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ABSTRACT One of the earliest lipid intermediates forming in the course of membrane fusion is the lipid stalk. Although many
aspects of the stalk hypothesis were elaborated theoretically and confirmed by experiments it remained unresolved whether
stalk formation is always an energy consuming process or if there are conditions where the stalks are energetically favorable
and form spontaneously resulting in an equilibrium stalk phase. Motivated by a recent breakthrough experiments we analyze
the physical factors determining the spontaneous stalk formation. We show that this process can be driven by interplay between
two factors: the elastic energy of lipid monolayers including a contribution of the saddle splay deformation and the energy of
hydration repulsion acting between apposing membranes. We analyze the dependence of stalk formation on the saddle splay
(Gaussian) modulus of the lipid monolayers and estimate the values of this modulus based on the experimentally established
phase boundary between the lamellar and the stalk phases. We suggest that fusion proteins can induce stalk formation just by
bringing the membranes into close contact, and accumulating, at least locally, a sufficiently large energy of the hydration
repulsion.

INTRODUCTION

Membrane fusion is the merger of two membranes into one.

Elucidation of the fusion mechanism is indispensable for

understanding such fundamental biological processes as

intracellular protein trafficking, secretion, fertilization, and

viral infection (Jahn and Grubmuller, 2002; Jahn et al., 2003;

Skehel and Wiley, 2000), and for biotechnological applica-

tions involving formation of liposomes (Lasic, 1995;

Lichtenberg and Barenholz, 1988). Fusion of cell mem-

branes is mediated and controlled by fusion proteins

(Gibbons et al., 2004; Jahn et al., 2003; Modis et al., 2004;

Skehel and Wiley, 2000). At the same time, feasibility and

kinetics of membrane merger are largely determined by the

architecture and energy of the intermediate structures

emerging in the course of this process (Chernomordik and

Kozlov, 2003).

Although proteinaceous fusion intermediates have been

suggested for specific cell systems (Mayer, 2002), there is an

accumulating evidence (Chernomordik et al., 1995; Cherno-

mordik and Kozlov, 2003) that in many cases biological

fusion and fusion of purely lipid synthetic membranes share

at least one intermediate structure called the fusion stalk

(Kozlov and Markin, 1983; Markin et al., 1984). The stalk is

a first lipid connection emerging at the early stage of the

fusion reaction between the contacting (proximal) lipid

monolayers of two apposing membranes. Stalk is the earliest

hemifusion intermediate (Chernomordik et al., 1998, 1987;

Kemble et al., 1994; Melikyan et al., 1995b), which further

evolves to fusion pore (Melikyan et al., 1995a; Zimmerberg

et al., 1994), completing the fusion process.

The fusion stalk has been suggested as a transient structure

determining an energy barrier of the fusion reaction and,

hence, limiting the fusion rate. Analysis of the physical

factors determining the stalk energy is absolutely necessary

for understanding the mechanisms by which the fusion

proteins mediate the membrane merger (Chernomordik and

Kozlov, 2003). An extensive theoretical work has been

devoted to modeling the lipid arrangement within the stalk

intermediate and calculations of its energy (Kozlov et al.,

1989; Kozlov and Markin, 1983; Kozlovsky et al., 2002;

Kozlovsky and Kozlov, 2002; Kuzmin et al., 2001; Malinin

and Lentz, 2004; Markin and Albanesi, 2002; Markin et al.,

1984; May, 2002; Siegel, 1993, 1999), as well as to

numerical simulations of stalk formation (Marrink and Mark,

2003; Muller et al., 2002). One of the major results of these

theoretical efforts was a conclusion that the stalk energy can

be strongly modulated by lipid composition of the fusing

membranes (Kozlov et al., 1989; Kozlov and Markin, 1983;

Kozlovsky et al., 2002; Kozlovsky and Kozlov, 2002;

Marrink and Mark, 2003). This prediction has been verified

successfully in a series of experimental investigations of

membrane fusion kinetics, which provided confidence in the

adequacy of the stalk mechanism (Chernomordik et al.,

1995; Chernomordik and Kozlov, 2003). At the same time,

a direct experimental evidence for stalk formation was

lacking and, hence, the stalk intermediate remained hypo-

thetical. An experimental breakthrough has been reached

recently by Huang’s group, which was able to observe for the

first time formation of stalks by electron density reconstruc-

tion of lipid mesophases (Yang et al., 2003; Yang and

Huang, 2002, 2003). An important outcome of these works

was a demonstration that the conditions exist where the stalk
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energy becomes lower than that of the flat lipid bilayer so

that the first stage of membrane fusion does not represent an

energy barrier and proceeds spontaneously.

In this work we analyze the factors required to enable

a spontaneous formation of fusion stalks. We demonstrate

that, in addition to the lipid spontaneous curvature, the stalk

energy can be strongly influenced by the saddle splay

(Gaussian) modulus of the lipid monolayers (Helfrich, 1973)

and by the hydration repulsion acting between the apposing

membranes (Leikin et al., 1993; Marcelja and Radic, 1976;

Rand and Parsegian, 1989). We show that interplay between

these three factors within the realistic parameter ranges can

determine the observed spontaneous stalk formation, and

compute the relationships between the values of the mem-

brane elastic moduli and the hydration repulsion parameters

necessary to interpret the experimental phase diagrams

(Yang et al., 2003; Yang and Huang, 2002, 2003). Based on

the obtained results, we suggest that the hydration repulsion

can contribute to the mechanism by which fusion proteins

that bring the apposing membranes into close contact can

drive the first stages of the fusion reaction.

Phenomenology of spontaneous stalk formation

Phospholipids in aqueous solutions exhibit a rich mesopha-

sic behavior (Luzzati, 1968; Seddon and Templer, 1995).

The most common phases formed by phospholipids present

in cell membranes are the lamellar (La) and the inverted

hexagonal (HII) phases. The La phase consists of a stack of

flat lipid bilayers separated by 2–3 nm-thick water layers

(Rand and Parsegian, 1989), whereas the HII phase has

a completely different nonbilayer topology (Epand, 1997;

Rand and Fuller, 1994; Seddon, 1990). It is represented by

water cylinders of ;2 nm radius wrapped by lipid

monolayers and packed in a way that their cross sections

form a two-dimensional hexagonal array (Rand and Fuller,

1994). Transition between the La and HII phases can be

driven by changes in temperature, hydration (Gawrisch et al.,

1992; Kozlov et al., 1994), and lipid composition (Chen and

Rand, 1997; Fuller et al., 2003; Leikin et al., 1996; Szule

et al., 2002). It has been suggested that transformation of the

flat bilayers of the La phase into the cylinders of the HII

phase proceeds via spontaneous stalk formation (Siegel and

Epand, 1997).

