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ABSTRACT The swelling behavior of charged phospholipids in pure water is completely different from that of neutral or
isoelectric phospholipids. It was therefore suggested in the past that, instead of multilamellar phases, vesicles represent the
stable structures of charged lipids in excess water. In this article, we show that this might indeed be the case for
dioleoylphosphatidylglycerol and even for dioleoylphosphatidylcholine in certain salts. The size of the vesicles formed by these
lipids depends on the phospholipid concentration in a way that has been predicted in the literature for vesicles of which the
curvature energy is compensated for by translational entropy and a renormalization of the bending moduli (entropic
stabilization). Self-consistent field calculations on charged bilayers show that the mean bending modulus kc and the Gaussian
bending modulus �kk have opposite sign and j �kk j.kc; especially at low ionic strength. This has the implication that the energy
needed to curve the bilayer into a closed vesicle Eves ¼ 4pð2kc1 �kkÞ is much less than one would expect based on the value of
kc alone. As a result, Eves can relatively easily be entropically compensated. The radii of vesicles that are stabilized by entropy
are expected to depend on the membrane persistence length and thus on kc. Experiments in which the vesicle size is studied as
a function of the salt and the salt concentration correlate well with self-consistent field predictions of kc as a function of ionic
strength.

INTRODUCTION

Phospholipid vesicles are often used as model systems to

study the (physical) principles behind the behavior of

biological membranes. Although most biological mem-

branes are negatively charged, much of the research on

vesicles has concentrated on vesicles of electrostatically

neutral lipids. However, a large difference in swelling and

phase behavior between electrostatically neutral and nega-

tively charged phospholipids has been observed in the past

(Hauser et al., 1982, 1984). In pure water, uncharged lipids

show only limited swelling; this results in the formation of

a multilamellar phase in excess water. Lipids that are net

charged swell continuously in pure water. In excess water,

the swelling of charged lipids results in fully hydrated

unilamellar vesicles (Hauser, 1984). Vesicles have therefore

been suggested to represent an equilibrium structure of the

charged phospholipid bilayer (Hauser, 1984).

The stabilization mechanism of charged phospholipid

bilayers is expected to be fundamentally different from that

of catanionic vesicles. Catanionic vesicles of cetyltrimethy-

lammonium bromide and perfluorooctanoate are, in a certain

composition range, stabilized by a spontaneous curvature of

the bilayer (Jung et al., 2001, 2002). This spontaneous

curvature arises due to nonideal surfactant mixing, which

causes the interior and exterior monolayers of the vesicle

bilayer to have significantly different compositions (Safran

et al., 1990, 1991). The size of these equilibrium vesicles

stabilized by a spontaneous curvature is only determined by

the ratio in which the different surfactants are mixed.

Vesicles that consist of only one (charged) phospholipid

species do not have a spontaneous curvature and can

therefore only be stabilized against the formation of

multilamellar sheets by their electrostatic charge and by

entropic contributions linked to degrees of freedom of the

membranes. When the undulational, translational, and pos-

sibly other entropic terms of the bilayers are sufficient to

overcome the curvature free energy of the bilayer, a well-

defined equilibrium radius is expected. This equilibrium size

of the vesicles should in first order be determined by the mean

bending modulus of the lipid bilayer. Another parameter that

is expected to affect the size of these entropically stabilized

vesicles is the total surfactant concentration (Safran, 1994;

Simons and Cates, 1992; Herve et al., 1993; Morse and

Milner, 1995).

The curvature free energy per unit of area can, in good

approximation, be described as a second order expansion

of the interfacial tension g in the mean curvature

J ¼ 1=R111=R2 and the Gaussian curvature K ¼ 1=R1R2,

in which R1 and R1 are the curvatures that locally describe

the membrane bilayer

g ¼ g0 1
1

2
kcðJ � J0Þ2 1 �kkK: (1)

The coefficients in Eq. 2 that are of particular interest are

the bending modulus kc, the spontaneous curvature J0, and
the saddle-splay modulus �kk. These coefficients can be

derived from the curvature dependence of the interfacial
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tension. The spontaneous curvature J0 is thought to be the

curvature that minimizes the surface free energy (of

cylindrically shaped surfaces). The Gaussian bending

modulus, �kk, determines the topology of the interface rather

than its rigidity, which in turn, is determined by kc. The mean

bending modulus, kc, must be positive for a bilayer, as any

deformation from the equilibrium state has to increase the

free energy. The sign of �kk is not determined a priori. For

negative values of �kk, the bilayer will prefer spherical

deformations (1=R1R2 . 0). For positive values of �kk, the
only way for the surface to lower its free energy is the

formation of saddle surfaces (1=R1R2 , 0).

From the thermodynamics of small systems, it follows

that, if the translational entropy of the membrane is

neglected, a flat equilibrium bilayer membrane is tensionless,

i.e., g ¼ 0. Therefore, Eq. 1 reduces to

g ¼ �kcJ0J1
1

2
kcJ

2
1 �kkK: (2)

If the membrane has no spontaneous curvature, as ex-

pected for bilayers composed of only one phospholipid

species, the energy needed to curve a flat bilayer into a closed

vesicle becomes equal to Eves ¼ gA, (A ¼ 4pR2)

Eves ¼ 4pð2kc 1 �kkÞ: (3)

One of the sources of entropy that can compensate for this

curvature energy is the translational entropy. A population of

many small vesicles has a larger translational entropy than

a population of a few large vesicles (with equal surface area).

The system can therefore increase its entropy by increasing

the number and decreasing the size of the vesicles in solution.

However, it is not possible to decrease the size of the vesicles

indefinitely. The membrane has a certain stiffness given by

persistence length jp. On distances smaller than jp, the

membrane is stiff, whereas above this length the information

on orientation is lost. This means that, in first order

approximation, jp sets the lower limit to the vesicle size. As

the bilayer has no resistance to shape fluctuations at distances

longer than jp, the membrane freely undulates at these length

scales. This means, however, that the bending moduli are no

longer independent of the vesicle radii or the length scale L at

which the system is studied. The bending moduli should

therefore be replaced by effective bending moduli. The

effective mean bending modulus keffc ðLÞ can be written as

k
eff

c ðLÞ ¼ kc � a
kBT

4p
ln

L

l

� �
; (4)

where l is a length scale proportional to the size of the

molecules. Besides the translational entropy and the bilayer

undulations discussed above, other sources of entropy such

as the polydispersity of the vesicle sizes can also contribute

to compensate the curvature energy of the system.

