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ABSTRACT The configuration space available to randomly cyclized polymers is divided into subspaces accessible to
individual knot types. A phantom chain utilized in numerical simulations of polymers can explore all subspaces, whereas a real
closed chain forming a figure-of-eight knot, for example, is confined to a subspace corresponding to this knot type only. One can
conceptually compare the assembly of configuration spaces of various knot types to a complex foam where individual cells
delimit the configuration space available to a given knot type. Neighboring cells in the foam harbor knots that can be converted
into each other by just one intersegmental passage. Such a segment-segment passage occurring at the level of knotted
configurations corresponds to a passage through the interface between neighboring cells in the foamy knot space. Using a DNA
topoisomerase-inspired simulation approach we characterize here the effective interface area between neighboring knot
spaces as well as the surface–to-volume ratio of individual knot spaces. These results provide a reference system required for
better understanding mechanisms of action of various DNA topoisomerases.

INTRODUCTION

A statistical ensemble of long circular polymers in solution

like DNA, for example, can reach its highest entropy state

only when the circular polymers are permitted to attain the

topological equilibrium resulting in the production of

a characteristic spectrum of various knots (Dean et al.,

1985; Rybenkov et al., 1993; Shaw and Wang, 1993;

Deguchi and Tsurusaki, 1994; Katritch et al., 2000). In the

case of circular DNA molecules specific enzymes called

topoisomerases allow intersegmental passages and therefore

may let the molecules reach the topological equilibrium,

even if all molecules had the same topology before addition

of the enzyme (Krasnow et al., 1983; Dean et al., 1985).

Actually, only a subclass of topoisomerases, belonging to the

class IA, can bring the system to the topological equilibrium

since intersegmental passages mediated by these enzymes

are driven by the free energy gradient (Stasiak, 2003), and

topoisomerases of type IA can perform knotting and

unknotting of single-stranded DNA as well as of double-

stranded DNA if the latter contains at least one short

interruption in one of the strands (Dean et al., 1985;

Champoux, 2001).

In recent years several independent studies investigated

how ATP-hydrolysis-driven type II topoisomerases can

selectively lower the frequency of DNA knotting (Rybenkov

et al., 1997; Yan et al., 1999; Vologodskii et al., 2001).

However, there were no systematic studies that investigated

the most likely relaxation path of a given DNA knot by

a hypothetical topoisomerase that does not show a chirality

bias and is just driven by the free energy gradient.

Characterization of this relatively simple situation provides

a necessary reference required for the understanding of such

subtleties of topoisomerase action as the chirality bias (Roca,

2001; Charvin et al., 2003; Stone et al., 2003; Schvartzman

and Stasiak, 2004; Trigueros et al., 2004) or differential

relaxation of various types of crossings in DNA twist knots

(Mann et al., 2004).

We investigate here the case of knotted polymers with 33

statistical Kuhn segments that form freely jointed isolateral

polygons with 33 edges. We have selected this size since it

corresponds to double-stranded DNA of bacteriophage P4

that provides a convenient experimental system of DNA

knotting (Arsuaga et al., 2002a,b). However, our study has

a more general perspective, as we aim to investigate generic

knot spaces accessible to all polymers that are conveniently

modeled as freely jointed, isosegemental chains (Vologodskii

et al., 1974; Smith et al., 1992; Deutsch, 1999; Katritch et al.,

2000; Arsuaga et al., 2002b; Millett and Rawdon, 2003).

MATERIALS AND METHODS

The evolution of the polygonal chain was achieved via a succession of

crank-shaft rotations. Two nonconsecutive vertices of the polygon were

selected randomly (with the maximum distance of eight segment units along

the chain) and then rotated around the axis passing through the selected

vertices. The angle of rotation was drawn with uniform probability between

180� and�180�. The occurrence of intersegmental passages was detected by

checking for intersections between the surface of revolution generated by the

rotating portion of the chain and segments of the subchain that were not

rotated. Our results were of course affected by statistical errors. Statistical
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fluctuations in our simulations caused, for example, random passages in

