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ABSTRACT The motion of the tectorial membrane (TM) with respect to the reticular lamina subserves auditory function by
bending the outer hair cell bundles and inducing fluid flows that shear the inner hair bundles in response to sound energy. Little
is currently known about its intrinsic elasticity or about the relation between the mechanical properties and function of the
membrane. Here we subdivide the TM into three longitudinal regions and five radial zones and map the shear modulus of the
TM using atomic force microscopy, and present evidence that the TM elasticity varies radially, after the distribution of type A
collagen fibrils. This is seen most dramatically as a decrease in shear modulus in the neighborhood of the sensory hair cells; we
argue that this inhomogeneity of properties not only protects the hair bundles but also increases the energy efficiency of the
vibrational shearing during sound transduction.

INTRODUCTION

The mammalian tectorial membrane (TM) remains some-

thing of a mystery more than a century after its discovery by

Alfonse Corti in the mid-1800s. Although it has been often

described in qualitative terms, the quantitative literature

about the mechanical properties of the tissue is sparse. The

membrane, which overlies the organ of Corti (OC) and

couples to varying degrees with the inner (IHCs) and outer

hair cells (OHCs) (Lim, 1972; Zwislocki, 1979), is essential

for transmitting acoustic energy to the hair bundles, where

mechanical motion is transduced to electrical currents that

are required for proper functioning of the ear (Hudspeth,

1985). The structural integrity of the TM, which is thought to

depend on the expression of both a- and b-tectorin (Legan

et al., 1997), is critical; disruptions in either of two protein

domains of a-tectorin have been shown to cause hearing

loss, with the range of frequencies affected in a domain-

sensitive manner (Naz et al., 2003), whereas disruptions in

a third protein domain result in a TM devoid of non-

collagenous matrix and detached from the OC. In the latter

case, in which normal TM–hair-cell coupling is lost, the

basilar membrane (BM) retains its sharp tuning curve, but

amplification is reduced by 35–40 dB (Legan et al., 2000).

Similarly, disruptions of Otog, a gene that encodes the

protein otogelin and thus establishes fiber distribution and

orientation, portend the progression of severe to profound

deafness in homozygous recombinant mice (Simmler et al.,

2000). In humans, mutations in COL11A2 are believed,

based on evidence in the mouse model, to alter the shape and

size of the TM and again to disrupt the normal regular

organization of collagen fibrils. In mice, these abnormalities

were accompanied by a decrease in hearing sensitivity of

40–50 dB (McGuirt et al., 1999).

Interest in the TM has increased in recent months after the

publication of a comparative analysis of human, chimpanzee,

and mouse genomes. In that study, Clark et al. (2003)

quantified human-specific evolutionary pressure at the level

of the gene and found that not only has there been significant

human-specific development in hearing but that the single-

highest value of human-specific evolutionary pressure

occurs in the gene whose product encodes a-tectorin.

Because a-tectorin is expressed exclusively in the inner ear

(Legan et al., 1997), and because of differences between

humans and chimps in this and other hearing-related genes,

the authors postulate a genetic link between hearing acuity

and the acquisition of speech and conclude that their results

‘‘strongly motivate a detailed assessment of the nature of

hearing differences between humans and chimpanzees’’

(Clark et al., 2003).

Understanding the role of the TM in hearing, and in

hearing loss, requires determination of the mechanical

properties of the tissue and how they relate to the relative

shearing of the TM with respect to the reticular lamina (RL)

and to the bending of hair bundles. In this study, we use an

atomic force microscope (AFM) to indent samples of the

TM isolated from the guinea pig (Cavia porcellus). Using

automated algorithms to fit nonlinear models of isotropic

contact mechanics, we spatially map the shear modulus, G
(N/m2), of the TM. Unlike stiffness (N/m), the shear modulus

quantifies the intrinsic material property of sample rigidity

and is independent of instrumentation and methodology.

Quantitative models of biological systems like our finite

element model (FEM) of the cochlea (Cai and Chadwick,

2003; Cai et al., 2004) require knowledge of the intrinsic

properties of the anatomical components of the model. The

shear modulus of the TM has important implications for
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hearing: a decrease in G indicates a decrease in rigidity

or an increase in softness. If the TM were too soft in

the neighborhood of OHC bundles, the stereocilia would

be unable to bend appropriately, and hearing would be

impaired. On the other hand, the stereocilia bundles are

susceptible to acoustic trauma (Clark and Pickles, 1996) and

could easily be damaged by overstimulation if the TM were

locally too rigid. These local constraints, however, do not

apply to the global properties of the TM.

