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We introduce a powerful method for exploring the properties
of the multidimensional free energy surfaces (FESs) of complex
many-body systems by means of coarse-grained non-Markovian
dynamics in the space defined by a few collective coordinates. A
characteristic feature of these dynamics is the presence of a
history-dependent potential term that, in time, fills the minima in
the FES, allowing the efficient exploration and accurate determi-
nation of the FES as a function of the collective coordinates. We
demonstrate the usefulness of this approach in the case of the
dissociation of a NaCl molecule in water and in the study of the
conformational changes of a dialanine in solution.

Molecular dynamics (MD) and the Monte Carlo simulation
method have had a very deep influence on the most

diverse fields, from materials science to biology and from
astrophysics to pharmacology. Yet, despite their success, these
simulation methods suffer from limitations that reduce the scope
of their applications. A severe constraint is the limited time scale
that present-day computer technology and sampling algorithms
explore. In particular, there are many circumstances where the
free energy surface (FES) has several local minima separated by
large barriers. Examples of these situations include conforma-
tional changes in solution, protein folding, first-order phase
transitions, and chemical reactions. In such circumstances a
simulation started in one minimum will be able to move spon-
taneously to the next minimum only under very favorable
circumstances. A host of methods have been suggested to lift this
restriction and explore the FES (1–13) or to characterize the
transition state (14, 15). Here we propose a solution to this
problem by combining the ideas of coarse-grained dynamics (16,
17) on the FES (10, 12) with those of adaptive bias potential
methods (2, 11), obtaining a procedure that allows the system to
escape from local minima in the FES and, at the same time,
permits a quantitative determination of the FES as a byproduct
of the integrated process.

Methodology
We shall assume here that there exists a finite number of relevant
collective coordinates si, i � 1,n where n is a small number, and
we consider the dependence of the free energy �(s) on these
parameters. Practical examples of appropriate choices of these
variables will be given below. The exploration of the FES is
guided by the forces Fi

t � �����si
t. To estimate these forces

efficiently, we introduce an ensemble of P replicas of the system,
each obeying the constraint that the collective coordinates have
a preassigned value si � si

t, and each evolved independently at the
same temperature T. Since the P replicas are statistically inde-
pendent, the estimate of thermodynamic observables (e.g., the
forces on the constraints) is improved with respect to an eval-
uation on a single replica, and it can be parallelized in a
straightforward manner. The constraints are imposed on each
replica via the standard methods of constrained molecular
dynamics (18) by adding to the Lagrangean a term �i�1,n�i(si �si

t)
where �i are Lagrange multipliers. Averaging over the time and
over the replicas we can evaluate the derivative of the free energy
relative to si

t as Fi
t � ��i� (1, 4). For the sake of simplicity we

neglect here the small kinematic correction term discussed in ref.
4, although this can be added easily. Taking a cue from the work
of Kevrikidis et al. (16), we use these forces, determined by

microscopic dynamics, to define coarse-grained dynamics in the
space of the sis. In our case the definition of these dynamics is
rather arbitrary and designed only to explore the FES efficiently.
The dynamics is defined from the discretized evolution equation:

�i
t � 1 � �i

t � ��
�i

t

��t� . [1]

In Eq. 1 we have introduced the scaled variables �i
t � si

t��si and
the scaled forces �i

t � Fi
t�si, where �si is the estimated size of the

FES well in the direction si, ��t� is the modulus of the n-th
dimensional vector �i

t and �� is a dimensionless stepping pa-
rameter. It should be stressed that Eq. 1 has the form of a
steepest descent equation in the direction given by the forces �i

and does not imply any real dynamical evolution. The index t is
only used to label the states. After the collective coordinates are
updated by using Eq. 1, a new ensemble of replicas of the system
with values �i

t�1 is prepared, and new forces Fi
t�1 are calculated

for the next iteration. At the same time the driving forces are
evaluated from the microscopic Hamiltonian in short standard
microscopic MD runs. Since there is no dynamical continuity
between the P replicas at different iterations, one can use large
values of �� and move very efficiently in the space of the
collective coordinates.

Clearly Eq. 1 alone cannot guarantee an efficient exploration
of the FES, nor is it useful to determine the FES. This task can
be achieved if we replace the forces in Eq. 1 with a history-
dependent term (2, 11):

�i 3 �i �
�

��i
W �

t� 	 t

�
i

e�
��i � �i

t��2

2��2 , [2]