Although knowledge of kc and �kk is necessary to estimate

the curvature free energy, and thus to understand the

behavior of bilayer membranes, there are relatively few

measurements of kc and almost no measurements of �kk.
Moreover, the micropipette pressurization technique (Evans

and Needham, 1987; Rawicz et al., 2000) and the analysis of

the shape fluctuations of giant vesicles (Meleard et al., 1998),

which are often used to determine the mean bending

modulus, probe kc at length scales much larger than those

relevant for submicrometer vesicles. The values for kc that
are found in this way differ between the different techniques

that are used but are all in the range of 5–40 kBT (Seifert and

Lipowsky, 1995). Unfortunately, almost all measurements

done so far refer to neutral or isoelectric phospholipids, and

no information is available for both kc and �kk of charged lipid

bilayers. Realistic molecular model calculations are the only

theoretical means to predict the curvature free energy and the

mechanical parameters of a lipid bilayer. Recently, it was

shown how these parameters can be determined unam-

biguously from self-consistent field (SCF) calculations

(Oversteegen and Leermakers, 2000). We will apply this

computation method to obtain systematic predictions for

charged lipid systems in electrolyte solutions.

In this article, we investigate the entropic stabilization of

charged lipid bilayers. For this purpose, the formation and

the behavior of dioleoylphosphatidylglycerol (DOPG) ves-

icles in the presence of different salts and salt concentrations

was studied. SCF calculations were used to get insight into

the curvature free energy and the Helfrich mechanical param-

eters of charged lipid-like bilayers.

MATERIALS AND METHODS

Experiments

The anionic phospholipid DOPG was purchased as a sodium salt, and the

zwitterionic phospholipid dioleoylphosphatidylcholine (DOPC) was pur-

chased as a chloroform solution, from Avanti Polar Lipids (Birmingham,

AL); both were used without further purification. Analytical grade NaCl and

NaI were purchased from Merck (Darmstadt, Germany) and NaBr from J. T.

Baker Chemicals (Deventer, Holland). Vesicles were made by drying the

phospholipids from chloroform under a stream of nitrogen followed by at

least 2 h under vacuum to remove the last traces of solvent. The dry lipid film

was rehydrated with a salt solution of the desired ionic strength to

a concentration of 2 mg lipid/ml unless stated otherwise. Three different

methods were used for the final vesicle production. The lipid film was 1),

rehydrated overnight to produce giant vesicles, 2), vortexed with the salt

solution, or 3), sonicated in salt solution in a round bath sonicator to produce

small unilamellar vesicles (SUVs).

Multilayered vesicles of phospholipids are known to fragment into small

vesicles, whereas SUVs fuse to form larger vesicles when the electrolyte

solution in which they are suspended is subjected to successive cycles of

freezing and thawing. Dioleoyl derivatives are particularly susceptible to this

freeze-thaw procedure (MacDonald et al., 1994; Traikia et al., 2000), and

were therefore used in this study. The freeze-thaw procedure probably

ruptures the vesicles into fragments the size of which is determined by the

persistence length of the bilayer. When these bilayer fragments reseal, this

may result in vesicles with a size that is determined by kc. To test this

hypothesis, both giant vesicles and SUVs were subjected to repetitive cycles

of freezing and thawing; 1 ml of vesicle containing solution was immersed in

liquid nitrogen until completely frozen. The samples were thawed in a water

bath at;313 K. This procedure was repeated until the size of the vesicles no

longer changed. As it took many freeze-thaw cycles before the final size was
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reached, the procedure was speeded up by vortexing the vesicle suspension

during thawing. This vortexing had no influence on the final radius obtained.

To see if vesicles could spontaneously evolve to vesicle radii comparable

to those found in the freeze-thaw procedure, the size evolution of vesicles

was followed in time (without any freeze-thaw steps) in a different

experiment. For this purpose, the dry DOPG film was brought into contact

with solutions of 0, 25, or 200 mM NaCl. To remove the lipid layer from the

wall of the glass tube, the solution was shaken. Once the lipid layer was

removed from the wall, the vesicle suspension was not stirred anymore.

While the suspension was standing, samples were taken and analyzed

regularly. As explained above, the stabilization mechanism of more

component membranes can be completely different from that of membranes

consisting of only one component. To make sure that the interpretation of

our measurements was not obscured by phospholipid degradation, the

samples were tested for the presence of hydrolysis products. The lipids were

separated by one-dimensional thin-layer chromatography (TLC plates No.

5721, Merck), with CHCl3:MeOH:HAc, 60:25:8 as the developing solvents.

Fractions were made visible by spraying with a 0.1% solution of 8-anilino-1-

naphthalencesulfonic acid in MeOH and inspection under ultraviolet light.

The spontaneous size evolution of the vesicles was terminated within 30 h

after vesicle preparation, which was well within the time at which traces of

breakdown products could be detected.

To check whether perturbations by salt gradients could lead to

a reequilibration of the vesicles, DOPG samples were subjected to either

hyper- or hypotonic salt gradients. The vesicles tested were prepared by the

freeze-thaw method. Osmotic gradients were applied by stepwise changes in

the NaBr concentration.

Both DOPG and DOPC samples were checked by eye for phase

separation. If phase separation took place, the appearance of multilamellar

phases was inspected with crossed polarizers. The results shown here all

apply to solutions that only contain vesicles. The appearance of multilamellar

phases is treated in a second study (M. M. A. E. Claessens, F. A. M.

Leermakers, F. A. Hoekstra, and M. A. Cohen Stuart, unpublished).

The size of the vesicles was determined using dynamic light scattering.

The instrumental setup consisted of an ALV-5000 correlator and a scattering

device with an ALV-125 goniometer and a multiline Lexel AR-laser source.

The presented data were collected at a scattering angle of 90� at a wavelength
of 513 nm. During the measurements, the temperature was kept constant at

298 K. A cumulant analysis was used to determine the average vesicle size.

Self-consistent field calculations

The self-consistent field theory can be used to evaluate the distribution of

surfactant molecules in association colloids, e.g., micelles, vesicles, or

bilayers. As surfactant molecules can assume many different conformations,

it is convenient to divide the surfactants into segments, and space into a set

of discrete coordinates. The surfactant chains are then restricted to have their

segments on these coordinates.