MATERIALS AND METHODS

Tissue preparation, artificial endolymph, and
dissection procedures

All animal procedures were conducted according to approved National

Institutes of Health (NIH) animal protocol number 1049-02. Tissue samples

from 10 juvenile female pigmented guinea pigs weighing between 150 g and

200 g were used in these experiments. All animals included in the study

tested positive for pinna (startle) response. Before sacrifice and dissection,

we prepared a solution of artificial endolymph (AE), comprising 2 mM

NaCl, 0.02 mM CaCl2, 174 mM KCl, and Hepes (buffered to pH 7.3) (Abnet

and Freeman, 2000). The AE was made in a quantity sufficient for all of our

dissections to ensure that the concentration of elements was constant

throughout the experiment. Animals were euthanized with CO2 gas and

decapitated, whereupon their bullae were removed and transferred im-

mediately to AE-filled petri dishes. Each bulla was scored and broken

under a dissecting microscope, and the cochlea was exposed. We carefully

removed sections of the bony casing of the cochlea and then teased away

from the organ of Corti individual samples of the TM using a bristle from

a fine sable-bristled paintbrush. These samples were then transferred with

a micropipette to dishes coated with Cell-Tak (BD Biosciences, Bedford,

MA) and gently tapped with the sable bristle to adhere the tissue to the Cell-

Tak. All samples that appeared to come to rest with the cover net up were

discarded, so that we limited our mechanical testing to the surface that

interfaces with the sensory hair cells. Upon visual inspection, we also

discarded any samples that appeared to be folded or damaged in any way.

Thermal and acoustic environments in which the AFM measurements were

made were relatively constant from session to session. During the course of

the 2–3-h dissection and subsequent AFM analyses (another 2–3 h), tissue

samples remained submerged in the uniform bath of AE.

Data collection

We subdivided the tissue into three longitudinal regions (basal, middle, and

apical) and five radial zones (Fig. 1), such that zones 1 and 2 are on the

limbal side of the Hensen’s stripe, zones 3 and 4 are the neighborhoods of

the IHCs and OHCs, respectively, and zone 5 represents the marginal band.

Although the boundaries of the zones are not clearly defined, our radial

bands correspond approximately with those defined by Lim (1972) such that

zone 1 represents the limbal zone, zones 2 and 3 constitute the middle zone,

and zones 4 and 5 constitute the marginal zone. We were consistently and

reliably able to determine the position of Hensen’s stripe by adjusting the

focus during the data collection.

All AFM force-displacement curves were collected, using a commercial

instrument (Bioscope, Digital Instruments, Santa Barbara, CA), within 2 or

3 h of transfer to the Cell-Tak-coated dishes. From 10 animals, we collected

;1000 force-displacement curves spanning all radial zones and longitudinal

regions. After each sample was indented, the cantilever position was moved

longitudinally in increments of ;5 mm before another force-displacement

curve was generated. After collecting 10–20 curves in a particular

neighborhood, we shifted the cantilever position radially to probe the next

zone, continuing until we had spanned the radial extent of the sample. To

minimize the effects of finite sample thickness (see Discussion), we limited

indentation to 750 nm.

Probe tip and contact model selection

Initially, all data were collected using standard silicon nitride (Si3N4)

cantilever probes (Digital Instruments) having a nominal spring constant of

0.06 N/m and four-sided pyramidal tips. In the electron micrograph of Fig. 2,

the square box in the inset shows the contact area of a pyramidal tip indented

to 300 nm; with a Si3N4 tip, the area of contact is approximately on the scale

of a single stereocilium. In contrast, hair bundles, which are interconnected

and deflect as a unit, span ;5 mm. These considerations motivated a further

series of experiments in which we affixed 9.6-mm-diameter polystyrene

microspheres (Interfacial Dynamics, Portland, OR) to the pyramidal tips, as

described in Dimitriadis et al. (2002). The relationship of the area of contact

of the microsphere with the TM is represented by the circle in the inset of

Fig. 2.

The widely used Hertz model quantifies the indentation of an elastic half-

space with a spherical probe. This model is appropriate if a microsphere is

FIGURE 1 Photomicrograph of a basal section of the tectorial membrane,

with annotations denoting the approximate discretization of the radial zones.

Measurement zones (across at the top) are defined relative to Hensen’s stripe

(HS) such that zone 1 corresponds roughly to the limbal zone defined by Lim

(1972), and zones 3–5 are approximately uniformly spaced on the marginal

side of HS. Zone 3 represents the approximate location of the IHCs, and

zone 4 represents the neighborhood of the OHC articulations.