The experiments by Huang’s group have been performed

with the phospholipid diphytanoylphosphatidylcholine

(DPhPC) (Yang and Huang, 2002, 2003) and with mixtures

of dioleoylphosphatidylcholine (DOPC) and dioleoylphos-

phatidylethanolamine (DOPE) (Yang et al., 2003). The lipids

were spread on a flat substrate producing an oriented sample

exposed to air with controlled temperature and relative

humidity denoted by z. Changes of z resulted in variation of

the amount of water within the lipid phase referred to as lipid

hydration (see e.g., Gawrisch et al., 1992). The goal was to

explore transitions between lipid phases resulting from

changes of temperature, sample hydration and lipid compo-

sition. In the present study we will focus on the two latter

factors and address the representative experimental results

obtained for a fixed temperature of 35�C.
At full hydration DPhPC formed the lamellar La phase

(Yang and Huang, 2002). When the relative humidity in

contact with the sample was reduced to a critical value, z*, of

z*;80%, the lamellar phase converted into a phase of stalks

arranged in a rhombohedral lattice and connecting the

proximal monolayers of the apposing bilayers. The in-

termembrane distance of the lamellar phase at the transition

point was ;1 nm. The three-dimensional electron density

distribution constructed from the complete diffraction

pattern of the stalk phase showed an hourglass-like shape

of individual stalks, similar to the hypothesized structure of

the stalk intermediate (Kozlov and Markin, 1983; Kozlovsky

and Kozlov, 2002; Markin and Albanesi, 2002). When the

relative humidity was further reduced to below ;70%, the

lipid formed the inverted hexagonal HII phase. Clearly, the

stalks observed in these experiments were not transient in-

termediate structures, but rather formed an equilibrium phase

located in the phase diagram between the La and HII phases.

The phases adopted by DOPC/DOPE mixtures upon the

humidity changes were similar to those of DPhPC. However,

the phase boundaries were dependent on the lipid compo-

sition. Pure DOPC formed the La phase at full hydration but

formed the stalk phase when the relative humidity decreased

below z* ;45%. The values of z* for different lipid

compositions, as taken from Yang et al. (2003) are presented

in Table 1. The data shows a trend of increasing z* as the

DOPC content decreases, although the two mixtures with

DOPC/DOPE ratio of 3:1 and 2:1 have almost the same z*.

For lower DOPC contents the system behavior became more

complex and for mixtures with DOPC/DOPE ratio of 1:3 or

smaller, the stalk phase did not form at all, and the lamellar

phase transformed directly into the hexagonal phase.

THEORETICAL MODEL

Outline of analysis

Our goal is to analyze the conditions of stalk formation in lipid lamellar

phase upon changes in the system hydration and lipid composition. To this

end we consider two parallel adjacent membranes within the lamellar phase,

which are separated by a water layer with thickness depending on the

relative humidity, z, of the surrounding air. In the initial state the monolayers

are flat and the water layer between them is continuous (Fig. 1 a). In the final
state a lipid connection—a fusion stalk—is formed between the apposing

TABLE 1

DOPC/DOPE 1:0 3:1 2:1 1:1 1:2 1:3

l[nm] 0.210 0.190 0.183 0.170 0.157

z* 45% 67% 68% 76% 83% no stalks

d�
w[nm] 0.748 0.808 0.786 0.787 0.786

b*[nm] �0.01 �0.19 �0.20 �0.25 �0.29
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membrane monolayers (Fig. 1 b). The energy of stalk formation consists of

two major contributions: 1), the change of the elastic energy of membrane

monolayers, which is caused by their deformation from the initial flat shape

into the stalk configuration and 2), the change of the energy of the

intermembrane interactions. The former contribution has been analyzed

partially in the previous studies (Kozlov et al., 1989; Kozlov and Markin,

1983; Kozlovsky et al., 2002; Kozlovsky and Kozlov, 2002; Kuzmin et al.,

2001; Markin and Albanesi, 2002; Markin et al., 1984; May, 2002; Siegel,

1993, 1999). In the present work we will extend this consideration by taking

into account the effects of the saddle splay (Gaussian) elasticity of

membrane monolayers (Helfrich, 1973) and the varying intermembrane

distance. The reason for the latter contribution is that the membrane area

subject to the intermembrane interaction in the initial state is reduced when

stalk forms and fills a part of the intermembrane gap by lipid material.

In the following we first introduce the way and assumptions we use to

calculate each of the energy contributions. We then compute the total energy

of stalk formation as a function of the elastic parameters of the lipid

monolayers, lipid composition, and hydration of the lipid sample, the latter

related to the relative humidity of the air. We determine the relationship

between these parameters, corresponding to formation of an equilibrium

stalk and present the results in the form of a phase diagram.

Elastic energy of stalk formation

We calculate the elastic contribution to the stalk energy by using the model

for tilt and splay deformations of lipid monolayers (Hamm and Kozlov,

1998, 2000). Below we sketch this approach, whose major part has been

presented in detail by Kozlovsky and Kozlov (2002) and some mathematical

details are given in Appendix A.

We consider, separately, each monolayer of the lipid bilayer. The

monolayer shape is described by the shape of its neutral surface lying at the

interface between the polar heads and the hydrocarbon chains (Leikin et al.,

1996) at a distance d from the bilayer midsurface (Fig. 1 a). Average

orientation of the hydrocarbon chains of lipid molecules is described by the

effective chain director, n*: Three deformations contribute to the monolayer

elastic energy. The first is tilt t* of the chain director n*; with respect to the

normal to the monolayer surface N
*
(Appendix A). The second and third are

splay, eJJ; and saddle splay, eKK; of the hydrocarbon chains. The latter

deformations include additive contributions from the monolayer bending

and tilt variation along the monolayer surface (Hamm and Kozlov, 2000).

They can be expressed as the first- and second-order invariants of the tensor

nij, which is a gradient of the chain director n*; calculated along the

monolayer surface (Appendix A). The splay is the two-dimensional

divergence of the chain director, eJJ ¼ div n* ¼ nii; whereas the saddle splay

is the determinant of the director gradient, eKK ¼ det nij: In the case of a bent

monolayer with vanishing tilt, t* ¼ 0; the splay and saddle splay reduce to

the total, J, and Gaussian, K, curvatures of the monolayer surface (Hamm

and Kozlov, 2000).

The structure of the monolayer is characterized by its spontaneous

curvature, Js, and by its saddle splay modulus, �kk (Helfrich, 1973). The

resistance of the monolayer to deformation is accounted by the monolayer

bending, k, and tilt, kt, moduli (Hamm and Kozlov, 1998, 2000). The elastic

energy per monolayer unit area, related to the initial state of a flat monolayer,

is given by

f ¼ 1

2
kðeJJ � JsÞ2 1 �kkeKK 1

1

2
kt t

2 � 1

2
k J

2

s : (1)

The elastic energy of the stalk, Fe, is determined by integrating Eq. 1 over

the area A of the two monolayers,

Fe ¼
Z

fpdAp 1

Z
fddAd: (2)

Here and below, the subscripts p and d denote the proximal and distal

monolayers, respectively.

We consider a single stalk formed between two parallel membranes in the

La phase, with the intermembrane distance dw. The lamellar phase imposes

two structural constraints on the stalk membranes. The first is that far from

the stalk the two membranes become flat and adopt the initial parallel

orientation with separation dw. The second constraint is that near the stalk,

membranes are confined from above and below by the adjacent membranes

of the La phase. The exact character of these limitations depends on the

intermembrane interactions and the deformations of the neighboring

membranes. We assume that the neighboring membranes remain flat and

their interaction with the stalk wings (Kozlovsky et al., 2002) determines the

shape of the latter.

The tilt deformation of the stalk monolayers is generated by packing the

hydrocarbon chains in the nonbilayer structural defect (Kozlovsky and

Kozlov, 2002), which unavoidably emerges in the middle of the stalk

intermediate and is referred to as the hydrophobic interstice (Siegel, 1993).