The set of restricted coordinates on which the surfactant segments can be

placed is called the lattice. In this lattice, one can either have flat, cylindrical,

or spherical lattice layers. These layers are used to reduce the complexity

of the calculations. Within the lattice layers, no density gradients occur

(mean-field approximation). Tangential to the layers, numbered z¼ 1, . . ,m,
gradients may develop. The lattice layers are composed of L(z) in-

distinguishable lattice sites. And, in principle, a three-dimensional problem

can in this way be reduced to a one-dimensional problem. Surfactants are

composed of a string of segments, each of the size of a water molecule.

When the solvent molecules, ions, and the segments of the surfactant chains

are placed on the lattice, they all occupy one lattice site. Thus, as all the

lattice sites have the same volume, each segment has a fixed size.

Differences between segments can by introduced by changing their

interactions with surrounding segments; their chemical nature can be

accounted for. It should be kept in mind that by placing the molecules in

a certain geometry, the symmetry of the lattice imposes a certain aggregate

structure; as a result aggregates are unable to seek their optimum geometry.

All chain segments and monomers in the system have interactions with

surrounding segments. Therefore, a potential energy ux(z) is assigned to each

type of segment x relative to the bulk solution b. This potential energy

belongs to the segment, irrespective of the chain to which the segment

belongs. The potential energy ux(z) depends on all possible interactions of

segment x with its environment. Physically, this means that ux(z) contains all

the potential energy contributions needed to bring a segment x from the bulk

(where ux(N) ¼ 0) to position z. Taking into account excluded volume,

nearest neighbor, and electrostatic interactions, ux(z) becomes

uxðzÞ ¼ u#ðzÞ1 kBT+
y

xxyðÆuyðzÞæ� ub

yÞ

1 nxecðzÞ �
1

2
e0ðex � 1ÞEðzÞ2: (5)

Here, uy is the volume fraction of all other segment types, y; the superscript

b refers to the bulk solution; and x is the Flory-Huggins exchange energy

parameter. The u#(z) term is the excluded-volume potential and originates

from optimizing the partition function with an incompressibility constraint;

in each coordinate z, the sum of the volume fractions should be unity,

+
x
uxðzÞ ¼ 1. This means that u#(x) is the (free) energy needed to generate

a vacant site in layer z so that the segment can be inserted. The second term

in Eq. 5 accounts for all short-range nearest-neighbor contact energies that

a segment x has with all other segments in the system (again relative to the

interactions it has in the bulk). The angular brackets indicate averaging of

u(z) over the neighboring cells of a site in layer z. This term contains

information on the lattice symmetry, which can be flat, cylindrical, or

spherical. The Flory-Huggins parameter xxy describes the interaction

between segments of type x and type y. This dimensionless parameter has

a positive value when the attractive interactions between xx and yy pairs are

larger than those between two xy pairs. At negative x-parameters, it is the

other way around, i.e., the attractive interactions between the xy pairs are

larger than the average of xx and yy pairs. In the nxecðzÞ term, the

electrostatics are taken into account. The electrostatic potential in a certain

layer, c(z), determines how much energy it costs to place a charge, nx, on

this lattice layer. The valence of segment x is given by nx; e is the elementary

charge. The last term accounts for the fact that the segments can be polarized

in the presence of an electric field. The polarization is a function of the

electric field E ¼ �@c=@z; and its polarizability given by dielectric

permittivity (ex �). The energy gain due to this polarization is again

proportional to E. It can be shown that the free energy gain is just half this

value, i.e., there is a term �1=2e0ðex � 1ÞE2 in the segment potential. The

electrostatic potential c(z), and thus E(z) follow from the total charge

distribution as will be discussed below.

The distribution of a free segment over the layers , is given by its

Boltzmann factor Gx(z),

GxðzÞ ¼ e
�uxðzÞ
kBT ; (6)

which is generalized to

Giðz; sÞ ¼ +
x

GxðzÞdx

i;s; (7)

where dxi;s is unity when segment s of molecule i is of type x and zero

otherwise. To find the volume fraction profileui(z, s) of a particular segment s
in chains of type i, a more complicated procedure is needed. For this purpose,

the segment distribution functionsGi(z, s j 1) are introduced. These functions
are evaluated by step-weighted walks along the contour of chains i, starting at
segment 1 at all allowed positions and finishing after s – 1 stepswith segments

s in layer z. The segment distribution functionGi(z, s j 1) can be obtained from
the segment-weighting factor Gi(z, s) by the recurrence relation

Giðz; s j 1Þ ¼ Giðz; sÞÆGiðz; s� 1 j 1Þæ; (8)

which implies a first-order Markov approximation In Eq. 8, the angular

brackets again denote averaging over neighboring cells. If segment s is of
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type x, the weight of segment s in layer z,Gi(z, s j s), of course equalsGi(z, s).

A similar segments distribution function, Gi(z, s j N), can be obtained

by starting at segment N at the end of the chain instead of segment 1. Now,

u(z, s) can be calculated, taking into account that the segment s in chain

i is connected to both segment s – 1 and s 1 1:

uiðz; sÞ ¼ Ci

Giðz; s j 1ÞGiðz; s jNÞ
Giðz; sÞ

: (9)

Since segment s appears in the segment distribution functions of both chain

ends, the division by Gi(z, s) is needed to correct for double counting. In the

case one chooses to fix the bulk concentration, the normalization factor Ci is

related to the equilibrium volume fraction ub
i in the bulk solution:

Ci ¼
ub

i

Ni

: (10)

When, on the other hand, the number of molecules of type i, ni, is fixed, the

sum of the volume fractions over all layers will yield the total number of

monomers +
z
LðzÞuiðzÞ ¼ niNi, and therefore Ci is given by

Ci ¼
ni

+
z

LðzÞGiðz;N j 1Þ: (11)

The volume fractions of all moieties in the system can now be determined

from the segment-weighting factors, which follow from the potential

energies ux(z). However, the energies ux(z), in turn, determine the volume

fractions as can be seen from Eq. 5. The total charge distribution q(z) follows

from the densities of all charged components in the system:

qðzÞ ¼ +
x

uxðzÞenx:

In addition, the dielectric permittivity profile can be estimated by

eðzÞ ¼ +
x

uxðzÞexe0:

These quantities are then used in the Poisson equation generalized for

dielectric permittivity gradients:

dinðe=cÞ ¼ �q:

Consequently, the set of equations has to be solved iteratively until the

segment potentials and volume fractions are consistent.