FIGURE 2 Scanning electron image of the imprints of the stereocilia of

the OHCs. The inset box depicts the contact area for the AFM probe tips; the

square approximates the contact area of a pyramid indented to a depth of

300 nm, and the circle represents the area of contact for a sphere indented to

300 nm. The diameter of the circle is 2.4 mm. (See Materials and Methods

for the description of microscopy techniques.)
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affixed to a Si3N4 tip but, since the standard silicon nitride AFM probe tip

can be approximated as a regular four-sided pyramid, can otherwise

introduce significant error into the analysis of AFM data. In contrast, the

Bilodeau model (Bilodeau, 1992) describes the indentation of an elastic half-

space with a regular n-sided pyramidal probe and thus facilitates a more

accurate calculation of shear modulus from standard AFM probes. When

n ¼ 4, the Bilodeau model predicts shear modulus as

G ¼ 0:6709Pð1 � nÞ tana

d
2 ;

where P is the force on the probe, n is Poisson’s ratio, a is the complement

of the semivertex angle (for the standard Si3N4 tip, a ¼ 55�; Digital

Instruments, 1996), and d is the indentation depth. We note, however, that

the tip is angled on the cantilever ;10� from the vertical. The error

introduced by this mounting angle has been previously described (Costa and

Yin, 1999; Heim et al., 2004); here we address the problem simply by using

an angle of a ¼ 45�. With a spherical tip of radius R, on the other hand, the

shear modulus, G, is given by the Hertz model (Landau and Lifshitz, 1970)

as

G ¼ Pð1 � n
2Þ

4R
1=2

d
3=2

:

The TM is assumed to be incompressible at scan rates of 1–2 Hz; for the

incompressible case, n ¼ 0.5 and E ¼ 3G, where E is Young’s modulus.

This low frequency, however, represents a limitation of our analysis; the TM

is known to have a frequency-dependent point impedance (Freeman et al.,

2003), which is likely to be reflected in a frequency dependence of the TM

shear modulus. Clearly, it follows that speculations about the TM based on

relatively static measurements should be interpreted cautiously and merit

validation by studies at acoustic frequencies.

Data analysis

Before analysis, all force-distance curves were visually inspected; curves

that were wavy, or that did not appear to contain a noncontact portion, were

considered likely to have resulted from optical interference or false

engagement, respectively, and were discarded. Approximately 10% of our

data, typified by the curve of Fig. 3, were thus rejected. The order of the

remaining curves was then randomized, and each was objectively evaluated

without prior knowledge of its source. In all cases, we minimized the effects

of adhesive forces by analyzing only ‘‘extend’’ data (Vinckier and Semenza,

1998), which represent the movement of the AFM head toward the sample.

In force-imaging mode, the AFM provides data representing the deflection

versus z-position of the cantilever. Knowing the stiffness k of the (Hookean)

cantilever, and using the cantilever deflection d measured directly by the

instrument, determination ofP (¼ kd) is trivial. Once the geometry of the tip is

established (and an appropriate model of contact is selected), determination of

the sample elasticity becomes largely a problem of determination of sample

indentation d. This is nontrivial and requires first ascertaining the initial point

of contact. To facilitate the determination of the contact point and the

calculation of elasticity, we wrote a series of programs that automate the

reconstruction and analysis of AFM force-distance curves. The software

makes an initial guess of the contact point and then compares the curves to

idealized hard-surface deflections (Radmacher et al., 1995) to compute

indentation values (Fig. 4). These indentations, along with calculated forces,

are fit using a nonlinear fitting algorithm to the Bilodeau equation to extractG.

Unless explicitly stated otherwise, all values reported in this article are shear

moduli and are referred to generically as elasticity. Along with a modulus the

algorithm returns the level of residual error, quantifying deviation from the

model-predicted curve. Using this information, we shift the guessed contact

point along the curve in the range of the initial guess, recomputing and

recording mean-squared errors as a function of z-position of initial contact.

Fig. 5 shows a sample curve relating error to the vertical position of the AFM

probe (solid line). A dashed line also depicts the sensitivity of the model,

revealing how the calculated shear modulus changes with the guess of initial

contact point; the actual contact point is taken to be that which minimizes

residual error. The data are then plotted along with the 95% confidence

interval of the best model-predicted curve (Fig. 6) to show how well the

indentations conform to theory.

Because of the known tip geometry, the Bilodeau model is assumed to

provide the most robust and reliable measure of elasticity when using an

unmodified Si3N4 probe. For the data represented in Fig. 4, the Bilodeau

model predicts a shear modulus of 2.1 kPa (Young’s modulus ¼ 6.4 kPa).

Note that although the tip sharpness may change during the course of an

experiment (and, in extreme cases, may affect the accuracy of Bilodeau

calculations), the vertex angle of the pyramid does not change. In contrast,

the use of the Hertz model with an unmodified Si3N4 cantilever requires

approximating the tip of a four-sided pyramid as a hemisphere. Depending

FIGURE 3 Typical rejected AFM force-distance data. Upon visual

inspection, curves that were wavy or that did not appear to have a relatively

horizontal noncontact region were discarded. In this and all subsequent

force-distance curves, the head of the AFM is approaching the sample

(extending) and substrate as the z-distance decreases.