unknots (01) to produce left-handed trefoils (31L) with a probability of

0.02165 and right-handed trefoils (31R) with a probability of 0.02395. To

compensate for statistical fluctuations and to reestablish the left-right

symmetry in our system we averaged over the two data sets, obtaining that

the probability of a passage from an unknot to a trefoil knot is of 0.0228,

irrespectively of the handedness of the resulting trefoil. Upon imposition of

a detailed balance (read below) this value was changed to 0.0227 (see Table

1). The symmetry establishing procedure involved averaging over

probabilities of creation of corresponding chiral knots from achiral knots

and also averaging over probability of formation of achiral knots and pairs of

chiral isoforms from two chiral isoforms of a given knot type. Using the

effective rates of strand passage outcomes from individual knot spaces we

calculated the expected stationary probabilities of each knot type at the

thermodynamic equilibrium. The stationary probabilities values for various

knots are the entries of the eigenvector corresponding to the eigenvalue 1 of

the transition matrix (Grimmet and Stirzaker, 1992) (see Table 1).

In our simulations each knot type undergoes relaxation independently

from other knot types; therefore, it was important to verify whether our

method allows us to predict behavior of the system at thermodynamic

equilibrium. At thermodynamic equilibrium the number of configurations

switching from knot A to B should be equal to those switching from knot

TABLE 1 Probability that a knot type converts into another by a random intersegmental passage

Starting knot types

Resulting knot types

31R 51R 52R 61R 62R 31R#31R
or or or or or or

01 31L 41 51L 52L 61L 62L 63 31R#31L 31L#31L

0.5988 0.6844 0.2820 0.2669 0.1881 0.2921

01 0.9457
0.9038 0.9276 0.3610 0.3246 0.2281 0.3528

31R 0.0227 0.6534 0.4182 0.2717 0.2679 0.4129 0.8304

or 0.3374
31L 0.4180 0.8541 0.5353 0.3294 0.3236 0.5000 1.0000

0.0073 0.4379 0.3178

41 0.2622
0.1345 0.5325 0.3852

51R 0.0246 0.0811

or 0.2350
51L 0.0372 0.1038

52R 0.0006 0.0217 0.1116

or 0.2187
52L 0.0102 0.0328 0.1459

61R 0.0001 0.0132 0.0508 0.0473

or 0.1775
61L 0.0016 0.0179 0.0618 0.0573

62R 0.0001 0.0033 0.0136 0.0668

or 0.1750
62L 0.0016 0.0049 0.0183 0.0812

0.0002 0.0036

63 0.1721
0.0028 0.0054

0.0057

31R#31L 0.1742
0.0086

31R#31R 0.0049

or 0.1696
31L#31L 0.0074

We apply here a modified Alexander-Briggs notation of knots, where the first number indicates the minimal crossing number, the subscript number indicates

the tabular position among the knots with the same minimal crossing number (for the tables see Rolfsen, 1976; Adams, 1994) and the subscripts R or L

indicate right- or left-handed form of a given knot. The analyzed knots include three achiral prime knots (01, 41, and 63), five pairs of chiral prime knots (31,

51, 52, 61, 62) in their right- and left-handed form, and three composite knots composed of two trefoils in three possible combinations (31R#31R, 31L#31L, and

31R#31L). The starting configurations are indicated in the upper row whereas resulting knots are marked in the left column. The entries correspond to the

probability with which knots listed in the upper panel gets converted into knots listed in the left panel (but not the contrary). Upper and middle entries (in

bold) in the relevant rows indicate the probability with which a given knot can change to another knot or remain the same, respectively. The sum in every

column over upper and middle entries taken together is 1 for all chiral starting knots. For achiral starting knots the upper entries indicating passages to chiral

knots need to be counted twice since the listed entries indicate probabilities of passages to each of enantioforms of chiral knots. Notice that the data in the

table have been corrected to reestablish left-right symmetry and brought to the detailed balance situation (see Methods). The lower entries in respective rows

indicate the probabilities of exiting a given knot space to other spaces when only passages that resulted in a change of the knot type were considered.
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B to A. For example the stationary probability of unknots multiplied by the

transition rate from unknots to right-handed trefoils should be equal to the

stationary probability of right-handed trefoils multiplied by the transition

rate from right-handed trefoils to unknots. In our case the respective products

amounted to 0.0208 and 0.0206. The observed deviations from the detailed

balance condition were also very small for other pairs of knots and probably

resulted only from statistical fluctuations. We therefore imposed the detailed

balance into the data presented in Table 1 in such a way that the stationary

probability of every knot type remained unchanged.