The tilt relaxes along the monolayer surface resulting in a contribution to the

FIGURE 1 Stalk formation within a lamellar phase. The dashed lines

represent the midsurface separating lipid monolayers within a bilayer. The

thicker solid lines represent membrane-water boundaries. (a) Initial state of

two parallel flat membranes separated by a water distance dw. The neutral

surface (thinner solid lines) is lying at the interface between the polar heads

and the hydrocarbon chains (Leikin et al., 1996) at a distance d from the

bilayer midsurface. (b) Cross section of the stalk (neutral surface not shown).

The stalk radius, R, is the distance from its center at which all elastic stresses

vanish. The radius rs, defines the area that contributes the most to the stalk

elastic energy. The stalk profile is calculated for dw ¼ 2.4 nm by minimizing

the elastic energy of stalk monolayers and the hydration energy of the stalk

wings. The hydration parameters used are P0 ¼ 1010.6 dyn/cm2 and l ¼ 2.1

Å. The values of the spontaneous curvature and the Gaussian modulus are

taken to be zero, Js¼ 0, and �kk ¼ 0; and the elastic moduli are k¼ 43 10�20

J and kt ¼ 0.04 N/m, while d ¼ 1.3 nm.
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splay. A smooth connection between the interstice and the undisturbed flat

membrane surrounding the stalk generates bending of the stalk monolayers

(Fig. 1 b).

Contribution of the intermembrane interaction to
the energy of stalk formation

Interaction between electrically neutral membranes in the lamellar phase

includes several competing forces such as van der Waals attraction,

undulation force, and repulsive hydration force (Safran, 1994), which result

in an equilibrium intermembrane distance of 2–3 nm (Rand and Parsegian,

1989). Stalk formation has been observed when the intermembrane distance

was reduced to ;1 nm (Yang and Huang, 2002). At such small distances,

the major energy contribution arises from hydration forces (Rand and

Parsegian, 1989) and the two other interactions can be neglected (Kozlov

et al., 1994).

The pressure generated by the hydration interaction between two parallel

flat membranes separated by a water layer of thickness dw is given by

PðdwÞ ¼ � P0

4 sinh
2 dw=2lð Þ

; (3)

where P0 and l are hydration force parameters (Leikin et al., 1993; Rand and

Parsegian, 1989). The energy of the hydration interaction between two such

membranes of area A is thus given by

F
parallel

h ¼ �A

Z N

dw

dzPðzÞ ¼ AlP0

2
coth

dw

2l

� �
� 1

� �
: (4)

The contribution to the energy of stalk formation due to the hydration

interaction, DFh, can be separated into two parts.

The first contribution, denoted as DFh1, is related to the fact that the stalk

fills a part of the gap between the membranes with lipid material. As a result,

the membrane area exposed to the hydration repulsion is reduced by

as ¼ pr2s ; where rs � 2.5 nm is the radius of the stalk base (Fig. 1 b), so that

DFh1 ¼
aslP0

2
coth

dw

2l

� �
� 1

� �
: (5)

The second contribution, DFh2, comes from the effect of the hydration

repulsion on the shape of stalk monolayers. As shown in Kozlovsky et al.

(2002), minimization solely of the elastic energy predicts formation of stalk

‘‘wings’’ bulging out of the planes of the fusing membranes as illustrated in

Fig. 2 (note that the apparent narrowing of the membranes at the center of the

stalk results solely from the different scales along the r and h axes). The

outer monolayers of the wings tend to approach the upper and lower adjacent

membranes in the lamellar phase to distances, d, smaller than the average

water spacing in the lamellar phase dw. Obviously, this results in additional

energy of the hydration repulsion, DFh2, which must reduce the amplitudes

of the stalk wings as compared to the case where the hydration repulsion is

not taken into account explicitly (Kozlovsky et al., 2002). We account for

this effect by calculating the hydration energy of the wing formation as the

work produced against the hydration repulsion in the course of changing the

distance between the membranes relative to the equilibrium spacing,

DFh2 ffi 4p

Z
rdr

Z dðrÞ

dw

dzPðzÞ: (6)

The internal integration in Eq. 6 provides the hydration energy of the

elements of the wing surface, which possess the radial coordinate r and

approach the adjacent membranes from the distance dw to the distance d(r)

(Fig. 2). The external integration is performed over the area of the stalk

wings bulging toward the adjacent membranes.

In addition to the two hydration effects above, another contribution to the

energy has to be discussed, arising from the hydration interaction between

the portions of the same monolayer in the course of membrane bending. We

assume that the latter energy is, effectively, accounted for by the monolayer

bending energy (Eq. 1), where the hydration interaction determines, in

addition to other factors, the membrane elastic moduli. The same assumption

has been used in a model for the La–HII phase transition (Kozlov et al.,

1994), which succeeded to describe delicate features of this process. (A more

detailed discussion of this issue has been presented in Appendix C of

Kozlovsky and Kozlov, 2002.)

For the purposes of the following analysis of the experimental data, it is

convenient to express the energy given by Eq. 5 through the relative

humidity of the air surrounding the lipid sample, z, which is controlled

experimentally (Yang and Huang, 2002). Using the relationships of Rand

and Parsegian (1989), we obtain

dwðzÞ ¼ lln
�P0nw

kBT lnz

� �
; (7)

and thus

DFh1 ¼
aslP0

2
coth

1

2
ln

�P0nw

kBT lnz

� �� �
� 1

� �
; (8)

where vw � 0.03 nm3 is the volume of a water molecule.

Method of solving the problem

The mathematical problem is to find the shape of the stalk monolayers and

the distribution of the tilt along the monolayer surfaces, which minimize the

sum of the elastic energy, Eq. 1, and the energy due to the intermembrane

interactions, Eq. 6. The solution must satisfy the boundary conditions of

filling the hydrophobic interstices by the hydrocarbon chains and matching

the surrounding membranes. The explicit expressions for the splay eJJ and

FIGURE 2 Stalk cross section in a case where the hydration repulsion

between the stalk wings and the adjacent membranes is not taken into

account. The apparent narrowing of the membranes at the center of the stalk

results from the different scales along the r and h axes. As in Fig. 1 b, the

values of the spontaneous curvature and the Gaussian modulus are taken to

be zero, Js¼ 0, and �kk ¼ 0; and the elastic moduli are k¼ 43 10�20 J and kt
¼ 0.04 N/m, while d ¼ 1.3 nm. The stalk radius is chosen to be R ¼ 60 nm.
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saddle splay eKK of a monolayer with radial symmetry are presented in

Appendix A. We solve this problem numerically by minimizing the elastic

energy of the lipid bilayer and determining the shape of stalk monolayers

and distribution of tilt by the method of finite elements (Prenter, 1975) using

the MATLAB software (The MathWorks, Natick, MA), as described in

detail in Appendix B.