Once the self-consistent solution is found from the potential energies and

the segment distribution functions, the equilibrium density profiles and the

potential profiles are known. Moreover, the self-consistent solutions give

access to the thermodynamic quantities such as the free energy, chemical

potential, and the grand potential in the system.

At the self-consistent field solution, the bulk solution is in equilibrium

with the inhomogeneous system. In the bulk solution, the densities of all the

components are known. From these bulk densities, the chemical potentials,

with respect to the pure amorphous reference state, can be calculated:

mi � m
�
i

kBT
¼ lnf

b

i 1 1� Ni +
j

f
b

j

Nj

1
Ni

2
+
x

+
y

xxyðf
�
xi � f

b

x Þðf
b

y � f
�
yiÞ: (12)

The superscript asterisk denotes the reference state of the pure unmixed

components and fxi* is the fraction of segments of molecule i of type x. The

grand potential is given by

V ¼ gA

kBT
¼ �+

z

pðzÞ (13)

in which

pðzÞ ¼ +
i

uiðzÞ � ub

i

Ni

�+
x

uxðzÞuxðzÞ

� 1

2
+
xy

xxy½uxðzÞðÆuyðzÞæ� ub

yÞ � ub

xðuyðzÞ � ub

y Þ�:

(14)

The volume fractions and electrostatic potentials are known everywhere

in the system and therefore the interfacial tension g can be calculated from

the grand potential according to Eq. 13. The values obtained for the grand

potential from the SCF calculations are unequivocal (Oversteegen and

Leermakers, 2000) and therefore the Helfrich constants can be determined

unambiguously. For the calculation of the Helfrich constants, the curvature

dependence of the interfacial tension g is required. The curvature of a lipid

bilayer can be varied in the calculations by changing the amount of lipids in

the system of cylindrical or spherical geometry.

Parameters

Phospholipids were modeled as linear chains with segment sequence

C18X2C2X2C18. The two C18 groups represent the hydrophobic tails; the

X2C2X2 group stands for the hydrophilic headgroup. The X segments carry

some charge (specified below). Water was modeled by a simple solvent

monomer W. The ionic strength of the solution was determined by two

monomer types, cation and anion, with valency11 e and�1 e, respectively.

The contact energy between the hydrocarbon and water is reflected in the

Flory-Huggins interaction parameter xC – W. xC – W is the most important

parameter for membrane formation, as it is the driving force for self-

assembly. The value was chosen to be xC – W¼ 1.6, similar to the value used

in earlier studies (Meijer et al., 1994; Leermakers and Scheutjens, 1988b,a)

and consistent with the dependency of the critical micelle concentration on

the surfactant tail length (Leermakers et al., 1989). The xC – X and xC – ion

are also set to 1.6 to mimic the unfavorable interactions of the X segments

and ions with the hydrocarbons. The lipid headgroup was made soluble in

water by choosing a x-value of�2 for the interaction between the solventW
and the headgroup segment X. Of course, the ions will differ in their

interactions with water from the lipid molecules. To make the interaction

between the water and the ions more realistic, the x-values were varied, as

will be discussed in the Results. In all calculations, the following dielectric

constants were used: eC ¼ 2, eX ¼ ecation ¼ eanion ¼ 5, and eW ¼ 80.

RESULTS

Effect of the number of freeze-thaw cycles on
vesicle size

The effect of freezing and thawing on the size of phos-

pholipid vesicles was investigated with dynamic light scat-

tering. Fig. 1 shows the radius of DOPG vesicles in 200 mM

(SUVs) and 300 mM (giants) NaBr solutions as a function

of the number of freeze-thaw cycles.

Giant DOPG vesicles fragmented into smaller ones during

freeze-thawing. After 12–15 cycles, their size was judged to

stabilize. When small unilamellar DOPG vesicles (SUVs)

were subjected to the same procedure, they grew in size.

Again, after 12–15 freeze-thaw cycles, their size did not

change anymore. With increasing number of freeze-thaw

cycles, the standard deviation of the vesicle radii distribution

became smaller, indicating an increase in homodispersity.

The final radius of the DOPG vesicles did not depend on the
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starting size, but was determined only by the ionic strength

of the salt solution.

Evolution of vesicle size in time

Though the starting size had no influence on the final vesicle

size in the freeze-thaw experiment, it is not clear whether this

size represents the stable size of the vesicle, or is just a result

of the preparation method. Therefore, the size evolution of

vesicles that were brought into suspension was followed in

time. These vesicles were not subjected to the freeze-thaw

method. Fig. 2 shows the results of the size evolution of

DOPG vesicles in three different salt concentrations.

At all salt concentrations, the vesicle radius decreased

with time, but the higher the ionic strength of the solution,

the slower the observed size decrease. The initial vesicle

radius, as it was found after suspending, was also sig-

nificantly higher at higher salt strength. This is probably

due to the increased screening of the charge on the

phospholipid by the salt, which renders the phospholipid

less soluble (Marsh and King, 1986; Cevc, 1993), giving rise

to larger aggregates and a slower exchange of lipids between

them. Vesicles normally change in size by the diffusion of

lipid monomers between the vesicles (Madani and Kaler,

1990; Olsson and Wennerström, 2002). Only in the case of

no added salt is the exchange of material between vesicles

fast enough to reach a stable size. In demineralized water, the

suspended DOPG vesicles evolved to the same radius as the

ones obtained after the freeze-thaw experiment. This result

implies that the vesicles we observe probably represent the

entropically stabilized structure of charged phospholipids. If

the exchange of material between the aggregates can take

place fast enough, completely different methods of vesicle

preparation give rise to vesicles of the same size. Apparently,

the freeze-thaw procedure just accelerates the exchange of

lipid and the reconstruction of vesicles.