RESULTS

One passage connectivity between neighboring
knot spaces

Our investigation of knot spaces is based on simulations of

an experiment in which highly diluted polymer molecules,

forming various knot types, undergo random inter-

segmental passages and where, after each intramolecular

segment-segment passage, the topology of the molecules is

determined. To obtain a random configuration of a given knot

type we start with a polygonal configuration that resembles

the axial trajectory of so-called ideal knots of a given type

(Katritch et al., 1996; Buck, 1998; Stasiak et al., 1998).

These starting configurations are then evolved as non-

phantom chains by applying random crank-shaft moves

(Vologodskii et al., 1992). Nonphantom evolution is

achieved by accepting only these crank-shaft moves during

which there are no segment-segment passages. After 20,000

of such accepted random moves, when the configuration is

sufficiently randomized, the polygon is further evolved by

random crank-shaft rotations but in addition moves that

result in just one intersegmental passage are also accepted.

After the first passage the evolution is terminated and the

knot type of the polygonal chain is determined by calculation

of its HOMFLY polynomial (Freyd et al., 1985; Ewing and

Millett, 1996; Dobay et al., 2003). The entire procedure was

repeated 20,000 times for each analyzed knot type. We

investigated what happens after a passage to all types of

knots with up to six crossings, whereas passages leading to

formation of knots with seven or more crossings were not

entered into the statistics.

Table 1 lists the probabilities with which a random

passage in a given knot type (the starting knot types are

indicated in the head of the table) leads to emergence of a new

trajectory of the same or a different knot type (the types of

resulting knots are indicated on the left side of the table).

There are three sorts of data in the Table 1. Upper entries in

corresponding cells are the transition probabilities with

which a given starting knot can change its knot type to the

respective resulting knots in an experiment in which

passages resulting in no change of original topology are

also taken into account. The middle entries (underlined ) in
diagonal fields of the table list probabilities that a given knot

does not change its knot type after one segment-segment

passage. The lower entries in respective cells result from

a renormalization of the data by taking into account only

these passages that have led to the change of the knot type.

Looking at Table 1 one can see, for example, that random

intersegmental passages in unknots ( first column) led in

almost 95% of cases back to the same knot type (underlined ).
Fig. 1 a presents an example of such a passage that does not

change the knot type. Table 1 also shows that if only the

passages that resulted in a change of the knot type were

analyzed (lower entries), then right- and left-handed trefoil

knots were both produced with almost 42% efficiency from

unknots (see Methods section for the information how left-

right symmetry was obtained from the data). Figure-of-eight

knots, that are achiral, were produced in;13% of knot type-

changing passages from unknots, whereas 52R and 52L knots

were both produced with ;1% probability. More complex

knots emerged from unknots with still lower probabilities.

It is also visible that 51 knots did not arise from unknots by

one strand passage. This reflects the fact that at least two

FIGURE 1 Effects of intramolecular segment-segment passages. (a)

