indexed by

i and j), and the same for B. n is the total number of atoms included within

each structure. We also use RMSD, Cartesian coordinate-based root-mean-

square deviation, defined as:

RMSDðA; BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
+
n

i¼1

kr~A

i � r~B
i k

2

s
; (M2)

where r~Ai are the Cartesian coordinates of the i-th atom in structure A,

and the same for structure B, after the two structures have been

optimally superimposed. k k refers to the Euclidean norm

ka~k ¼ kða1; a2; . . . ; aJÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+J

i¼1
a2i

q
. Again, n is the total number of

atoms included within each structure.

Comparison of the unfolded villin ensemble
with other reference structures

To test to what extent is the similarity of the average unfolded state and the

native state in our simulations just a consequence of the averaging procedure,

we have compared the same unfolded ensemble with all other nonredundant

structures in the PDB database of proteins with the same length (36 residues),

for a total of 26 structures. The results of the comparison are given in Fig. 3 A.
There the structures are indexed by the increasing dRMS from the average

unfolded villin distance matrix, according to the following order (the

standard PDB code is given; Berman et al., 2000): 1), 1VII (the native villin

structure, all a); 2), 1JN7 (a/b); 3), 1IYC (a/b); 4), 1QJK (a); 5), 1CHL (a/

b); 6), 1KOZ (b); 7), 1J5J (a/b); 8), 1AZ6 (b); 9), 1LGL (a/b); 10), 1E4S

(a/b); 11), 1KJ5 (a/b); 12), 1PPT (a/b); 13), 1Q3J (b); 14), 1QBF (a); 15),

1MM0 (a/b); 16), 1CBH (b); 17), 1FU9 (a); 18), 1PMC (b); 19), 1BBA (a);

20), 1K81 (b); 21), 1NIY (b); 22), 1RYG (b); 23), 1SIS (a/b); 24), 1RKL

(a); 25), 1PI7(a); 26), 1BY6 (a); 27), 1ZWB (a). The predominant

secondary structural category of a given molecule is given in the parenthesis

(a, a-helix; b, b-sheet; a/b, mixed a-helix and b-sheet). In all cases, for the

purposes of structural comparison we have used the first structure in the

NMR ensemble or the average structure, where available.

RESULTS

Averaging and the distance-based
root-mean-square deviation

In this section we prove inequality (Eq. 1) for all distance

matrices Ã
k
and any B̃. In fact, this inequality is valid for all

possible n3 nmatrices with real or complex entries, and not

just distance matrices.

Given an ensemble of distance matrices Ã
k
(k¼ 1 toN, the

total number of structures in the ensemble), and a reference

matrix B̃, we want to compare the two using dRMS as

a metric. If we calculate the dRMS between each member of

the ensemble Ã
k
and the reference matrix B̃, this will result in

a distribution of dRMS values. The mean of this distribution

is denoted as ÆdRMSðÃk
; B̃ÞæN. However, we can first linearly

average all of the matrices Ã
k
, and obtain one mean distance

matrix, denoted as ÆÃkæN. Its dRMS from the reference

matrix will then be dRMSðÆÃkæN; B̃Þ. The inequality (Eq. 1)

claims that the latter is strictly less than or equal to the former,

regardless of the choice of matrices Ã
k
or B̃.

The native-state distance matrix, or any reference matrix B̃

for that matter, can be represented in columnar form as

a vector q~ref . Similarly, each unfolded-state distance matrix,

or eachmember of a given ensemble Ã
k
for that matter, can be

converted into vector q~k, where index k goes from 1 to N, the
total number of individual molecules comprising the

ensemble. One way of mapping a given matrix into a vector

is to concatenate all columns of the matrix sequentially into

one long vector (i.e., qki1nðj�1Þ ¼ Ak
ij;where n is the number of

rows in thematrix). The exact way of performing themapping

is not at all critical, as long as all matrices are converted in the

same manner. Using this notation and the definition of dRMS

(Eq. M1), we can represent the inequality (Eq. 1) as:

���� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p ðq~ref � 1

N
+
N

k¼1

q~
kÞ
����

#
1

N
+
N

k¼1

���� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p ðq~ref � q~
kÞ
����; (3)

where n3 n is the size of the original matrices (i.e., in case of

Ca-Ca distance matrices, n is the length of the peptide).

The normalization factor ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
Þ is the same on

both sides of inequality (Eq. 3), so it can be canceled.