Concentration dependence of vesicle radius

Belowwewill argue that the vesicles, produced by the freeze-

thaw method, are entropically stabilized. In this case, one

expects that there is an effect of dilution on size. Moreover,

for membranes with a high bending modulus vesicles will

only be stable in the very dilute regime. The values reported

for the bending moduli of phosphatidylcholine (PC) mem-

branes are in the order of 10–40 kBT (Seifert and Lipowsky,

1995; Meleard et al., 1998; Rawicz et al., 2000), which is

rather high. The dependence of the lipid concentration during

production on the vesicle size therefore deserves attention.

Suspensions of 10�3–10 mM DOPG were subjected to the

freeze-thaw procedure. Fig. 3 shows the dependence of the

FIGURE 1 Radius of large multilamellar DOPG vesicles in 300 mM

NaBr (d) and small sonicated DOPG vesicles in 200 mM NaBr (s) as

a function of the number of repeated freeze-thaw cycles, N.

FIGURE 2 Size evolution of multilamellar DOPG vesicles was followed

in time. Data are shown for DOPG vesicles in (s) demineralized water, (d)

25mM NaCl, and (n) 200mM NaCl. The higher the electrolyte

concentration, the slower the vesicle size decreases. In demineralized water,

the radius evolves to the radius found after 15 freeze-thaw cycles.

FIGURE 3 Vesicle size as a function of the concentration of DOPG. Data

are shown for DOPG in 300mM NaCl.
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vesicle radius, after 15 freeze-thaw cycles, on the phospho-

lipid concentration (cDOPG) in a 300 mM NaCl solution.

At a low lipid concentration, the size of the vesicles grew

with increasing cDOPG; the data can be fitted with a power

;0.1.

In the case where the total curvature energy is lowered due

to contributions of the translation entropy only, R is expected

to scale �RR} ðflipidÞ
1
4 (Safran et al., 1991). When the undula-

tional entropy is also taken into account by renormalization

of the bending modulus, R scales as �RR} ðclipidÞ
3
20 (Simons and

Cates, 1992; Herve et al., 1993). This value is very close to

the experimentally found power law. It is therefore most

likely that DOPG vesicles in salt solution prepared by the

freeze-thaw method are stabilized by undulation entropy.

Around cDOPG ¼ 2 mM, the vesicle size stabilized, or

decreased slightly with increasing cDOPG. At these high lipid
concentrations, the packing of vesicles becomes more dense

(volume faction of vesicles, fvesicle � 0.1), excluded volume

interactions can no longer be neglected (Simons and Cates,

1992), and the radius levels off (or decreases slightly) with

increasing cDOPG.
DOPC behaved slightly different from DOPG. We were

able to produce vesicles of DOPC in NaBr by freeze-thawing,

but not inNaCl. InNaCl,multilamellar sheets were formed up

to very high salt concentrations. At high concentrations of

NaBr, a well-defined vesicle size was obtained after freezing

and thawing, for different starting conditions. But at low

concentrations of salt, the system phase-separated into

a vesicle-rich and a lamellar phase. Therefore, it seemed

interesting to have a look at the size of DOPG and DOPC

vesicles in a range of salt concentrations.

Salt dependence of the entropically stabilized
vesicle radius

The freeze-thaw procedure was applied to DOPG and DOPC

vesicle suspensions in a range of NaBr concentrations. The

effect of the ionic strength on the final (after 15 cycles)

vesicle radius is shown in Fig. 4.

In Fig. 4, two regimes are visible for DOPG vesicles. At

a low NaBr concentration, the vesicle radius decreased with

increasing ionic strength. At a low ionic strength, the radius

of the DOPG vesicles decreased fast with NaBr concentra-

tion. At a high NaBr concentration, a modest size increase

was visible with increasing salt strength. The freeze-thaw

method only gave stable DOPC vesicles at high NaBr

concentration. The radius of these DOPC vesicles decreased

slightly up to 150 mM NaBr; in even higher NaBr con-

centrations, R increases with ionic strength. The slopes of

the DOPG and DOPC curves at higher ionic strength were

comparable, but here the less-charged DOPC vesicles are

always smaller. At concentrations higher than 400 mM salt,

the polydispersity of the samples increased, and with in-

creasing salt concentration, aggregates became visible. At

these high salt concentrations, the dynamic light scattering

results were therefore assumed not to represent the radius of

single vesicles.

It is known from literature that PC lipids in salt solutions

behave in some ways as if they were slightly negatively

charged (Tatulian, 1983). Despite their zwitterionic nature,

PC lipid vesicles in salt solution show electrophoretic

mobility. The charging can be ascribed to a binding of anions

to the trimethylammonium group of the PC lipid. The net

charge on the vesicle surface depends on the salt concentra-

tion and the kind of salt used. The order of effectiveness to

increase the headgroup charge is in agreement with the

lyotropic series; in this respect, I� is more effective than Br�,

and Br� is more effective than Cl�. Comparing DOPG and

DOPC vesicles in a certain salt solution is actually the same as

comparing vesicles with a difference in surface charge

density. Initially, a lower surface charge density gives rise

to a slower size decrease. But at higher ionic strength, the

curves for high and low surface charge density cross (Fig. 4).

Vesicles with a low surface charge density reach a smaller

vesicle radius at high ionic strength.

Ions do not only influence the vesicle radius by specific

binding. Variations in ion hydration can have a large influence

on vesicle size. To test the role of ion hydration on the radius

of DOPG vesicles, three different salts in the lyotropic series

were tested. In this series, the strength of hydration decreases

in the order Cl�.Br�. I�. Fig. 5 presents the data obtained

for DOPG in NaCl, NaBr and NaI solution.

The initial size decrease with ionic strength was

comparable for all salts used. However, at high ionic

strength, the size of vesicles in NaI was always smaller than

that of vesicles in NaBr, and these were in turn smaller than

those in NaCl. The stronger the ion is hydrated, the more the

bilayer membrane is dehydrated. Therefore, the ionic

FIGURE 4 Size of DOPG (d) and DOPC (s) vesicles in NaBr after 15

freeze-thaw cycles as a function of ionic strength. The phospholipid

concentration during freezing and thawing was 2 mg/ml. The R versus cs
curves can be divided into two regimes: at low ionic strength, the vesicle

radius decreases, whereas it increases at higher salt concentrations.