FIGURE 4 Representative AFM force-distance curve. Some degree of

hysteresis is shown between the (solid) extend curve (probe head

approaching sample) and the (dotted) retract curve (probe head withdraw-

ing). The s indicate the range of data evaluated as candidates for point of

initial contact. At each of these candidate points, an ideal curve (dashed

lines) is generated, indicating modeled tip deflection on a hard material. The

difference between the ideal and extend curves is computed to quantify

sample indentation, d. The slope of the ideal curve has been exaggerated to

facilitate visualization of indentation.
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on the assumption regarding tip sharpness, this may produce highly variable

and unreliable results. For example, the Si3N4 tip has a nominal tip radius of

curvature ranging from 5 nm to 10 nm for a ‘‘very good tip’’ (Digital

Instruments, 1999) to 100 nm for a ‘‘moderately blunt tip’’ (Dimitriadis

et al., 2002); the Hertz-predicted Young’s modulus for the data represented

by Fig. 4 would vary accordingly from 68.3 kPa (5-nm radius) to 15.3 kPa

(100-nm radius). For each AFM curve generated with an unmodified

pyramidal tip, we therefore used the Bilodeau model to compute a single

best-fit value of the shear modulus. On the other hand, all data sets generated

with microspheres affixed to the cantilever tip were analyzed using the Hertz

model.

As previously described, the intrinsic sample elasticity is independent of

probe tip and indentation parameters. After each analysis, we plotted shear

modulus versus indentation d, and we limited our evaluations to the regions

for which the modulus of elasticity is relatively invariant with indentation

(Fig. 7). All results were then recorded in a spreadsheet along with source

information and relevant parameters. Outliers for all data sets were removed

objectively by iterative application of the Grubbs test (Grubbs, 1969), and

the remaining data were evaluated and compared statistically using unpaired,

two-sided Student’s t-tests. Sample variances were not assumed to be equal

for these comparisons.

Electron microscopy

For the scanning electron microscopy image of Fig. 2, the TM was fixed in

2% glutaraldehyde in buffered Hepes, as previously described. The sample

was washed several times, critical-point dried, and rotary shadowed with

platinum. The ventral surface of the TM was viewed and photographed with

a Hitachi S4500 field-emission scanning electron microscope (Hitachi

Instruments, San Jose, CA).

For the rapid-freeze, deep etch image of Fig. 8, the guinea pig OC

was dissected from the cochlea and fixed for 2 h in 2% glutaraldehyde in

Hepes buffered phosphate-buffered saline (PBS) at pH 7.3. The sample was

washed several times in distilled water and rapidly frozen by contact with

a copper block cooled with liquid helium. The specimen was then freeze

fractured at �150�C, allowed to etch for 10 min at �100�C, and rotary

shadowed with platinum and carbon. A section of type A fibril network was

photographed at 200 kV in a Jeol 200CX electron microscope (Jeol,

Peabody, MA). The image is shown in reverse contrast, where platinum

deposits appear white.

Finite element modeling of energy dissipation

We developed a hybrid analytical/numerical approach for modeling the

cochlea (Cai and Chadwick, 2003), in which we let the WKB perturbation

method (Bender and Orszag, 1978) determine the axial propagation of the

traveling wave in the hearing organ and used finite-element analysis in the

cross sections of the cochlea that were divided into fluid and elastic domains.

The basilar membrane was modeled as an orthotropic clamped plate, and the

TM and the OC were modeled as inhomogeneous elastic domains. The

cochlear fluid was treated as viscous and incompressible, with viscous

effects confined to oscillatory boundary layers, and to the thin gap between

the RL and the lower surface of the TM. We solved the fluid-solid interaction

eigenvalue problem for the axial wavenumber, fluid pressure, and the

FIGURE 5 Mean-squared error as a function of z-position of initial

contact. In this plot, the y axis shows the Young’s modulus, E, rather than the

shear modulus. The final value of E is calculated at the z-position that

minimizes residual error. The presence of a single clearly defined local

minimum provides confidence that the model has converged to a best-fit

value of E. The slope of the plot of Young’s modulus versus z (dashed line)

reveals the sensitivity of the analyses, for a given model of contact

mechanics, to the selection of the initial contact point.

FIGURE 6 The predicted curve, the 95% confidence interval of the

predicted curve, and the best-fit model-predicted curve for the data of Fig. 3.

The tightness of the fit along the entire length of the predicted curve is

reflected by a relatively low minimum mean-squared error of 50 nm2 (see

Fig. 5).

FIGURE 7 Elasticity versus indentation (d) for the evaluation of the data

represented in Fig. 4. After an initially nonlinear response at low force (very

near initial contact), the shear modulus calculation approaches a steady

value. The horizontal line indicates the minimal-error value of elasticity

(G ¼ 1.45 kPa) reported by the program. In the horizontal region, the data

indicate the independence of elasticity and indentation. The meaning of the

nonhorizontal region has not been fully explored and may reflect the

interaction of repulsive surface forces on the cantilever, noise in the vicinity

of initial contact, or both.
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vibratory relative motions of the cochlear partition as a function of frequency

using an iterative algorithm. Considering the TM as a Voigt solid (Cai and

Chadwick, 2003), we normalized the TM displacements by the transverse

motion of the middle of the basilar membrane and calculated the cycle-

averaged energy dissipation per unit volume, e ¼ p(sijIeijR � sijReijI). Here,

sij and eij are the stress and strain tensors, I and R represent imaginary and

real parts, respectively, and summation over indices i and j is understood.