Example of a passage that does not change the topology of analyzed

trajectory. (b) To create more complex knots out of simpler knots, the latter

need to show some additional, nonessential crossings where segment-

segment passage could occur. (c) Segment-segment passages acting on

minimal crossing representation of a 52 knot create in three out of five cases

trefoil knots and in the remaining cases unknots. Thin ellipses denote sites of

segment-segment passages.
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strand passages are required to pass from an unknot to 51
knot (Darcy and Sumners, 1997, 2000). The same applies to

the passage from a 31 to 41 knot (and vice versa). One can

also see (column 5) that configurations forming knot 52 exit

more frequently to space of 31 knots than to space of

unknots. This result can be intuitively expected since out

of five possible passages performed at the crossing points of

standard, minimal crossing representation of 52 knot, three

passages lead to formation of trefoils (31 knots) whereas two

passages lead to formation of unknots (01 knots) (Fig. 1 c).
Of course, minimal crossing representations do not reflect all

possible random configurations of a given knot and do not

explain, for example, how 52 knot can be converted by one

passage to 51 knot or to higher knots. Configurations with

additional, nonessential crossings are required to permit

these types of passages (see Fig. 1 b).
The observed one-passage connections within knots with

up to six crossings agree with earlier analytical treatment of

this subject (Darcy and Sumners, 1997, 2000). We observed

transitions between all these knot spaces that are separated

by one passage and didn’t observe any when more than one

passage is needed for such a change (Darcy and Sumners,

1997, 2000). We believe, therefore, that our simulation

procedure probes adequately the connectivity between

different knot spaces. Our studies go however further than

revealing one-passage connectivity between different knot

spaces since we obtain quantitative information about the

extent of contact between the neighboring knot spaces.

Interfaces and shapes of individual knot spaces

By monitoring ratios of probabilities with which random

configurations of studied knots exit by random passages to

different neighboring knot spaces we can probe the effective

interface area between corresponding knot spaces. The

effective interface areas between different knot spaces are

defined operationally as proportional to the number of

observed passages between the knots in question. However,

if different interfaces vary in their curvature and corrugation,

then the actual interface areas may not be proportional to the

corresponding effective interface areas. The lower entries in

corresponding cells in Table 1 reflect the relative effective

interface area of individual knot spaces with other knot

spaces. Notice that the global interface of the starting knot

space with all neighboring spaces is normalized to one for

every individual knot type (sum of lower entries in every

column is 1, taking into account that there are always two

different chiral knots of the corresponding type). One can

see, for example, that .41% of the surface enclosing the

space of unknots forms an interface with the space of right-

handed trefoils (first column, second row in Table 1). On the

other side, .90% of the surface enclosing the configuration

space occupied by right-handed trefoils is shared with the

surface that encloses unknots (second column, first row). It

should be obvious that the interface of the space of unknots

with the space of right-handed trefoils has to be equal to the

interface of the space of right-handed trefoils with the space

of unknots. Therefore, one can simply conclude that the total

surface enclosing the space of unknots is;2.16 times bigger

than the corresponding surface enclosing right-handed

trefoils.

The same type of calculation can be performed for any pair

of knots with one-passage connectivity. Using thismethodwe

can express the delimiting surface of various knot spaces as

a fraction of the total surface of all knot spaces summed

together and taken as 1. For 33-segments long freely jointed

polygons the knots 01, 31R or 31L, 41, 51R or 51L, 52R or 52L,

61R or 61L, 62R or 62L, 63, 31R#31R or 31L#31L, and 31R#31L
have the following delimiting surfaces: 0.4518, 0.2090,

0.0655, 0.0091, 0.0128, 0.0022, 0.0031, 0.0035, 0.0015, and

0.0036, respectively, with a ;10% error.

Diagonal entries in Table 1 (underlined) tell us how

frequently configurations representing a given knot type

remain in the same knot space after a random strand passage.

It is visible that, as the knots get more complex their

tendency to remain in the same knot type decreases. The

probability of remaining in the same knot space after

a random passage reflects the ratio between the area of

internal invaginations (passage through which does not

change the knot type) and the area of the external surfaces

which separate different knot types. If the density of internal

invaginations in various knot spaces is similar, the

probability of remaining in the same knot space after

a random passage reflects in an indirect way the volume-to-

surface ratio of individual knot spaces. Thus, for example,

a space of unknots seems to have the highest volume to

surface ratio, whereas each of the spaces of various six-

crossing knots has a much smaller volume-to-surface ratio

(Table 1).