Charged Lipid Vesicles 3887

Biophysical Journal 87(6) 3882–3893



strength at which the vesicle radius starts to increase is much

lower for strongly hydrated ions. As a consequence, vesicles

reach smaller radii in solutions of weakly hydrated ions at

high ionic strength.

Perturbations

Osmotic gradients over the lipid bilayer may force the

vesicles to equilibrate to the new situation. When salts are

used to apply this osmotic gradient, the vesicle radii can be

compared to those obtained with the freeze-thaw method for

different salt concentrations. The radius of vesicles, prepared

in demineralized water, was observed to decrease when

subjected to sudden increases of osmotic strength. A stepwise

increase from 0 to 400 mM NaBr led to a decrease in the

hydrodynamic radius of ;40 nm. For vesicles in 400 mM

NaBr, a decrease in the radius of;10 nmwas observed when

the salt concentration was lowered to 25 mM. The vesicles

did not obtain the same size, but changed in the direction of

those that were prepared by the freeze-thaw method.

Self-consistent field calculations

The mechanical parameters from the Helfrich equation can

be determined unambiguously from SCF calculations. They

follow from the curvature dependence of the interfacial

tension (Oversteegen and Leermakers, 2000). The curvature

of the bilayer can be varied by changing the number of lipid

molecules in the system. For a given number of lipid

molecules, the constrained (i.e., the geometry is an input

constraint) equilibrium density profiles were calculated.

From the resulting interfacial tensions of both a spherical and

a cylindrical vesicle as a function of the vesicle radius, the

Helfrich constants are calculated. For a cylindrical vesicle

(K¼ 0, J ¼ 1=R; and A¼ 2pRh, where h is the length of the
cylinder), Eq. 2 can be written as

gA=h ¼ �2pkcJ0 1pkcJ; (15)

in which h is the length of the cylinder. For a spherical

vesicle (J2¼ 4K¼ 4/R2 and A¼ 4pR2), gA can be written as

gA ¼ �8pkcJ0R1 4pð2kc 1 �kkÞ: (16)

Thus, kc was determined from a cylindrical interface, by

varying the total curvature J. This kc was subsequently used

to derive �kk from the data on the spherical geometry. Fig. 6

shows the dependence of gA on the mean curvature J for

a bilayer composed of C18X2C2X2C18 in cylindrical lattice

geometry.

As predicted in Eq. 15, gA depended linearly on J. By
extrapolating the gA versus J data, J0 can be calculated. For

the one-component systems studied here, extrapolation of

the g versus J data to zero interfacial tension yielded a zero

abscissa for all ionic strengths studied. This means that

a bilayer composed of a single charged lipid species has no

spontaneous curvature, J0 ¼ 0. The mean bending modulus

kc follows from the slope of the curve. Fig. 7 gives the

corresponding result for a spherical vesicle.

The curve is in agreement with Eq. 16, provided that the

vesicle does not have a spontaneous curvature. For small

values of R, gA is no longer constant. One method to deal

with small values of R (and large values of the curvatures J
and K) is to extend the Helfrich equation to include higher-

order terms in the curvature. When this route is chosen, one

will obtain values for yet more mechanical parameters

(related to terms of order 1/R4). One can also insist on the

Helfrich equation (i.e., use only terms of order 1/R2). Then,

the bending moduli kc and �kk become a function of R. Bilayer
stability depends on the values of the bending moduli kc and
�kk. Mechanically stable bilayers are only found if the total free

energy of bending is positive. In a spherical geometry, this

means that 2kc1�kk. 0. At very low ionic strength, the total

bending energy of the bilayers becomes negative and the

vesicle will break up into small micelles. All the data shown

FIGURE 5 Radius R of DOPG vesicles as a function of ionic strength.

Vesicles were prepared by freeze-thawing DOPG vesicles 15 times in NaCl

(d), NaBr (s), and NaI (:).

FIGURE 6 gA/h as a function of the mean curvature J for a lipid bilayer

in a cylindrical lattice geometry at a volume fraction of salt, fs ¼ 0.01.
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below pertain to mechanically stable vesicles. It should be

kept in mind that the kc found in the calculations represents

an intrinsic instead of an effective kc, as shape fluctuations

are not taken into account in the SCF calculations. To obtain

kc and �kk for phospholipid-like bilayers, the calculations were
first performed with the default choice of x-parameters. This

default choice can be made by assuming that, except for their

charge, the electrolyte ions are identical to the solvent

monomers in their interactions with water and the hydro-

phobic tails. The total charge on the headgroup was chosen

to be �1; this corresponds to a valence of �1/4 per X. With

these assumptions, kc is found to decrease with ionic strength
(Fig. 8). This decrease indicates that the bending is

dominated by electrostatic effects. With increasing salt

concentration, the diffuse double layer around the negatively

charged vesicle surface will become thinner, and therefore kc
will decrease. However, the bilayer itself will become

thicker, as closer lipid packing is possible when the charges

get screened at high salt concentrations. The increase in

bilayer thickness is apparently not as effective as the

decrease in diffuse double layer thickness. The result is

a decrease in total thickness of the bilayer plus the electric

double layer, and therefore a decrease in kc. The assumption

that xW � ion ¼ 0 is probably an oversimplification, as ions

are hydrated. The introduction of a negative x-parameter for

the interaction between the solvent W and the ions therefore

seems justified. When a value of �2 is chosen for xW � ion,

two regimes become visible in the kc versus ionic strength

plot (Fig. 8). In the low ionic strength regime, kc decreases,
whereas at higher ionic strengths it increases significantly

with salt concentration. Apparently, the increase in bilayer

thickness overrules the decrease in double layer thickness

at high ionic strength. As the ionic strength increases, the

dehydration effect becomes more important. Membrane de-

hydration will cause the lipids to pack into a more dense

bilayer at a high salt concentration (Fig. 9).

The decrease in solvent quality causes the membrane to

become thicker and thus kc to increase; this effect is the domi-

nating one at high ionic strength.

Our calculations can be further refined by making

a difference in the affinity of cations and anions for the

solvent W. Cations are known to be much smaller than

anions; as a result their surface charge is more concentrated,

and they are therefore more strongly hydrated. The

difference in affinity of anions and cations for the solvent

has been modeled by choosing a more negative value for

xW � cation than for xW � anion.