Calculations of energy dissipation were made by integrating e over the TM

cross sectional area. These values were compared for the apical and basal

regions of the TM, assuming uniform values of TM elasticity equal to our

lowest and highest values of G measured in each region and then assuming

radially variant shear moduli after our measurements.

RESULTS AND DISCUSSION

Finite thickness effects

We note that both the Hertz and Bilodeau models are strictly

valid only for the indentation of infinitely thick elastic,

isotropic halfspaces. It is worthwhile to quantify the error

introduced into our calculations by the finite thickness of the

TM. Dimitriadis et al. (2002) address the use of the Hertz

model (with a spherical indenter) for thin materials. When

a microsphere is affixed to the AFM probe and the sample is

thin, bonded, and incompressible, calculations of elasticity,

G, can be corrected by F }G3 CF, where CF is a correction

factor given by

CF ¼ ð11 1:133x1 1:283x
2
1 0:769x

3
1 0:0975x

4Þ;

and x ¼
ffiffiffiffiffiffi

Rd
p

=h. (For a probe of R ¼ 5 mm, a dmax of

750 nm, and a sample height of h ¼ 10 mm, x ¼ 0.19, and

CF ¼ 1.27.) Moreover, we see that (for a given indentation

and force) as the correction factor increases, our calculated G
decreases. This suggests that for measurements of the TM on

the thinnest (limbal) portion, where the tissue thins to

roughly 10 mm, the finite thickness of the sample would lead

to an overestimation of elasticity by ;27%. The error due to

finite thickness for the more general case where the tissue

varies from 20 mm to 40 mm and the maximal indentation

is constrained to 750 nm is on the order of 12%–6%,

respectively. Noting that these potential errors are smaller

than the measured differences in elasticity between the

different radial zones, it is reasonable to conclude that the

measured radial variability in elasticity reflects changes in

mechanical properties rather than thickness effects.

Unfortunately, we have not yet been able to determine

simultaneously both sample height and the force-indentation

relationship. Thus although the formula of Dimitriadis et al.

(2002) allows us to approximate the error when using

a microsphere-affixed probe, it does not enable us to

accurately correct for finite thickness effects. Moreover,

minimizing the error by limiting indentation is also

problematic; even when using extremely soft (0.06-N/m)

commercially available AFM cantilevers, there is generally

insufficient data for indentations less than 500 nm to obtain

good fits to the appropriate model of contact mechanics. In

the uncorrected mode, we are pushing the limits of using the

AFM to indent such thin samples. We note further that no

finite-thickness correction is yet available for the Bilodeau

model; although shear moduli are reported from both the

pyramidal probe and the microsphere-tipped probe, we note

that the error in our measurements of the limbal region (zone

1) is likely to be ;27% with a microsphere affixed. A similar

value is expected for Bilodeau analyses using unmodified

Si3N4 tips. Thus although we cannot provide accurate

corrections for these values, we can at least obtain a sense of

the magnitude of errors that finite thickness imparts in our

measurements.

Shear modulus of the TM

The results of our AFM analyses of TM elasticity are

summarized in Figs. 9–11. In Fig. 9, we show the spatial

distribution of shear moduli by both longitudinal and radial

position, for data obtained using unmodified Si3N4 tips. Fig.

10 shows the combined Bilodeau (pyramid-tipped) data

without regard for longitudinal position. This figure makes

clearer the trend toward softening in the central zones of the

tissue. Fig. 11 shows similar aggregate (all-region) data

obtained with a microsphere-affixed tip and analyzed with

the Hertz model. Again we see a general softening in the

central portion of the tissue. In Figs. 10 and 11, zones with

statistically different shear moduli ( p , 0.01) zones are

indicated by the numbers at the base of the mean modulus

bars.

We report here, to our knowledge, the first reliable

indication of a radial gradient in the elasticity of the

mammalian TM. Specifically, we find that the TM is more

rigid toward the inner (limbal) zones where the tissue

FIGURE 8 Rapid-freeze, deep-etch image of type A fibril domain. The

scale bar is 90 nm, the dimension of a side of the square contact region of the

pyramidal tip indented to 50 nm. (See Materials and Methods for the

description of microscopy techniques.)
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attaches to the modiolus and generally softest in the

neighborhood of the sensory hair cells. In paired (zone-by-

zone), one-tailed Student’s t-tests of the aggregate pyramid

data, we find that G is significantly lower in zone 4 ( p ,

0.01) compared to zones 1, 3, and 5 ( p ¼ 0.27 compared to

zone 2). With the microsphere data, the situation appears

slightly different: with these data, we find that the shear

modulus of zone 3 is significantly lower than that of all other

zones ( p , 0.01). The meaning of this difference between

pyramid (Bilodeau) and microsphere (Hertz) data is not

clear; the trend toward softening in the interior radial zones,

however, is apparent with both tips. Additionally, we

summarize in Table 1 the statistical significance of the

(paired) differences in moduli along the length of the guinea

pig TM. In general, although radial zones in some regions

differed sporadically from corresponding zones in other

longitudinal regions, we did not observe a general trend in

the longitudinal elasticity of the TM.