Therefore, proving inequality (Eq. 1) is equivalent to proving

the following inequality:

����q~ref � 1

N
+
N

k¼1

q~
k

����# 1

N
+
N

k¼1

����q~ref � q~
k

����: (4)

Now, to simplify the notation, we can use the following

substitution:

q~
ref � q~

k
[u~

k
; (5)

where elements of the vector u~k are ðuk1 ; uk2 ; . . . ; ukMÞ, where
M in the case of Ca-Ca distance matrices is equal to n2.
From Eq. 5 it follows:

q~
ref � 1

N
+
N

k¼1

q~
k ¼ 1

N
+
N

k¼1

u~
k
: (6)

Using Eqs. 5 and 6, and the definition of the Euclidean

norm, we can rewrite inequality (Eq. 4) as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
M

m¼1

1

N
+
N

k¼1

u
k

m

� �2
s

#
1

N
+
N

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
M

m¼1

ðukmÞ
2

s
: (7)
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We proceed by squaring both sides and canceling ð1=N2Þ:

+
M

m¼1

+
N

k¼1

ðukmÞ
2
1 +

N

k¼1
k 6¼k9

+
N

k9¼1
k96¼k

u
k

mu
k#
m

0
@

1
A#+

N

k¼1

+
M

m¼1

ðukmÞ
2
1 +

N

k¼1
k6¼k9

+
N

k9¼1
k9 6¼k

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
M

m¼1

ðukmÞ
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
M

m¼1

ðuk#m Þ
2

s
: (8)

Upon expansion, cancellation, and rearrangement of the

sums we get:

+
N

k¼1
k 6¼k9

+
N

k9¼1
k96¼k

+
M

m¼1

u
k

mu
k#
m# +

N

k¼1
k6¼k9

+
N

k9¼1
k9 6¼k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
M

m¼1

ðukmÞ
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
M

m¼1

ðuk#m Þ
2

s
: (9)

From the well-known Cauchy-Swartz inequality, which

can easily be proven by squaring both sides and grouping the

terms, it follows:

+
M

m¼1

u
k

mu
k#
m #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
M

m¼1

ðukmÞ
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
M

m¼1

ðuk#m Þ
2

s
: (10)

By summing both sides over all k and k# indices, we

obtain inequality (Eq. 9), which completes the proof.

Averaging and the Cartesian coordinate-based
root-mean-square deviation

Note that the above derivation using the vector representa-

tion applies to all possible real or complex-valued matrices.

Furthermore, note that in calculating Cartesian coordinate-

based RMSD, after the alignment of structures, the

calculation is conceptually equivalent to calculating dRMS.

Therefore, the above derivation can be used as a proof of

inequality (Eq. 2), after a minor change in notation. It is

important to emphasize that inequality (Eq. 2) is valid only in

the case where all of the structures in question have been

aligned to the same structure. In other words, both sides of

the inequality should be evaluated on the same set of

structures. To demonstrate this fact, we have compared the

ensemble of structures from the native equilibrium simu-

lations of villin (see Methods) with the experimental villin

structure in the two ways. Comparing one structure at a time

gives a distribution of Ca-RMSD values with mean of 3.66

1.5 Å. On the other hand, if one first finds the average Ca

coordinates over the entire ensemble and then calculates their

RMSD from the native structure, the value one gets is 2.6 Å,

in agreement with the above inequality. The reason we have

chosen the native ensemble of structures for this comparison

is that structural alignment, which is required when cal-

culating RMSD, gives physically more meaningful results in

the case of geometrically similar structures. Nevertheless, the

above inequality holds for any ensemble of structures and any

reference structure whatsoever.

DISCUSSION

How does the above inequality affect our conclusions about

the unfolded state of small a-helical proteins? We have

shown that the mean unfolded-state Ca-Ca distance matrices

of several small mostly a-helical peptides are close to the

respective native-state distance matrices (Zagrovic et al.,

2002a; Snow et al., 2002b; Zagrovic and Pande, 2003). Is it

possible that this finding is just a consequence of the above

mathematical property of matrix averaging? Inequality (1)

suggests that no matter what the reference structure is,

averaging of the unfolded-state matrices gives one improve-

ment over the individual unfolded-state members on aver-

age. Is this mathematical fact perhaps sufficient to make the

mean unfolded-state distance matrix close to any given re-

ference matrix?