RESULTS

Stalk elastic energy and the hydration energy
of the wings

The numeric analysis shows that the curvatures of the stalk

monolayers and the distribution of tilt of the lipid chains

along the monolayer surfaces are largely determined by the

boundary conditions in the hydrophobic interstice and the

ratio between the elastic moduli of tilt and splay, k/kt. At the

same time, the stalk structure, practically, does not depend

on the values of the spontaneous curvature, Js, and the saddle
splay modulus, �kk: This property allows presenting the stalk

elastic energy in the form

Fe ¼ F
0

e 1 aJkdJs 1 aK�kk; (9)

where F0
e ; aJ, and aK are independent of Js and �kk: The value

F0
e has a meaning of the stalk elastic energy for Js ¼ 0 and

�kk ¼ 0; and is given, according to Eqs. 1 and 2, by

F
0

e ¼
1

2

Z
ðkeJJ2

p 1 kt t
2

pÞdAp 1
1

2

Z
ðkeJJ2

d 1 kt t
2

dÞdAd: (10)

The dimensionless coefficients aJ and aK are given by

aJ ¼ �1

d

Z eJJpdAp 1

Z eJJddAd

� �
and

aK ¼
Z eKKpdAp 1

Z eKKddAd: (11)

The elastic energy, Eq. 9, depends linearly on Js and �kk:
The other parameters determining the stalk energy are the

elastic moduli k and kt, the intermembrane separation dw,
and the distance between the neutral surface of each of the

monolayers and the bilayer midsurface, d (the latter value is

taken as a positive value for both monolayers). We obtained

that aJ and aK are almost independent of these parameters

and within a realistic range of k and kt, they have practically

constant values: aJ ¼ 26.1 and aK ¼ �11.8. Therefore, Eq. 9

can be written as

Fe ¼ F
0

e 1 26:1 kdJs � 11:8�kk: (12)

The value of F0
e depends considerably on the moduli k and

kt, and on the shape of the stalk membrane. The latter, as

mentioned above, is strongly influenced by the hydration

repulsion between the stalk wings and the adjacent

membranes. Therefore, calculation of F0
e required concurrent

determination of the optimal shape of the stalk monolayers

which minimizes the sum of the elastic energy and the

hydration energy of the wings, DFh2. According to our

analysis, the hydration forces result in almost complete

flattening of the stalk wings as compared to the case where

the hydration interaction is not taken into account (Fig. 2).

This is illustrated in Fig. 1 b presenting the calculated stalk

configuration for dw ¼ 2.4 nm.

The results of the numerical calculations of the sum of the

elastic contribution F0
e and the hydration energy of the

wings,

F
0

s [F
0

e 1DFh2; (13)

for the optimal membrane shape and for the hydration

parameters of DOPC and DOPE membranes, are presented

in Fig. 3 as functions of the water distance, dw. In this figure

and in all the calculations below, the energy is presented in

the unit of kBT � 4 3 10�21 J (where kB is the Boltzmann

constant and T ¼ 308�K is the absolute temperature) and the

values of the two elastic moduli are taken to be k � 4 3

10�20 J (see e.g., Niggemann et al., 1995) and kt¼ 0.04 N/m

(Hamm and Kozlov, 1998), whereas d ¼ 1.3 nm (Rand and

Parsegian, 1989). For large values of dw, the energy F0
s

becomes practically constant, adopting a value of

F0
s � 81 kBT: The total energy of the stalk, restricted by

the membranes of the lamellar phase, is thus given by

Fs ¼ F
0

s 1 26:1 kdJs � 11:8 �kk: (14)

To proceed, it is convenient to define an effective parameter

b, which is a linear combination of the monolayer spon-

taneous curvature Js and the saddle splay modulus �kk;

FIGURE 3 The stalk energy F0
s for Js ¼ 0 and �kk ¼ 0; as a function of the

intermembrane distance dw. It includes both elastic contribution and

hydration energy of the stalk wings. The hydration force parameters used

are P0¼ 1010.6 dyn/cm2, l¼ 2.1 Å for DOPC, and l¼ 1.3 Å for DOPE. The

elastic moduli are k ¼ 4 3 10�20 J and kt ¼ 0.04 N/m, while d ¼ 1.3 nm.
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b ¼ Js �
11:8

26:1 kd
�kk: (15)

The energy (Eq. 14) depends on Js and �kk only through b,

whereas the dependence on the intermembrane distance dw is

accounted for only by F0
s :

Fsðdw;bÞ ¼ F
0

s ðdwÞ1 26:1 kdb: (16)

The effective parameter, b, has the same physical dimen-

sions as the spontaneous curvature, Js, and characterizes the

tendency of lipids to form stalks.

Total energy and conditions for spontaneous
stalk formation

The energy of a single stalk formation between two parallel

membranes of the lamellar phase is the sum of the energy Fs,

Eq. 16, and the hydration energy DFh1, Eq. 5, released due to

stalk formation

Fðdw;bÞ � F
0

s ðdwÞ1 26:1 kdb� aslP0

2
coth

dw

2l

� �
� 1

� �
:

(17)

The conditions for spontaneous stalk formation corre-

sponding to negative energy, Eq. 17, can be represented as

a phase diagram expressed in terms of dw and b (Fig. 4). The

phase boundaries are determined by the condition F ¼ 0, for

the measured hydration force parameters, P0 ¼ 1010.6 dyn/

cm2, l ¼ 2.1 Å for DOPC, and l ¼ 1.3 Å for DOPE (Rand

and Parsegian, 1989). The region below the phase boundary

is characterized by negative energy, F , 0, and describes

the parameter range of spontaneous stalk formation. For the

parameters from the region above the phase boundary the

energy is positive, F . 0, and the flat membranes are stable

with respect to stalk formation. According to this phase

diagram, for the practically important intermembrane

distances dw, the larger the parameter b is, the smaller is

the dw (and the lower z) that has to be reached to make the

stalk formation energetically favorable. Note that a re-entrant

lamellar-stalk-lamellar transition can be driven by changing

dw, as predicted by the nonmonotonous character of the

curves in Fig. 4. This prediction holds, however, only if the

combination of the membranes parameters, b, does not

change with dehydration (see Discussion below).

Lamellar-stalk phase transition: comparison
with the experimental results

Transition from the lamellar to stalk phase mediated by

variations of the relative humidity, z, can be seen as initiated

by formation of single stalks. Taking into account Eq. 8, the

energy of one stalk, Eq. 17, expressed through z is

Fðj;bÞ ¼ F
0

s ðjÞ1 26:1 kdb

� aslP0

2
coth

1

2
ln

�P0nw

kBT ln j

� �� �
� 1

� �
: (18)

When the stalk energy (Eq. 18) becomes negative,

spontaneous formation of multiple stalks is expected to

result in transformation of the lamellar to the stalk phase.

However, the energy of a stalk within such phase may differ

from the energy (Eq. 18) of an isolated stalk because of the

membrane-mediated stalk-stalk interaction. To estimate this

interaction energy, we investigated in further detail the

energy of a single stalk formed in the lamellar phase. We

found that the elastic stresses are concentrated in a compact

region near the stalk center. This region extends up to a radial

distance of ;3.5 nm from the stalk center. Our computation

for a characteristic intermembrane separation of dw¼ 2.4 nm

(Rand and Parsegian, 1989) shows that the elastic energy of

the stalk portions outside this compact region amounts to

,1.5 kBT. As long as the distance between centers of two

stalks within the stalk phase constitutes 7 nm or more, only

the outside region of each stalk is perturbed so that the

resulting energy change should not exceed 1.5 kBT. For
reduced dw � 1 nm, this energy slightly increases but does

not exceed several kBT, which is negligible compared to the

corresponding change of the hydration energy. According to

the experimental information (Yang et al., 2003; Yang and

Huang, 2003), the unit cells of the rhombohedral lattice of

stalks form two-dimensional hexagonal arrays stacked in

layers. The characteristic side-length of a hexagonal unit cell

of this lattice is 6.84 nm, which corresponds to the distance

FIGURE 4 Phase diagram of stalk formation as a function of the

intermembrane distance dw and the effective parameter b. The lines indicate

the phase boundaries for DOPC (solid line), for which l¼ 2.1 Å, and DOPE

(dashed line), for which l ¼ 1.3 Å. The other parameters determining the

phase boundary are k ¼ 43 10�20 J, kt ¼ 0.04 N/m, d ¼ 1.3 nm, and P0 ¼
1010.6 N/m2.
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of
ffiffiffi
3

p
3 6:84 nm ¼ 11:8 nm between the adjacent stalks in

the same layer and to the separation of 6.84 nm between the

neighboring stalks in two consecutive layers. The smaller of

these two distances is very close to our criterion of 7 nm, so

that we neglect the stalk interaction energy and describe the

energy of a stalk within the rhombohedral phase by Eq. 18.