We note that the TM is assumed to be stable in the AE bath

during the experiments; at no time did we observe apparent

changes in the mechanical properties of the TM over the time

course of our experiments, though we cannot determine if

FIGURE 9 Longitudinal and radial variation in the shear modulus of the

tectorial membrane. Values on the columns are mean shear moduli, in kPa.

Errors in measurements of the limbal zone (zone 1) are likely to be large due

to the local thinning of the tissue. All data for this figure were collected using

unmodified Si3N4 tips and were analyzed using the Bilodeau model. (See

Finite Thickness Effects for a discussion of the magnitude of errors imparted

by the finite thickness of the TM.)

FIGURE 10 Distribution of shear moduli in the guinea pig tectorial

membrane. Aggregate mean and standard deviations of shear moduli for

pyramid-probed samples, inclusive of tissue from the basal, middle, and

apical portions of the TM. Zone 3 corresponds approximately to the location

of the IHCs, and zone 4 represents the position of the OHC attachments.

The numbers at the bottom of each bar (beneath the asterisks) indicate

other zones from which the current zone is significantly different

(a ¼ 0.01).

FIGURE 11 Distribution of shear moduli in the guinea pig tectorial

membrane. Aggregate mean and standard deviations of shear moduli for

microsphere-probed samples, inclusive of tissue from the basal, middle, and

apical portions of the TM. The numbers at the bottom of each bar (beneath

the asterisks) indicate other zones from which the current zone is

significantly different (a ¼ 0.01).

TABLE 1 Significance of longitudinal variation of elasticity of

the tectorial membrane

Comparing

Significant?

(p , 0.01) Comparing

Significant?

(p , 0.01) Comparing

Significant?

(p , 0.01)

B1 : M1 Yes B1 : A1 M1 : A1 Yes

B2 : M2 B2 : A2 M2 : A2

B3 : M3 B3 : A3 M3 : A3

B4 : M4 B4 : A4 Yes M4 : A4

B5 : M5 B5 : A5 M5 : A5 Yes

Significance of differences in elasticity moduli along the length of the

guinea pig TM. B ¼ base, M ¼ middle, and A ¼ apex. Numbers refer to

radial zones. Thus, for example, the elasticity of the basal region of the TM

is significantly different from that of the middle region in zone 1 (p, 0.01)

but not in zone 2. Data generated with the microsphere-affixed probe were

excluded from this analysis.
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any significant, early-phase hardening or softening took

place during the dissection.

For a purely linearly isotropic material, a single constant

suffices to describe the sample elasticity. Regardless of the

direction in which a sample is probed (i.e., whether one

imparts a tangential or a normal force, for instance), the

application of a suitable model will provide a single elastic

constant. Knowing Poisson’s ratio of the material, con-

version between shear and Young’s moduli is trivial: G ¼
E/(2(1 1 n)). Both the Hertz and Bilodeau models can be

written in terms of E or G, but both assume that forces are

imparted normally. Hence, for the measurements reported in

this article, we indented the TM with a normal force and used

these models of contact mechanics to extract shear moduli;

this is exactly equivalent to imparting a tangential force and

using a model that quantifies deformations induced by

tangential forces. Anisotropic materials, in contrast, are fully

described more complexly by several directional elastic

constants. The TM, of course, is not isotropic. Regardless of

the direction of force application in these experiments, fitting

to a model of isotropy and describing the TM with a single

constant (whether G or E) clearly represents a limitation of

this work. Nonetheless, these simplified measurements

represent, to our knowledge, the first attempt to directly

quantify the elasticity of the TM.

Microsphere data

Knowing the geometry of the Si3N4 tip, we can get a sense of

the magnitude of the contact area of the AFM probe on the

size scale of the TM. We hypothesized that the microsphere

data would exhibit less variability than was seen with the

pyramidal tip, and that, by ensuring that the tip would more

uniformly span several fiber network segments, the calcu-

lated moduli would more accurately reflect the elasticity of

the TM on a length scale more relevant to elastic interactions

with hair bundles than with individual stereocilia. Micro-

sphere data (Fig. 11) had 70% less overall variability in terms

of standard deviation, and provided further evidence of

decreased shear moduli in the zones of the inner and outer

hair cells. Additionally, we observed an overall reduction in

calculated shear moduli of ;70% compared to values

calculated using pyramid-tipped probes. Specifically, calcu-

lations of shear moduli dropped from 6.54 6 4.18 kPa

(aggregate mean and unmodified tip) to 2.00 6 1.24 kPa

(aggregate mean and microsphere-affixed tip). This decrease

in mean value has been previously observed (Dimitriadis

et al., 2002) and is consistent with the theory that the sharper

tip induces high strains in the tissue that locally harden the

entropic spring network. As previously noted, however, the

exact nature of the difference in moduli obtained by probing

at different scales remains unclear; the apparent increase in

elasticity with a sharper tip likely also reflects structural

differences in the TM at the different length scales of the

AFM probes (Stolz et al., 2004). Both probe tips provide

valid measurements, the utility of which depend on the

objectives of the analysis.