A decisive test of this possibility is to use other reference

structures instead of the real native structure, and ask how

close are these structures to the mean unfolded-state distance

matrix. Indeed, if the low dRMS from the native structure is

just a consequence of averaging with no physical meaning,

one should obtain such low dRMS even for nonnative

reference structures. We have carried out this test in two

ways. First, we have used the members of the unfolded-state

ensemble as reference structures instead of the native

structure. In other words, we have used the individual

members of the unfolded-state ensemble as ‘‘mock’’ native

structures, and calculated their dRMS from the mean

unfolded-state distance matrix. The result is shown in Fig.

2: on average these molecules are 3.9 6 1.0 Å dRMS away

from the mean unfolded-state matrix. More importantly, the

native-state distance matrix is the closest individual distance

matrix to the mean unfolded-state matrix at 2.4 Å dRMS. In

other words, for villin we could use dRMS to pick out the

native-state structure from a pool of decoys comprised of the

unfolded-state members.

Second, we have used native structures of other, unrelated

proteins as reference structures and performed a similar

comparison. For this purpose, we have chosen all non-

redundant, 36-residue proteins in the Protein Data Bank

database (Berman et al., 2000) (a total of 26 structures from

different structural categories) as ‘‘mock’’ native structures

and compared them with our simulated villin unfolded-state

ensemble. The results are shown in Fig. 3. The mean villin

unfolded-state distance matrix is more similar to the native

villin structure than to any of the ‘‘mock’’ native structures.

Moreover, the spread in dRMS values between the most

similar and the least similar structure to the mean villin

unfolded-state matrix (i.e., the native villin structure and the

1ZWB structure) is .10 Å, suggesting that the average

unfolded-state distance matrix contains significant informa-

tion that enables it to sensitively discriminate between

Structure Comparison on Ensemble Level 2243
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different structures and select the native villin structure over

others. Finally, the analysis given in Fig. 3 A suggests a new

feature that was not observed before: among all the reference

structures we looked at, the native structure of villin is

closest to the unfolded-state ensemble of villin even when it

comes to individual structures on average. The average

dRMS of the individual unfolded molecules from different

reference structures (black dots in Fig. 3 A) is lowest when
the reference structure is the native villin structure (4.6 Å).

This suggests that some information about the native

structure is hidden in each individual member of the

unfolded-state ensemble as well. Here, it should also be

noted that, as implied by the inequality (Eq. 1), the average

unfolded-state distance matrix is in all cases closer to a given

reference structure than are the individual unfolded mole-

cules on average. However, the discrepancy between the two

values is both absolutely and relatively greatest in the case of

the native villin structure (Fig. 3 B).
In analyzing the results given in Fig. 3 one should take

into account the intrinsic similarity or dissimilarity of the

reference structures used and the native villin structure.

Therefore, it is not surprising that some structures are closer

to the mean villin unfolded-state distance matrix than others:

these are the ones that were more similar to the native villin

structure to begin with. Indeed, one can actually use the

dRMS from villin’s mean unfolded-state distance matrix to

estimate how similar a given reference structure is to the

native structure of villin (results not shown). Finally, the

structures that are most dissimilar to villin give one an

opportunity to gauge how much averaging actually lowers

the dRMS in the absence of any intrinsic structural similarity,

compared to one-to-one values. On the basis of the results in

Fig. 3 A, this improvement accounts for 0.5 Å or so for a

molecule of this size.

The two examples given in Figs. 2 and 3 suggest that the

mathematical properties of matrix averaging are only

a component of the result displayed in Fig. 1, and that the

topology of the unfolded state of the villin molecule indeed is

significantly nativelike. There are several other results

speaking in favor of this. First, we have shown that in the

case of predominately b-sheet-containing structures, the

mean unfolded-state distance matrix is not significantly more

nativelike than the individual members of the unfolded-state

ensemble (Zagrovic et al., 2002a). In fact, the mean distance

FIGURE 3 (A) Comparison between the unfolded villin ensemble and 27

other unrelated reference structures from different structural classes,

including the native villin structure (1VII). For each reference structure,

we show its dRMS from the mean unfolded villin Ca-Ca distance matrix

(red), as well as the ensemble average with standard deviation of the dRMS

between the same structure and the individual members of the unfolded

villin ensemble (black). The reference structures are indexed as given in the

Methods section. (B) Relative improvement in structural similarity due to

averaging is given for the reference structures in Fig. 3 A. It is defined as:

ÆdRMSðunf ; ref Þæ� dRMSðMM; ref Þ=ÆdRMSðunf ; ref Þæ, where unf denotes
the individual members of the unfolded ensemble, ref denotes the reference

distance matrix, and MM denotes the mean unfolded-state distance matrix.