The condition of the lamellar-stalk phase transition, F , 0,

will be expressed in terms of the lipid parameter b, Eq. 15,

whose critical value, b*(z), depends on the relative humidity,

z, and determines the phase boundary between the lamellar

and the stalk phases in the b–z phase diagram. It can be

determined, based on Eq. 18, from the condition F , 0.

Stalk formation by DPhPC

The physical properties of DPhPC have been scarcely

investigated (Hung et al., 2000) and its elastic constants have

not been measured. Because DPhPC has the same headgroup

as DOPC, the two lipids can be expected to have the same

hydration force decay length, l ¼ 2.1 Å (Rand and

Parsegian, 1989). We also assume that DPhPC has the same

bending modulus and tilt modulus as DOPC. At relative

humidity of 80%, DPhPC underwent a phase transition from

the lamellar into the stalk phase. Based on this value, we

estimate the critical parameter of this lipid to be b* ¼ �0.23

nm�1.

Stalk phase formation by DOPC/DOPE mixture

The value of the lipid parameter b, which, as defined by Eq.

15, is a linear combination of the monolayer spontaneous

curvature Js and the saddle splay modulus �kk; depends on the

lipid composition of the DOPC/DOPE mixture. In the

Discussion we show the effective parameter of DOPE is

expected to be smaller than that of DOPC, bDOPE , bDOPC.

Therefore, b should increase monotonically as the mem-

brane fraction of DOPC increases.

Other elastic constants characterizing DOPC and DOPE

monolayers have similar values for the two lipids. We will

take the monolayer splay (bending) and tilt moduli to be k ¼
4 3 10�20 J (Leikin et al., 1996) and kt ¼ 0.04 N/m (Hamm

and Kozlov, 1998), respectively. The neutral surface lies at

a distance d ¼ 1.3 nm (Rand and Parsegian, 1989) from the

bilayer midsurface.

The phase boundary b*(z) depends also on the decay

length of the hydration forces, l, Eq. 18. The decay length of

DOPC is lDOPC¼ 2.1 Å, whereas the decay length of DOPE,

which is assumed to be equal to that of egg PE, is lDOPE ¼
1.3 Å (Rand and Parsegian, 1989). We are not aware of

a model allowing calculation of the parameters of the hy-

dration repulsion of a mixture based on those of individual

components. Therefore, we plot two phase boundaries be-

tween the lamellar and stalk phases (Fig. 5), one correspond-

ing to l ¼ lDOPC (Fig. 5, curve 1, solid line) and the other to
l ¼ lDOPE (Fig. 5, curve 2, dashed line). For a mixture of

DOPC/DOPE, the decay length should be between those of

the pure lipids, lDOPE , l, lDOPC. Therefore, we can only

say that the phase boundary of a mixture is bounded by the

two curves (Fig. 5, curves 1 and 2). The phase transition of

pure DOPC (Table 1) is represented in Fig. 5 a.
The range of the critical parameter b*(z), as computed for

the values of the relative humidity z* mediating the phase

transition of the several lipid mixtures (Yang et al., 2003),

are shown in the phase diagram, Fig. 5, by the dotted vertical

lines (Fig. 5, b–e). The marked point on each of those dotted

lines is the result of choosing a linear approximation for the

decay length lX of a mixture, DOPC/DOPE, in the form

l
X ¼ Xl

DOPC
1 ð1� XÞlDOPE

; (19)

where X is the mole fraction of DOPC.

Parameters of the lamellar-stalk phase transition at T ¼
35�C are presented in Table 1. For different ratios of the

DOPC/DOPE mixture, we give the relative humidity, z*, of

the transition as extracted from Fig. 2 of Yang et al. (2003).

The presented values of the hydration force parameter, l, are

within the linear approximation of Eq. 19.

Fitting the values of the saddle splay modulus

The values obtained for the critical parameters b* allow us to

estimate the saddle splay modulus, �kk; of DOPC and DOPE,

fitting the experimental observations. Note that �kk can only

be measured in certain circumstances, by QII lattice swell-

ing experiments (e.g., Templer et al., 1998), or in one-

component lipid systems with sharp thermotropic L/QII

phase transitions (Siegel and Kozlov, 2004).

FIGURE 5 The lamellar-stalk phase diagram as a function of the relative

humidity and the effective parameter b. The two thick lines indicate the

boundaries for phase transition from the lamellar to the stalk-phase of 1),

DOPC (solid line) and 2), DOPE (dashed line). The vertical dashed lines

represent the ranges of b* values for mixtures with DOPC/DOPE ratios: (a)
1:0, (b) 3:1, (c) 2:1, (d) 1:1, and (e) 1:2.
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We obtained that the critical parameter of DOPC

satisfying the condition that the La-stalk phase transition of

this lipid occurs at the relative humidity z* ¼ 45%, has the

value b*DOPC ¼ �0.01 nm�1 (Fig. 5 a). Neglecting the

possible effects of dehydration on the effective parameter b

(see below) and taking into account that at full hydration the

spontaneous curvature of DOPC has been measured,

JDOPCs ¼ �0:11 nm�1 (Chen and Rand, 1997), we obtain,

based on Eq. 15, the value of the saddle splay modulus of this

lipid:

�kk
DOPC ¼ 2:2 kdðJs � bÞ ¼ �0:30k: (20)

The value of the saddle splay modulus of DOPE can be

estimated in a different way. A critical observation is that at

full hydration the temperature change drives a direct

transition of DOPE between the La and HII phases without

formation of an equilibrium stalk phase (Yang et al., 2003).

This means that the stalk energy is positive compared to both

the lamellar and HII phases. On the other hand, the stalks

serve as intermediate structures of the transition from the

lamellar into nonlamellar phases (Siegel and Epand, 1997)

and their formation represents an energy barrier of the

process. Estimations based on the experimental investiga-

tions of the electrical breakdown of membranes (Cherno-

mordik and Abidor, 1980; Kuzmin et al., 2001; Weaver and

Mintzer, 1981) show that an upper bound to the energy

barrier the membrane can overcome to form a stalk within an

experimental timescale is ;40 kBT. The latter estimation,

which is not crucial for the present analysis, implies that the

characteristic frequency of formation of nonbilayer struc-

tures driven by the thermal fluctuation does not depend on

the specific architecture of the structure, but is determined by

the characteristic number of lipid molecules involved and the

membrane area available for fluctuations. The stalk energy

should, therefore, be in the range

0,F, 40 kBT: (21)