Experimental results on the vesicle radius as a function of

ionic strength were obtained for three different anions all

with the same cation. The anions differ in their degree

of hydration. The difference in hydration has been modeled

FIGURE 7 gA as a function of the vesicle radius R (lattice layers) at

fs ¼ 0.01. The calculations were performed in spherical lattice geometry.

FIGURE 8 Mean bending modulus, kc, of a charged C18X2C2X2C18

bilayer membrane as a function of the ionic strength. If ideal (athermal)

interaction between water and ions is assumed (xW � ion ¼ 0), kc is

decreasing (d); when ion hydration is taken into account (xW � ion ¼ �2),

two regimes become visible (s).

FIGURE 9 Half the bilayer thickness d in lattice layers, as a function of

ionic strength for xW � ion ¼ �2 (s) and xW � ion ¼ 0 (d).
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in the calculations by choosing three different values for

xW � anion while keeping xW � cation constant (Fig. 10).

With decreasing xW � anion, the bilayer becomes slightly

more dehydrated. The initial decrease in kc with ionic

strength is the same for all x-parameters used; the differences

can be found in the increase in kc at higher ionic strength.

The more negative the value for xW � anion, the lower the

ionic strength at which the increase in kc starts. As a result,
lower kc values are reached for lower values of xW � anion.

The increase in kc at high ionic strength is much faster for

a high value of xW � anion than for lower values. Variations in

the hydration of ions seem to be the main reason for the ion-

specific behavior of kc with ionic strength.

DOPG is a negatively charged phospholipid, whereas

DOPC is zwitterionic. Until now, we only dealt with lipids

carrying a net charge. These lipids are probably not

representative for DOPC lipids. Therefore, the model lipid

was slightly modified by replacing one of the X2 segments by

a segment Y2 (C18X2C2Y2C18), in which Y carries the same

but opposite charge as X. Aggregates of these lipids behaved

similar to vesicles of neutral lipids, as can be seen in Fig. 11.

On the other hand, it is well known from the literature

(Tatulian, 1983) that vesicles of PC lipids in salt solution have

an electrophoretic mobility. This effect has been ascribed to

the specific binding of ions to the PC membrane. Anions

increase the surface charge of PC vesicles, by specific binding

to the trimethylammonium group, in the order of the lyotropic

series, Cl� , Br� , I� , SCN� (Tatulian, 1983). But

although PC membranes are supposed to have a net negative

charge, this charge will not be as large as the charge on the

anionic PG bilayers. To gain insight into the effect of the

headgroup charge, calculations have been done for amphi-

philes with a different headgroup charge. Fig. 11 shows kc as
a function of ionic strength for two headgroup charges. Again

two regimes can be distinguished. The decrease in kc is faster

for lipids with a higher headgroup charge. In the decreasing

regime, kc of the higher-charged lipid is always smaller than

that of the less-charged one. In the regime where kc increases
as a function of the ionic strength, it is the other way around:

kc of the higher charged lipid is always larger. The energy

needed to curve a flat bilayer into a closed vesicle Eves is

determined by the sum of 2kc and �kk. If the bilayer has no

spontaneous curvature, Eves becomes

gA ¼ Eves ¼ 4pð2kc 1 �kkÞ (17)

and can be determined from the calculations in a spherical

geometry. The value of Eves is of great interest for the

understanding of vesicle stability. To get more insight into

the behavior of the curvature energy of charged lipid bilayers

with ionic strength, Eves was calculated for bilayers

composed of lipids that differ in headgroup charge (Fig.

12). In these calculations, we made use of the same

FIGURE 10 Mean bending modulus kc versus ionic strength. Data are

shown for xW � anion ¼ 0 (d), xW � anion ¼ �1 (s), and xW � anion ¼ �2

(:); in all cases, xW � cation ¼ �2.

FIGURE 11 Mean bending modulus, kc, of a bilayer membrane as

a function of ionic strength. The charges on the lipids’ headgroup were �1

(d), or�1/2 (s), or the headgroup was zwitterionic (:) or not charged (n).

FIGURE 12 Curvature energy Eves as a function of the ionic strength

for bilayers that carry no charge (d), a charge of �2/5 e (s), and a charge

of �1 e per lipid molecule (3).
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parameter set as in Fig.11. For all headgroup charges, Eves

increases as a function of the ionic strength. But at all salt

concentrations, the curvature energy is the highest for the

uncharged bilayers and decreases with increasing headgroup

charge. The differences in the bending energy of the bilayer

between charged and uncharged lipids are particularly large

at low ionic strength. For the charged lipid bilayers, Eves

becomes even negative at very low ionic strength. Then the

mechanical stability of the bilayer is lost and the formation of

micellar structures is preferred. With increasing ionic

strength, the charge on the bilayer gets screened; the

curvature energy therefore becomes comparable to that of

the uncharged membrane. The mean bending modulus kc is
higher for the charged lipid bilayer compared to the

uncharged membrane. The lower curvature energy of the

uncharged bilayers must therefore be the result of more

negative values of �kk. The Gaussian bending modulus can be

calculated from the known values of Eves and kc. Fig. 13
shows the behavior of �kk as a function of salt concentration.

For all headgroup charges, �kk becomes less negative with

increasing ionic strength. The more negatively charged

bilayers, however, have a much more negative value of �kk at

low salt concentrations.

DISCUSSION AND CONCLUSIONS

Despite the high mean bending moduli that have been

reported in the literature, our experiments indicate that

(charged) phospholipid bilayers may form vesicles that are

stabilized by entropy. The experiments show that vesicles in

salt solution made by freeze-thaw experiments are very

likely close to their entropically stabilized size. When

vesicles are subjected to the freeze-thaw method, the initial

size of the vesicles has no influence on the vesicle radius that

is finally obtained (Fig. 1). The final vesicle radius only

depends on the kind of salt, the salt concentration, the

phospholipid concentration, and the phospholipid used. In

addition, a complementary preparation method shows that, if

the exchange of material between the vesicles is fast enough,

vesicles tend to evolve spontaneously to the size obtained

with the freeze-thaw method (Fig. 2). The fact that these

vesicles do not form spontaneously upon addition of a salt

solution is probably due to the very low solubility of the

phospholipids. Although the critical micelle concentration

(CMC) of charged phospholipids is much higher than the

CMC of zwitterionic or uncharged phospholipid species, the

CMC of the charged phospholipids decreases dramatically as

the ionic strength increases (Marsh, 1986; Cevc, 1993). The

bulk concentration of lipid becomes very low, and therefore

the exchange of material between vesicles becomes slower

with increasing ionic strength. Presumably, this is also the

reason why phospholipid vesicles can be prepared in

particular sizes and remain as such without fast reequilibra-

tion. In this respect, the freeze-thaw procedure is very

helpful; it seems to be a method for fast vesicle equilibration.