It was shown earlier that the so-called ideal geometric

representations of knots decrease their volume-to-surface

ratios with increasing complexity of knots (Katritch et al.,

1996). More recently it was proposed that the relative

probability of occurrence of various knots at topological

equilibrium should decrease exponentially with the length/

diameter ratio (L/D) of their corresponding ideal geometric

representations (Grosberg, 1998).

The underlying hypothesis was that the diameter of tubes

formed by ideal knots approximates the 3-D space available

to a given knot type (Grosberg et al., 1996; Grosberg, 1998)

and that this, in turn, is directly correlated to the probability

of occurrence of the knot, or, in other words, to the volume of

the high-dimensional configuration space available to that

knot type.

This proposal, however, failed to explain why the

probability of occurrence of 52 knots is significantly higher

than that of 51 knots, despite the fact that 52 knots show

higher L/D ratio of their ideal configurations (Deguchi and

Tsurusaki, 1994; Katritch et al., 1996).
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The core of the issue is, therefore, whether there is

a relation between the physical 3-D space available for

configurations of a given knot and the high dimensional

configuration space occupied by the same knot type.

In the studied system the equilibrium probability of

occurrence of a given knot type (volume of the high-

dimensional configuration space) is the result of the complex

dynamical process that, via intersegmental passages, allow

the chain to maintain or change its knot type with different

probabilities. The probability to stay in a given knot type

after a pivotal type of move depends, however, on the extent

of the 3-D space within which the configuration can move

without self intersections leading to the change of the knot

type. We suggest, therefore, that only the probability to

maintain the knot topology is directly related to L/D ratio

of ideal representations of knot. Fig. 2 shows that the

probability of remaining in the same knot type upon a random

segment-segment passage exhibits in fact an exponential

decrease with L/D ratio of ideal knots and is consistent with

the fact that 51 knots, despite their lower probability of

formation, are more ‘‘stable’’ than 52 knots.

To conclude, L/D ratio of an ideal knot only partially

accounts for the equilibrium probability of the given knot.

Equilibrium properties, in fact, can be effectively sampled

only if the full connectivity of high-dimensional configura-

tion space is considered.

Intensity of exchanges between all investigated
knot spaces

Fig. 3 illustrates the connectivity diagram of the analyzed

knot types together with their expected probability. Fig. 3

presents only achiral knots and right-handed isoforms of

chiral knots. Left-handed isoforms would be placed

symmetrically on the left side of the ‘‘reflecting plane’’

occupied by achiral knots 01, 41, 63, and 31R#31L. Fig. 3

allows us to quickly find the minimal number of passages

required for passing from one knot type to another. For

example, to pass from the space of 51R knots to that of

unknots, two passages are needed and two more would be

needed to reach the space of 51L knots. In Fig. 3 we also

indicated the intensity of exchanges or fluxes between

neighboring knot spaces at thermodynamic equilibrium. The

fluxes resulting from random passages between neighboring

knot spaces are normalized with respect to the flux between

unknots and each of trefoil-knots (the intensity of which was

taken as 1).

Map of knot spaces

One is tempted to sketch a map of knot spaces. Of course

knot spaces are of higher dimensions but one can imagine

a conceptual flattening of these spaces into a planar map as in

Fig. 4. We have tried to keep the relative order of surfaces of

individual knot territories corresponding to the observed

order of their probability. Right- and left-handed enantio-

forms were placed on the right- and left-side, respectively,

with a distance from the vertical axis roughly proportional to

the mean writhe of the corresponding random knots (Le Bret,

1980; Katritch et al., 1996; Janse Van Rensburg et al., 1998).

Achiral knots are, therefore, centered along the vertical axis.

We also tried to put more complex knots ‘‘higher’’ than

simpler knots.

Our map presents just one of many possible arrangements

that satisfy the established connectivity between different

knot spaces (presented as overlapping patches). Note that 61R
and 61L knots are neighbors in the configuration space (this

was not visible in Fig. 3). The map applies to the random

polygon composed of 33 freely jointed segments we studied

here and it would change with the size of the chain. In case of

much longer chains knots will dominate over unknots and

every individual knot type will be very rare but there will be

many different knots. Despite this chain-size dependence of

the map, the knots that are neighbors in the case of 33

segments long chains will remain neighbors also for very

long chains. It should be clear, however, that the shown map

is only a conceptual aid in understanding complex

connectivity in multidimensional knot spaces.

