Skip to main content
. 2004 Oct;87(4):2838–2854. doi: 10.1529/biophysj.104.045211

TABLE 2.

Thermodynamic constraints on passive and active end-tracking reactions

Mechanism-A: end-tracking stepping motor
Steps:
 1. Monomer binding from solution, ΔG1 = − kT ln([MT]/K1).
 2. Step of tracking unit to terminal subunit, ΔG2 = kT ln(K2).
  Active motor: Hydrolysis energy ɛ facilitates Step 2.
Type Energy Equilibrium constants Implications
Passive ΔG1 + ΔG2 = ΔG(+),addO(−kT) K1K2 = [MT](+)-crit Favorable monomer binding ⇒ unfavorable stepping
Favorable stepping ⇒ unfavorable monomer binding
Active ΔG1 + ΔG2 = ΔG(+),addɛ ≪ −kT K1K2 = [MT](+)-criteɛ/kT Monomer binding and stepping may both be favorable.
Mechanism-B: direct-transfer end-tracking motor
Steps:
 1′. Monomer binding from solution, Inline graphic
 2′. Transfer of monomer to filament end, Inline graphic
 3′. Release of tracking unit, Inline graphic).
  Active motor: Hydrolysis energy ɛ facilitates Step 3
Type Energy Equilibrium constants Implications
Passive Inline graphic K1K2/K3 = [MT](+)-crit Favorable monomer binding ⇒ unfavorable monomer transfer and/or tracker release
Favorable monomer transfer ⇒ unfavorable monomer binding and/or tracker release
Favorable tracking-unit release ⇒ unfavorable monomer binding and/or monomer transfer
Active Inline graphic K1K2/K3 = [MT](+)-criteɛ/kT Monomer binding, transfer, and tracking unit release may all be favorable.