Taking the limit of 100% humidity, z / 1, we obtain

from Eqs. 7 and 8 that dw /N and DFh1 / 0. In that case,

Eq. 18 is reduced to Eq. 16 so that F / Fs. Also, note that,

as mentioned above, for large values of dw, the energy F0
s

becomes independent of dw, adopting the value of

F0
s � 81kBT (Fig. 3). Based on that we get

FDOPEðj/1;bÞ � 811 26:1 kdb; (22)

and substituting it into the inequality expression Eq. 21, we

obtain the range for the effective parameter of DOPE,

�0:25 nm
�1

,b
DOPE

, � 0:13 nm
�1
: (23)

Using Eq. 15 and the measured value of the spontaneous

curvature, JDOPES ¼ �0:35 nm�1 (Kozlov et al., 1994; Leikin

et al., 1996), we find for the saddle splay modulus of DOPE

a range of

�0:64 k, �kk
DOPE

, � 0:28 k: (24)

DISCUSSION

Motivated by the recent discovery of a stalk phase in

dehydrated lipid systems (Yang et al., 2003; Yang and

Huang, 2002, 2003), we have addressed theoretically the

conditions of spontaneous formation of fusion stalks resulting

in transformation of a lamellar phase into stalk phase. The

energy of stalk formation has three major contributions: 1),

the elastic energy accounting for the splay, saddle splay and

tilt deformations of the membrane monolayers; 2), hydration

energy of interaction between the stalk wings, and the

adjacent membranes in the lamellar phase; and 3), the re-

duction in the hydration energy of the system, with the

reduction due to the stalk formation of the membrane area

exposed to the hydration repulsion between the apposing

monolayers.

The effects of the hydration repulsion have been

considered previously within the context of contribution to

the energy barrier of establishing a local membrane contact

and rupture of the contacting monolayers preceding their

merger (Kuzmin et al., 2001; Leikin et al., 1987). In the

present work we analyze the situation where powerful forces

such as osmotic ones bring the membranes into a close and

extended contact. The hydration energy, accumulated due to

the work of these forces, turns out to be a factor driving

rather than preventing stalk formation. According to the

results of the present analysis, spontaneous stalk formation is

largely due to the hydration effects.

Previous models of stalk formation accounted for the

elastic energy of bending (Kozlov andMarkin, 1983; Kuzmin

et al., 2001; Leikin et al., 1987; Markin and Albanesi, 2002;

Markin et al., 1984; Siegel, 1993, 1999), splay (Kozlovsky

et al., 2002; Kozlovsky and Kozlov, 2002), and tilt (Kuzmin

et al., 2001; Kozlovsky et al., 2002; Kozlovsky and Kozlov,

2002; May, 2002) of membrane monolayers. At the same

time, they neglected another elastic contribution resulting

from the saddle splay deformation, eKK (Hamm and Kozlov,

2000), which in the absence of the tilt deformation of the lipid

chains becomes the Gaussian curvature of the surface, K. For
most membrane processes membrane topology does not

change and the energy of the saddle splay deformations

remains constant because, according to the Gauss-Bonnet

theorem, integral of K and, in a good approximation, of eKK,

over a closed surface is a topological invariant. However, as

a result of stalk formation the membrane monolayers undergo

a topological rearrangement changing the saddle splay

energy. Therefore, the energy of stalk formation depends

explicitly on the saddle splay modulus, �kk; and this de-
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pendence may be considerable provided that �kk has values

comparable with the bending constant k. In the present work

we investigate for the first time the effect of the saddle splay

modulus on the stalk energy.

Using Eq. 24, we find that the �kk values of the lipids

exhibiting the equilibrium stalk formation have to be

negative in agreement with the previous estimations based

on the lateral stress profile within the lipid monolayer

(Templer et al., 1998) and the numerical mean field

calculations (Szleifer et al., 1990). The obtained absolute

values of the splay modulus of DOPC and DOPE (Eqs. 20

and 24) are also in qualitative agreement with the calculated

values, which vary for a monolayer between j�kkj � 0:75 k
(Templer et al., 1998) to j�kkj � 0:5 k and less.

Note that the presented estimations of �kk (Eqs. 20 and 24),

as well as all other quantitative results, have a limited

accuracy because of the intrinsic limitations of the elastic

stalk model (Kozlovsky and Kozlov, 2002) and an

approximate knowledge of the parameters such as the splay

(bending) modulus, k (Rand, 2003), and the distance, d,

between the membrane midsurface and the monolayer

neutral plane (Kozlov et al., 1994; Kozlov and Winterhalter,

1991a,b; Leikin et al., 1996). The value of d ¼ 1.3 nm we

used in the computations above is based on the x-ray

investigation of DOPC lamellar phases interpreted by the

Luzzati method (Rand, 2003; Rand and Fuller, 1994). The

quantitative results of the latter may differ by ;10% from

predictions of other methods (Nagle and Tristram-Nagle,

2000a,b).

Summarizing, our model shows that formation of

equilibrium stalk observed experimentally can be explained

within a reasonable range of parameters by interplay between

the hydration and elastic energies, the latter including

a considerable contribution of the saddle splay energy.

Possible additional effects of the lipid
sample dehydration

We have analyzed the direct effect of dehydration of lipid

sample on stalk formation. There may be additional indirect

effects related to partial dehydration of the lipid headgroups

such as that of DOPC. Some of the water molecules

associated with the choline group disassociate upon de-

hydration and thus decrease the effective size of the

headgroup (Cevc and Marsh, 1987). The result is that the

repulsion between headgroups is expected to decrease. The

consequences of this effect can be analyzed qualitatively by

considering a schematic lateral stress profile of DOPC (Fig.

6). Due to the reduced repulsion between the heads, the

lateral stress at the head region of a dehydrated DOPC is

expected to be less repulsive, as represented schematically

by the dashed line (Fig. 6). The effect on the elastic constants

is that the spontaneous curvature, Js, will decrease (become

more negative), whereas the saddle splay modulus, �kk; will

increase (will be less negative; see e.g., Ben-Shaul, 1995;

Helfrich, 1990).

Both effects, the decrease of Js and increase of �kk; will
reduce the effective parameter b (Eq. 15) of DOPC, de-

creasing the stalk elastic energy (Eq. 16), thereby promoting

stalk formation.

Similar reasoning helps to find a relationship between the

effective parameter of DOPE and that of DOPC. Indeed,

hydration of the DOPE polar head is smaller than that of

DOPC (Rand and Parsegian, 1989). Therefore, JDOPEs ,

JDOPCs ; and �kkDOPE . �kkDOPC; resulting in bDOPE , bDOPC.

This confirms that DOPE has to promote stalk formation as

compared to DOPC.

The possible dependence of the monolayer spontaneous

curvature, Js, and saddle splay modulus, �kk; on the hydration

may require correction of our estimation of �kkDOPC; Eq. 20.
Indeed, this estimation is based on the value of the critical

parameter b*DOPC, which determines the lamellar-stalk

phase transition of this lipid in a partially dehydrated state

corresponding to the relative humidity z ¼ 45%. Hence, to

be more accurate, we had to insert into Eq. 20 the unknown

value of Js corresponding to the low humidity rather than the

measured value of the fully hydrated state. The resulting

value for �kk also corresponds to z ¼ 45% rather than to full

hydration. Taking into account this reasoning and the

expected dependences of Js and �kk on hydration, the

estimation given by Eq. 20 represents the upper bound for

the saddle splay modulus at full hydration whereas the real

value may be more negative.