Knot spaces are usually sampled using a phantom chain

evolution; however, such a sampling can only provide

information about expected stationary probabilities of dif-

ferent knots without revealing the overall organization of the

entire knot space (Rybenkov et al., 1993; Deguchi

and Tsurusaki, 1994; Katritch et al., 2000). It is important

to mention though, that the expected stationary probabilities

obtained with phantom sampling closely coincided with

these obtained from nonphantom exploration (data not

FIGURE 2 Probability of remaining in the same knot type upon one

random segment-segment passage decreases exponentially with the L/D of

corresponding ideal knots. (L/D values of ideal knots are taken from Katritch

et al., 1996). The data points included knots 72 and 81 as we wanted to

extend the range of analyzed knots to higher L/D values. The probability

values of remaining in the same knot type plotted in this figure are slightly

different from those listed in the Table 1 as we did not limit our statistics here

to the passages that do not create knots with more than six crossings.
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shown) indicating that the structure of the foamy knot space

is not affected by the particular polymer dynamics applied in

our simulation studies.

Using the topoisomerase-inspired approach presented

here, we were able to verify earlier theoretical studies that

investigated which knots are neighbors in the knots

configuration space (Darcy and Sumners, 1997, 2000). In

addition, we were able to characterize the extent of contacts,

and thus exchanges, between configuration spaces of

different knots. The probabilities of staying in the same

knot type after a random passage provided us with an

estimation of the surface-to-volume ratio of configuration

spaces of various knots.

Biological applications

The presented methodology can be applied to quantify biases

manifested by some DNA topoisomerases during relaxation

of particular types of DNA knots. It was reported recently

that type II topoisomerases act preferentially on clasp

crossings in twist 52 knots (Mann et al., 2004). However,

the actual extent of the bias can be only quantified when one

knows what the probability of acting on the clasp crossing in

the absence of any bias is. Table I shows that without any

bias the action on the clasp crossing on 52 knot tied on 10-kb-

long DNA should happen in ;36% of strand passages that

result in the change of the knot type. Therefore, if the

probability of action of the investigated topoisomerase II on

the clasp crossing is significantly .36% the bias can be

confirmed.

Another example where the probabilities of passages

between different knot types can be used to obtain

biologically significant information concerns the geometry

of DNA packing inside phage heads. The DNA knots formed

within phage heads can provide hints about the nature of

DNA packing (Arsuaga et al., 2002b) but the knots are too

complex for their knot type to be determined by electron-

microscopy (Krasnow et al., 1983) or by their electrophoretic

migration (Vologodskii et al., 1998). However, upon partial

relaxation knots become simpler and can be correctly

FIGURE 3 One-passage connectivity diagram of knots with up to six crossings. The diagram presents achiral knots and right-handed enantiomorphs of

chiral knots. Left-handed enantiomorphs would be positioned symmetrically, with the corresponding negative values of writhe. The knots are arranged

according to their writhe values that is a measure of chirality and according to their minimal crossing number. Stationary probabilities, calculated using the data

in Table 1, are indicated for each knot type. The intensities of fluxes between neighboring knot spaces are expressed as a fraction of exchanges between unknots

and 31R of 31L knots. Not all digits are significant. We estimate the error range at;10% on the basis of performing the calculation with twice smaller data set.

Notice that the numerical values in the diagram will change for longer chain sizes, however, the connectivity will remain the same.
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recognized by their electrophoretic migration (Arsuaga et al.,

2002b). The methodology presented here should allow

finding out what were the knots that produced the partially

relaxed knots of a known knot type. The probability of

a passage from one knot to another as a result of individual

topoisomerase reactions can not be obtained from the

classical exploration of the knot space where the equilibrium

probabilities of different knots are calculated (Rybenkov

et al., 1993).
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