Distribution and significance of collagen fibrils

It is significant that the radial TM shear modulus gradient

largely follows the gradient of type A fibril density measured

in the mammalian TM (Vater and Kössl, 1996; Weaver and

Schweitzer, 1994). Weaver and Schweitzer reported an

increase in fibril concentration in the limbal zone (corre-

sponding to zone 1 of this study) compared to the marginal

zone (zones 4 and 5) in all longitudinal locations studied in

the gerbil. Additionally, the authors found a higher concen-

tration of fibrils in the central (radial) zones of the tissue

compared to the marginal zones in lower middle and basal

cochlear turns, though the difference was not statistically

significant at the upper middle turn. Fig. 12 demonstrates

similar trends in shear modulus. By discretizing the TM

using the criteria established by Lim (1972), we clearly see

that the tissue is statistically softer ( p, 0.05) in the marginal

zone compared to the limbal zone in all cochlear turns,

following the fibril density previously reported. We further

see that the shear modulus is greater in the middle (radial)

zone compared to the marginal zone in the basal and apical

turns, but not in the middle cochlear turn. Weaver and

Schweitzer, however, also reported a higher concentration of

fibrils in the limbal portion of the basal turn compared to the

central region of the turn. We did not find a statistically

significant difference between the moduli of these limbal and

middle zones of the basal turn.

Type A fibrils, in contrast to those of type B domains, are

believed to be rich in type II collagen (Hasko and Richardson,

1988; Thalmann et al., 1987), which imparts tensile strength

and mechanical stability (Thalmann et al., 1987). Hence,

FIGURE 12 With a more coarse radial discretization of the TM (Lim,

1972), it becomes apparent from these pyramidal-tip data that the tissue is

softer in the marginal zone than the limbal zone in all cochlear turns. This

corresponds well with the findings of statistically higher collagen fibril

density in the limbal zone compared to the marginal zone (Weaver and

Schweitzer, 1994). Horizontal bars indicate statistically significant differ-

ences (a ¼ 0.05).
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regions of reduced type A fibril density should correspond to

regions of reduced shear modulus, precisely as we have

demonstrated. Although our finding of a relatively large shear

modulus in the limbal zone of the middle region does not

appear to correspond to a local fibril density increase (Weaver

and Schweitzer, 1994), the higher shear modulus may, via an

alternate mechanism, lend additional mechanical support

where the cross sectional area (Vater and Kössl, 1996) and

tissue mass (Thalmann et al., 1987) increase. We shed further

light on the correlation between fibril density and shear

modulus by considering a surprisingly simple formula (Bird

et al., 1977) that relates the shear modulus of an isotropic,

entropic spring network to the number density of network

segments, n0, the temperature, T, and Boltzmann’s constant,

k: G ¼ n0kT. Thus, one can determine the elasticity of an

isotropic polymeric material knowing only the number of

network segments per unit volume and the temperature. The

density distribution of type A fibrils, therefore, likely follows,

and explains, the distribution of shear moduli in the

mammalian TM. In Fig. 8, we present a freeze etch electron

micrograph of a guinea pig TM in a region representative of

the type A fibril domain. The depth of focus of this image is

;20 nm. If we were to mentally construct a bounding box

representing a volume of 100 nm 3 100 nm 3 20 nm, and

move the box randomly around the image counting the

number of network segments within the box, we might count

anywhere from 10 to 20 segments. At a temperature of 38�C
(311.15 K), each segment in this volume would contribute to

the shear modulus

1

2:0310
�22

m
33ð311:15 KÞ31:38310

�23
N3m

K
3 �21

N

m
2 ;

or 0.021 kPa.

Thus, if the tissue were modeled as an isotropic polymer,

the formula would predict that type A fibrils would account

for a local shear modulus in the range of 0.21–0.42 kPa. We

note here that the TM is neither isotropic nor homogeneous;

several researchers (Abnet and Freeman, 2000; Zwislocki

and Cefaratti, 1989) have reported directionally variant

measures of TM stiffness, whereas others (Hasko and

Richardson, 1988; Tsuprun and Santi, 1997) report the

presence of structurally distinct protein domains. In general,

existing models of contact mechanics, upon which we base

our calculations of elasticity, assume sample isotropy, and

calculations based on these models must be interpreted

cautiously. In analyzing contact-mode AFM curves, we

approximate representative measures of the tissue elasticity

without regard for the local fiber organization or direction.