The structures are indexed as given in the Methods section.

FIGURE 2 Distribution of dRMS from the mean unfolded Ca-Ca

distance matrix at the 27-ns time point in the villin data set for all individual

unfolded molecules at that time point, dRMS(MM, unf). Similar results are

obtained at all other time points sampled in our simulations after the

molecules collapse to a compact unfolded state. The arrow marks the dRMS

of the native-state distance matrix from the mean unfolded distance matrix

(dRMS(MM, nat), where MM denotes the mean unfolded matrix and nat

denotes the native matrix). The dRMS distribution is binned with 0.1 Å

resolution.
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matrix based on the unfolded-state ensemble of the b-sheet

tryptophan zipper is closer in the dRMS sense to a 12-residue

a-helix than to its native b-sheet conformation (1.7 Å vs. 2.6

Å). If the sole contributor to the ‘‘mean-structure hypothe-

sis’’ were the above mathematical fact, one would get equal

improvement by averaging for both a-helical- and b-sheet-

containing structures. Second, we have demonstrated that

‘‘the mean-structure hypothesis’’ can be used as a structure

prediction scheme with significant filtering capability

(Zagrovic et al., 2002a). Finally, we have shown that over

short stretches the a-helix is the closest structural motif to the

average interresidue distances in a random-flight chain with

persistence length of one amino acid, which in turn is a good

model for our unfolded-state ensemble (Zagrovic and Pande,

2003).

Although it has no bearing on the mathematical derivation

in this work, the nature of the villin unfolded-state ensemble

analyzed here merits comment. The ensemble was generated

by running thousands of short independent trajectories

started from the fully extended state for a short time (27

ns) compared to the relevant folding time (4.3 ms) (Kubelka

et al., 2003). Based on this we argued that our ensemble

corresponds to the kinetically defined unfolded state: we

capture what happens early on in the folding process, and as

such our ensemble may or may not differ from chemically or

thermally denatured states (Zagrovic et al., 2002a). Recently,

Paci et al. (2003) argued that relatively short simulations in

a distributed computing paradigm such as ours do not

capture the relevant aspects of the folding process due to lack

of convergence. We fully agree that our simulated ensembles

are out of global equilibrium and do not sample the entire

folding free-energy surface; because only a small fraction

reach the folded state, the native-state basin is clearly not

sampled well. However, our characterization of these sim-

ulations (see below) shows that they do capture the rele-

vant features of the unfolded-state free-energy well.

The simulated ensembles are out of equilibrium globally,

but they can still be in equilibrium locally (i.e., within the

unfolded-state well). In the case of the villin unfolded-state

ensemble, most geometrical and energetic descriptors of the

ensemble reach their steady-state values in ;10–20 ns,

suggesting local equilibration (Zagrovic et al., 2002a,b).

Furthermore, the average interresidue distances in the

ensemble conform extremely well to the statistics of the

ideal random-flight chain with persistence length of one

amino acid, again suggesting that the unfolded state is

adequately sampled (Zagrovic and Pande, 2003). One

dominant characteristic of the unfolded ensembles that we

have simulated is their almost nativelike degree of compac-

tion. This may partly be due to the generalized Born/surface

area solvation model used in our simulations and its

overstabilizing of electrostatics. However, compactness of

the unfolded state has been observed both theoretically and

experimentally in many proteins, and may be a general

feature of the folding process (Duan and Kollman, 1998;

Fersht and Daggett, 2002; Millett et al., 2002; Pande et al.,

2002). But, the fact that a highly heterogeneous ensemble

such as our simulated unfolded state has certain nativelike

properties on average is intriguing in any case.

What is the significance of the above results in the broader

context of protein simulation and experiment? As more and

more theoretical groups reach the capability to simulate

ensembles of molecules, the issues of conformational av-

eraging and structure comparison on an ensemble level

will become increasingly more relevant. The above result

provides a useful reference point for such studies. Secondly,

in the context of NMR refinement and especially for the

purpose of assessing precision and accuracy of the pro-

cedure, it is useful to know that the average refined structure

will always be closer to any reference structure compared

with the average individual refined structure, even if the

ensemble to be averaged contains highly unstructured or

poorly constrained regions.
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