It is, however, not clear how the freeze-thaw procedure helps

to redistribute lipid material between the vesicles. One

possibility is that freeze-thaw cycling disrupts the vesicle

membrane into small fragments, which recombine to form

new vesicles. For vesicles of a single lipid species, the

spontaneous curvature J0 is expected to be zero; this was also
found in the self-consistent field calculations. If the vesicles

found in our experiments are in thermodynamic equilibrium,

the curvature energy of the bilayer must be compensated for

by entropy.

Our SCF calculations show that the curvature energy is

a function of the charge on the lipid bilayer and the ionic

strength of the solution (Fig. 12). At low ionic strength, the

curvature energy of a charged lipid bilayer is considerably

lower than that of a bilayer carrying less or no electric

charge. At relatively low ionic strength, kc and �kk of charged

lipid bilayers are opposite in sign but of the same order of

magnitude. The curvature energy of the charged lipid bilayer

is therefore lower than what one would expect based on the

value of kc alone. At low ionic strength, the curvature energy

of the charged lipid bilayer is probably low enough to be

compensated for by entropy. For entropically stabilized

vesicles, a dependence of the vesicle radius on the lipid

concentration was predicted. In the limit where translational

entropy plays a role, vesicles with kc � 1 are only stable at

low volume fractions of lipid (Safran, 1994).

In our experiments, two regimes can be distinguished in

the dependence of the vesicle radius, R, on the DOPG

concentration. In the dilute regime, R increases with the lipid

concentration. The power law dependence between phos-

pholipid concentration and vesicle size agrees with the

behavior predicted for vesicles that are stabilized by

translational entropy and a renormalization of the bending

moduli (Simons and Cates, 1992; Herve et al., 1993). At

FIGURE 13 Gaussian bending modulus, �kk; of a bilayer membrane as

a function of ionic strength. The value of �kk strongly depends on the charge

on the headgroup. The less charge on the headgroup, the closer the

membrane is to �kk ¼ 0 . The charges on the lipids’ headgroup were �1 (d),

or �1=2 (s), or the headgroup was zwitterionic (:) or not charged (n).

Charged Lipid Vesicles 3891

Biophysical Journal 87(6) 3882–3893



higher lipid concentrations, R stays constant, or decreases

slightly with increasing lipid concentrations. There are

several ways in which the additional membrane surface

area that arises at higher lipid concentrations can be ac-

commodated (Simons and Cates, 1992). The system can sim-

ply form a lamellar phase, or the vesicles can shrink in size

and so accommodate the extra mass fraction while remain-

ing at the overlap threshold, and finally the vesicles may

become nested in onions.

It is not entirely clear which of the two last possibilities

refers to our system. The system did not show any

birefringence, and the polydispersity of the sample did not

change much. The results we obtained with the SCF

calculations on the behavior of kc as a function of the ionic

strength agree qualitatively with theoretical predictions.

Using a Poisson-Boltzmann (Lekkerkerker, 1989) or a De-

beye-Huckel (Winterhalter and Helfrich, 1988) approxima-

tion, it was shown that given a certain charge density, the

electrostatic contribution to kc, k
el
c ; decreases with increasing

ionic strength. The decrease in kelc can be attributed to

a decrease in the thickness of the electric double layer.

Increasing the ionic strength, however, also results in

a screening of the charges on the lipid headgroups. In a real

lipid bilayer, the predicted decrease in kelc is therefore partly

compensated for by a closer packing of the lipids in the

bilayer. As headgroup area adjustments are included in our

SCF-calculations, the overall kc we observe decreases not as
fast as was predicted for kelc : When entropic contributions

make the formation of vesicles possible by compensating for

the curvature energy of the bilayer, the size of these vesicles

is expected to be determined by the mean bending modulus

of the bilayer. The trends seen in the kc curves (calculations,
Fig. 11) as a function of ionic strength strongly resemble

those of the vesicle size (experiments, Fig. 4) as a function of

ionic strength. When the vesicle size is indeed determined by

kc, the initial decrease in vesicle size can be attributed to the

decreasing thickness of the diffuse double layer with

increasing salt concentration. The size increase at high ionic

strength is due to a thickening of the lipid bilayer.

Calculations show that with increasing ionic strength, the

membrane dehydrates, which leads to closer lipid packing,

a thicker membrane, and therefore a higher kc. The behavior
of kc observed at high ionic strength was not predicted by

theory and can be understood in terms of ion and membrane

hydration as will be discussed below.

To understand the effect of Cl�, Br�, and I� on the bilayer

membrane, ion hydration has to be taken into account. Cl�

ions are more strongly hydrated than Br� and I� ions;

therefore, ions tend to dehydrate the membrane in the series

Cl� . Br � . I�. In the calculations, this was simulated by

choosing different x-parameters for the interactions between

the anions and the solvent. The more negative x-parameter

corresponds to the more strongly hydrated anion. The cation

Na1 is, due to its surface charge density, even more strongly

hydrated than both anions and therefore its x-parameter is

the most negative. In the calculations, the most negative

xW � anion gives rise to the highest kc values. For entropically
stabilized vesicles, higher vesicle radii are expected for

higher kc values. Ion hydration does not only affect the

absolute value of kc, the increase in kc with ionic strength is

also faster for the lowest xW � anion. Experiments on DOPG

vesicles in NaCl, NaBr, and NaI show that the vesicles in

NaCl are always larger than the ones in NaBr, and these are

always larger than the ones in NaI. In the high ionic strength

regime, the radii of the DOPG vesicles in NaCl also increase

faster with ionic strength than similar vesicles in the other

salt solutions. Also, for this situation, kc from the cal-

culations and the experimentally determined vesicle radius

show the same trends in their behavior as a function of ionic

strength (Figs. 10 and 5).
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