The effect of dehydration on monolayer elastic constants

explains the difference between the estimated range for

�kkDOPE (inequality expression Eq. 24), and the considerably

more negative value of the Gaussian modulus measured

recently for DOPE-Me at full hydration and high temperature

of ;55�C (Siegel and Kozlov, 2004). There is also the fact

that �kkDOPC at low hydration (Eq. 20) is estimated to be less

FIGURE 6 Lateral stress profile of a monolayer, sL(z). The solid line

represents schematically the stress profile for DOPC. The dashed line at the

head region represents the effect of either dehydrating the PC head or of

replacing it by a PE head.
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negative than �kkDOPE (Eq. 24), which must be a consequence

of the influence of hydration on this elastic constant.

Possibility of stalk phase formation in fully
hydrated state

The stalk phase was observed only in partially dehydrated

systems (Yang and Huang 2002; Yang and Huang, 2003).

The question arises whether a stalk phase could occur also at

full hydration. To analyze this question we compare the free

energy of lamellar La, stalk, and inverse hexagonal HII

phases. The difference in the average free energy per lipid

between the inverse hexagonal HII phase and the lamellar La

phase, denoted by fHII
, is (Hamm and Kozlov 1998)

fHII
¼ a0 kt=18� a0 kJ

2

s =2; (25)

where a0 is the area per lipid in the membrane plane. The

energy of stalk formation from the lamellar phase in a fully

hydrated system is given by Fs (Eq. 14). The stalk phase

forms if it is more favorable energetically than both the

lamellar and the HII phase: fHII
. 0 and Fs , 0. According to

Eqs. 14 and 25, the two conditions are satisfied if the elastic

constants of the lipid monolayer fulfill the conditions

Jsd. � 0:43 and Jsd� 0:45�kk=k, � 0:33: (26)

Inequality expressions in Eq. 26 determine the phase

diagram at full hydration expressed in terms of the

spontaneous curvature, Js, and the saddle splay modulus,

�kk; and is represented in Fig. 7. Elaboration of the shaded

region at the left-hand side of the phase diagram, which

includes the phase boundary between the HII and the stalk

phases, is out of the scope of the present model. According to

Fig. 7, it seems reasonable that some lipid, or maybe some

lipid mixture, has the appropriate elastic constants to form

a stalk phase at full hydration. Importantly, the phase

diagram (Fig. 7) does not account for a possible formation of

other nonlamellar phases, such as the cubic phase, which

may form within the same parameter range.

CONCLUSIONS

Our analysis indicates the importance of hydration forces for

stalk formation, especially for membranes composed of

lipids with PC headgroups. Stalk formation induced by

hydration forces may be a general fusion mechanism in

situations in which membranes are brought into close contact

by specialized machinery. Biological membrane fusion is

mediated by specialized fusion proteins, which are thought

to produce two actions: to bring membranes into close

contact and then to induce membrane merger (McNew et al.,

2000; Skehel and Wiley, 2000). The present model proposes

that establishment of the intermembrane contact can drive by

itself at least a part of the membrane merger—hemifusion.

To fulfill this mechanism, the protein machinery should be

powerful enough to overcome the hydration repulsion and

bring the membranes at least locally to a distance as small as

1 nm or even less. Further evolution of the fusion

intermediates into a fusion pore requires, probably, addi-

tional action of the protein machinery (McNew et al., 2000)

such as bending of the membrane out of its plane (Kozlov

and Chernomordik, 2002).

APPENDIX A: EXPRESSIONS FOR THE SPLAY
AND SADDLE SPLAY OF THE LIPID CHAINS
OF AN AXISYMMETRIC MONOLAYER

The expression for the splay in an axisymmetric monolayer was already

derived in Kozlovsky et al. (2002). Here, we also compute the expression for

the saddle splay deformation. To derive these expressions, we first define the

vectors determining the monolayer deformation. The shape of the monolayer

is determined by the orientation of the normal vector N
*

at each point of the

neutral surface. To characterize the average orientation of hydrocarbon

chains, we use a unit vector, n*: The chain orientation, n*; can vary along the

dividing surface, describing a changing orientation of the chains. Tilt is

described by deviation of the chain director, n*; from the surface normal, N
*;

according to Hamm and Kozlov (2000),

t
* ¼ n

*

n
* � N

* � N
*
: (A1)

Consider a monolayer with radial symmetry. We will describe its

structure using the cylindrical coordinates fr, u, zg and the corresponding

unit vectors fr̂; û; ẑg; where the radial distance, r, is measured from the

symmetry axis. The shape of the monolayer surface is given by the

tangential angle u(r) of the surface profile. The normal to the surface is

N~ ¼ cosuẑ1 sinur̂: (A2)

FIGURE 7 Phase diagram of fully hydrated lipids as a function of the

dimensionless forms of the spontaneous curvature, Jsd, and the saddle splay

modulus, �kk=k:
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Two orthonormal tangent vectors to the monolayer surface are

e~1 ¼ �sinuẑ1 cosur̂ and e~2 ¼ û: (A3)

The arc lengths in the direction of each tangent vector are

ds1 ¼ dr=cosu and ds2 ¼ rd u: (A4)

The tilt vector in an axisymmetric monolayer is given by

t~¼ tanc e~1; (A5)

where c(r) is the tilt angle. The surface normal, N~; and the tilt vector, t~;

determine the chain orientation to be

n~¼ cosðu1cÞẑ1 sinðu1cÞr̂: (A6)

The chain orientation tensor is (note that dr̂=du ¼ û)

nij ¼ e~1 � ððe~j �~==Þn~Þ ¼ e~1 �
dn~

dsj

¼
cosu cosc

d

dr
ðu1cÞ 0

0
1

r
sinðu1cÞ

0
B@

1
CA: (A7)

The splay of the lipid chains is given by the trace of the tensor, eJJ ¼ n111n22
(Kozlovsky and Kozlov, 2002), whereas the saddle splay is given by its

determinant, eKK ¼ n11n22 (since the tensor is diagonal; (Hamm and Kozlov,

2000). The splay of the hydrocarbon chains can also be expressed as

divn~¼ cosu � 1
r

dðr sincÞ
dr

1 cosc � 1
r

dðr sinuÞ
dr

: (A8)

APPENDIX B: NUMERIC METHOD FOR
MINIMIZING THE ENERGY OF A LIPID BILAYER

Accounting for the expressions derived in Appendix A, the energy density

per unit area of the neutral surface of an axial symmetric monolayer is given

by

f ¼ 1

2
k cosu

1

r

dðr sincÞ
dr

1 cosc
1

r

dðr sinuÞ
dr

� Js

� �2

1
1

2
ktðtancÞ2 �

1

2
kJ

2

s : (B1)

The tangential angle, u, and the radial distance, r, of the monolayer neutral

surface are expressed through the corresponding characteristics of the

bilayer midsurface, um and rm, and the distance between the neutral surface

of a monolayer and the bilayer midsurface thickness, d (referred to as the

monolayer thickness), by

r ¼ rm 6 d sinum; dr ¼ 16 d
d sinum

drm

� �
drm; (B2)

and

sinuðr ¼ rm 6 d sinumðrmÞÞ ¼ sinumðrmÞ; (B3)

where the plus and minus signs correspond to the proximal and distal

monolayers, respectively. The total energy is the integral of the energy

density over the surfaces of the two monolayers,

F ¼
Z Z

fpðcp;upÞdAp 1

Z Z
fdðcd;udÞdAd

¼ 2p

Z
drm

cosum

rp
drp
drm

fpðcp;umÞ1 rd
drd
drm

fdðcd;umÞ
� �

; (B4)

where the subscripts p and d denote the proximal and distal monolayers,

respectively, and the radial distances rp and rd are related to rm through Eq.