We believe, however, that it is significant that these estimates

are within an order of magnitude of the values based on

contact mechanics models and that the network model

justifies the connection between the type A fibril density and

elasticity of the mammalian TM.

In contrast, Ulfendahl et al. (2001) reported observing

a ‘‘condensed’’ appearance of the TM in the vicinity of the

outer hair cells. This is seemingly contradictory to our results

and to those of Weaver and Schweitzer. However, we note

here that Ulfendahl made no conclusions about the local

density of collagen fibrils or the implications of the

distribution of dye on the elasticity of the tissue. Rather, he

attributed this dye distribution to structural changes in tissue

‘‘density.’’ This may, in fact, reflect a higher density of

‘‘supporting matrix,’’ rich in noncollagenous type B fibrils.

Following Thalmann et al. (1987), we attribute variations

in the ‘‘resiliency’’ of the TM elasticity specifically to

variations in the distribution of type II collagen seen in type

A fibrils.

Energy dissipation

Adapting the arguments of Kolsky (1963), the ratio of energy

stored in the membrane at maximal displacement, W, to the

energy dissipated, DW, in a single cycle of TM oscillation,

provides a measure of local shearing efficiency of the TM

and can be shown to be directly proportional to the shear

modulus. It follows that, in a lumped parameter representa-

tion of OC micromechanics, the efficiency of shearing the

TM relative to the RL would improve with larger values of

G. This lumped parameter assessment agrees well with our

FEM calculations (Cai and Chadwick, 2003) of energy

dissipation. At high frequencies, we see a strong trend

toward greater energy dissipation (lower efficiency) as the

tissue softens and less dissipation as the shear modulus

increases. The values of calculated energy dissipation for the

radially variant TM elasticity generally fall between those

calculated using uniformly soft and uniformly hard moduli.

The effect appears to be confined to the higher-frequency

regions of the TM and to decrease from the base to the apex.

For instance, in Table 2 we show the relative energy

dissipation calculations (normalized by the energy dissipa-

tion calculated using the nonuniform moduli at 500 Hz) at

the base (11 kHz and 10 kHz) and the apex (1 kHz and 500

TABLE 2 Calculated relative energy dissipation in a finite

element model of organ of Corti micromechanics

Shear modulus

Frequency Uniformly soft Radially variant Uniformly hard

11 kHz 3046 961 686

10 kHz 1265 608 505

1 kHz 4 4 4

500 Hz 1 1 1

Energy dissipation in the TM, calculated using a FEM of the OC. Values

are normalized by the energy dissipation calculated at the apex at 500 Hz.

Uniformly soft and uniformly hard refer to minimal and maximal values of

TM shear moduli, respectively, measured in the corresponding longi-

tudinal region of the tissue. Radially variant calculations were made using

the actual values of elasticity measured in each longitudinal region of

the TM.
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Hz). At the higher frequency, the radially variant shear

modulus map reduces the energy dissipation over that

calculated for the uniformly soft map by nearly 70% but still

provides the protection to the stereocilia afforded by the

uniformly soft tissue.

Compliance matching

On a final note, we verify that the mean value of G measured

for the TM is of the same order as a calculated effective shear

modulus for the stereocilia bundles: we simply divide

a representative stiffness (Strelioff and Flock, 1984) of the

hair bundle, 5 3 10�3 N/m, by the approximate span (Lim,

1972), w, of a bundle, 5 3 10�6 m, yielding 1 kPa. This is

equivalent to dividing the product of the shear stress, t, by

the shear strain, Dx/b:

k

w
¼ kDxb

wDxb
¼ t

Dx=b
¼ Geff ;

where Dx is the bundle displacement, and b is the bundle

thickness.

For small motion, we note that our estimate of Geff is

independent of Dx, as expected. Compare this with the

average values of 4.36 kPa and 1.62 kPa (using unmodified

and microsphere-affixed probes, respectively) that we

computed for zone 4, where the stereocilia interact with

the TM. This is analogous to demonstrating that the TM and

stereocilia bundles are compliance matched and validates our

determinations of G.

This article provides, to our knowledge, the first detailed

examination of the elasticity of the TM. It provides

measurements on two different length scales, one more

relevant to the deflection of single stereocilia and the other

germane to interactions of stereocilia bundles with the TM.

Additionally, we present evidence that the tissue elasticity

varies radially, generally softening in the neighborhood

of the hair cells. We discuss the parallel between the

distributions of elasticity and collagen fibrils, and we

speculate on the nature and significance of this radial

variation. Namely, we suggest that the inhomogeneity in

modulus reflects opposing requirements of the tissue; the TM

is softer in the region of the hair cells to protect the

mechanosensitive hair bundles and less soft elsewhere to

increase the energy efficiency of shearing the TM relative to

the reticular lamina.

The authors thank Dr. Inna Belyantseva for her instruction in TM

dissection.
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