B2. The energy can be written formally as an integral of a Lagrangian

density, F ¼
R

Lðum;cp;cd;u#m;c#p;c#d; Þdrm; where the prime denotes

a derivative with respect to rm. The usual mathematical method to minimize

the energy is to solve the corresponding Euler-Lagrange differential

equations. However, these equations arising in our case turn out to be

nonlinear and too complex to be solved by direct numeric integration.

Therefore, we use a procedure consisting of two elements (Kozlovsky and

Kozlov, 2002):

1. The nonlinear Lagrangian density is approximated by its Taylor

expansion up to a quadratic order, which results in linear equations.

Exact solution is then obtained by iterations.

2. The minimization of the quadratic Lagrangian is performed by the

method of finite elements (Prenter, 1975) rather than by solving the

Euler-Lagrange equations.

The rest of this Appendix contains a detailed account of the method.

Linearization of the problem

The Lagrangian is a functional of three functions of rm: um, cp, and cd. To

simplify the notation, we denote x ¼ rm. To simplify the mathematical

expressions, we use a new set of functions, denoted by ya(x), a ¼ 1,2,3, and

defined as

y1 [ tanum; y2 [ sincp; and y3 [ sincd: (B5)

Using the notation y~¼ ðy1; y2; y3Þ; the energy is formally written as

F ¼
Z

Lðy~; y~#; xÞdx: (B6)

The method by which we minimize the energy has three steps:

1. There is an initial solution which satisfies the boundary conditions, y~0:

2. The solution is improved by a small correction, dy~; which solves the

linear Euler-Lagrange equations.

3. The calculation is iterated with a better initial solution, y~new
0 ¼ y~01dy~;

until the correction is as small as desired, jdyaðxÞj, e: To obtain linear

Euler-Lagrange equations, the Taylor expansion of the Lagrangian

density is derived up to a quadratic order (using the summation

convention),

Lðy~01dy~;y~#01dy~#;xÞ � Lðy~0;y~#0;xÞ1
@L

@ya

dya1
@L

@y#a
dy#a

1
1

2

@
2L

@ya@yb

dyadyb1
1

2

@
2L

@y#a@y#b
dy#ady#b

1
@
2
L

@ya@yb

dyady#b: (B7)
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The expansion was calculated using MAPLE software (Maplesoft,

Waterloo, ON, Canada).

Minimization of the quadratic Lagrangian by the
finite-element method

The Euler-Lagrange method to minimize the Lagrangian produces a set of

differential equations that forms a boundary value problem. The solution of

a boundary value problem by numeric integration of the differential

equations is problematic, and methods that minimize the integral directly are

preferred. We used the method of finite elements (Prenter, 1975). The

method has two components:

1. Cubic splines are constructed, which form a vector basis of a linear

vector space of functions. The functions dyi are approximated as a linear

combination of these base functions.

2. The quadratic Lagrangian becomes a quadratic expression of the linear

coefficients determining dyi:

Energy minimization produces a system of linear equations for the

coefficients.

Cubic splines interpolation

Spline interpolation represents a smooth function as a sum of polynomials,

each defined over a different interval of the argument. It is a general method

useful for data interpolation, computer graphics, and the finite-element

method. The cubic B-splines, discussed here, are appropriate for the latter.

Consider the interval x0 # x # xF. The interval is divided into k
subintervals,

x0 # x, x1; x1 # x , x2; . . . ; xk�1 # x , xF: (B8)

The partition is called the knots division. There are k 1 3 cubic B-splines

defined over a knot division with k subintervals. A cubic B-spline, Bi(x), is

a compact function, defined over four consecutive subintervals, xi�2 # x ,

xi12 (the B-splines at the ends of the interval require extension of the

partition outside of the interval). It is a different cubic polynomial in each

subinterval,

BiðxÞ ¼

0 x , xi�2 or x $ xi1 2

ai1x
3
1 bi1x

2
1 di1x 1 ei1 xi�2 # x , xi�1

ai2x
3
1 bi2x

2
1 di2x 1 ei2 xi�1 # x, xi

ai3x
3
1 bi3x

2
1 di3x 1 ei3 xi # x , xi1 1

ai4x
3
1 bi4x

2
1 di4x 1 ei4 xi1 1 # x , xi1 2

:

8>>>><
>>>>:

(B9)

The coefficients are uniquely chosen, up to an overall constant, by the

requirement that Bi(x) will be twice differentiable, Bi(x) 2 C2. The B-splines

are used here to solve a boundary value problem. It is therefore useful to

define a modified set of B-splines that satisfy the boundary conditions

Bi(x0) ¼ Bi(xF) ¼ 0. Such set contains k 1 1 B-splines. The cubic B-splines

span a function vector space of twice differentiable functions. That is,

a function, y(x), can be approximated as a linear combination of the cubic

B-splines,

yðxÞ � +
i

ciBiðxÞ: (B10)

The approximation is improved as the number of subintervals increases.

Finite-element method

The finite-element method represents the functions and their derivatives by

their cubic spline approximation,

dyaðxÞ ¼ ca;iBiðxÞ and dy#aðxÞ ¼ ca;iB#iðxÞ: (B11)

Substituting these expressions in the quadratic energy integral, Eqs. B6

and B7, the energy becomes a quadratic expression of the coefficients

ca,i,

F ¼ F0 1 ca;iVa;i 1 ca;icb;jAab;ij; (B12)

which we define as

F0 [

Z
Lðy~0; y~#0; xÞdx;

Va;i [

Z
@L

@ya

Bi 1
@L

@y#a
B#i

� �
dx; (B13)

and

Aab;ij [

Z
1

2

@
2
L

@ya@yb

BiBj 1
1

2

@
2
L

@y#a@y#b
B#iB#j

�

1
@
2
L

@ya@y#b
BiB#j

�
dx: (B14)

All the integrals can be performed as they depend on the known

functions y~0ðxÞ and Bi(x). Energy minimization is obtained by the usual

condition

@F

@ca;i

� Va;i 1 cb;jAab;ij 1 cb;jAab;ij ¼ 0: (B15)

The system of linear equations is easily solved by matrix methods. In vector

notation, it reads

V~1 ðA1A
TÞc~¼ 0; (B16)

whose solution is

c~¼ �ðA1A
TÞ�1

V~: (B17)

All calculations were performed by MATLAB software which has a special

package for the cubic B-splines. The integrals were performed by

MATLAB’s usual method of handling functions. The functions are

discretized and represented as vectors. An integral is, thus, the sum of the

vector’s components.

Height constraint

The shape of the midsurface was represented by its slope, y1 ¼ tan um. The

reason is that the height difference between the endpoints of the surface,

denoted by H, is a linear function of �y1,

H ¼
Z

tanumdrm ¼
Z

y1dx: (B18)

Changes in the height, DH, are a linear function of the cubic spline

coefficients,

DH ¼
Z

dy1dx ¼ c1i

Z
Bidx [ c1iIi: (B19)

A constant height, DH ¼ 0, could be maintained by the method of Lagrange

multiplier. The method defines a new energy functional to be minimized,
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G ¼ F � lDH ¼ F � lc1iIi: (B20)

The Lagrange multiplier l (not to be confused with the hydration force

parameter) is another unknown, treated on the same level as the coefficients

ca,i. Thus, constraining the height is achieved by minimal computational

effort.
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