where the height and the width of the Gaussian W and �� are
chosen to provide a reasonable compromise between accuracy
and efficiency in exploring the FES, as we will show below. The
component of the forces coming from the Gaussian will dis-
courage the system from revisiting the same spot and encourage
an efficient exploration of the FES. As the system diffuses
although the FES, the Gaussian potentials accumulate and fill
the FES well, allowing the system to migrate from well to well.
After a while the sum of the Gaussian terms will almost exactly
compensate the underlying FES well. A typical example of this
behavior is shown in Fig. 1, in which the dynamics in Eq. 1 is used
to explore a one-dimensional potential energy surface (PES)
V(�) with three wells. The dynamics start from a local minimum
that is filled by the Gaussians in 	20 steps. Then the dynamics
escapes from the well from the lowest energy saddle point, filling
the second well in 	80 steps. The second highest saddle point is
reached in 	160 steps, and the full PES is filled in a total of 	320
steps. Hence, in the case of this example, since the form of the
potential is known, it can be verified that, for large t and if the
width of the Gaussians is sufficiently small with respect to
the length of a typical variation of V,
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modulus an additive constant. The same property can be verified
for any multidimensional potential if the variables �i are allowed
to vary in a finite region. Hence, we assume that Eq. 3 holds also
if the method is used to explore the FES, and that the free energy
can be estimated from Eq. 3 for large t. This procedure resembles
the algorithm recently proposed by Wang and Landau (11), in
which a time-dependent bias is introduced to modify the density
of states to produce locally f lat histograms.

We observe an interesting isomorphism between our dynamics
and the ordered deposition of the beads of a polymer chain on
the FES. In fact, we can regard �i

t as the position of a monomer
in the n-dimensional parameter space. Each monomer is held at
a distance �� from the previous one and monomers repel each
other with the Gaussian term of Eq. 2. Neglecting terms of order
��2 each monomer is placed by Eq. 1 in the position of free
energy minimum compatible with the requirement of minimum
overlap with previous beads. Hence, the polymer chain gener-
ated in this manner fills the wells in the FES. This isomorphism
helps to clarify how our approach works and why it can be made
more precise by reducing ��.

The efficiency of the method in filling a well in the PES (or in
the FES) can be estimated by the number of Gaussians that are
needed to fill the well. This number is proportional to (1���)n,
where n is the dimensionality of the problem. Hence, the
efficiency of the method scales exponentially with the number of
dimensions involved. If n is large, the only way to obtain
reasonable efficiencies is to use Gaussians with a size compa-
rable to that of the well. On the other hand, a sum of Gaussians
can only reproduce features of the FES on a scale larger than
	��. A judicious choice of �si, W, and �� will ensure the right
compromise between accuracy and sampling efficiency, and the
optimal height and width of the Gaussians are determined by the
typical variations of the FES.

If prior information on the nature of the free-energy well is not
available, the scaling parameters �si are chosen by performing
short coarse-grained dynamic runs without bias potential (see
Eq. 1). In such a case the system moves around the minimum.
The scaling parameters are chosen so that the elongations have
approximately the same value in all directions. This amounts to

an empirical form of preconditioning that makes the FES
minimum nearly spherical in n dimensions and easy to fill with
n-dimensional Gaussians.

The metastep length �� determines the efficiency of the
method in a manner that is exponential in n and it should be
made as large as possible. However, the dynamics in Eq. 1 is able
to reconstruct details of the FES only on the length scale of ��.
Moreover, an over-large value of �� would cause the system to
jump irregularly from one basin to the other. The value of �� is
chosen requiring the metatrajectory to remain localized in the
FES minimum if the bias potential is not applied. With this
choice of ��, a single step of the dynamics in Eq. 1 cannot lead
a system from a FES minimum to another, and the initial state
at each new iteration can be generated from the last MD step of
the previous iteration without creating major overlaps. Since the
shake algorithm is used to impose a new set of �i

t�1 values, large
forces on the constraints are generated at the beginning of each
microscopic dynamics, and the initial part of the trajectory has
to be discarded for the calculation of F i

t�1.
The height of the Gaussians W can be estimated as follows. We

notice that we want to reach a situation in which the modified
FES is flat. In such a case the forces coming from the FES and
that coming from the Gaussian approximately balance each
other. If we require the maximum value of the Gaussian forces
to be smaller than the typical FES force, we arrive at the relation
W���e�1/2 � 
�Fi

2�1/2 with 
 � 1. In all cases so far studied a value
of 
 close to 0.5 allows a fast escape from the local minima in the
FES without significant loss of the underlying structure.

In the future adaptive ways of determining all of these
parameters should be considered for adapting the procedure in
an optimal manner to the local shape of the FES.

Results
Dissociation of NaCl in Water. We first discuss an application of the
method to the dissociation of a NaCl molecule in water. The
most stable state is the dissociated one, whereas the undissoci-
ated contact ion pair corresponds to a metastable local mini-
mum. Here we shall study how the system escapes from this
metastable state. We model the system by using the AMBER95
force field (20) and solvate the NaCl complex in 215 TIP3P water
molecules with periodic boundary conditions. The electrostatic
interaction between classical atoms is taken into account by the
P3M method (19). As collective coordinates, we use the distance
rNa-Cl between Na and Cl, and, to take into account the dynamics
of the solvation shell during the dissociation, we also use the
electric fields VNa and VCl on the Na and on the Cl due to the
water molecules within 	6.5 Å of the ions. VNa and VCl depend
significantly on the hydration pattern around the Na and on the
Cl ion. If, for example, a hydrogen bond to one of the two ions
is formed or broken, the field on the ion changes by several
kcal�mol. A dynamic of the form in Eq. 1 was performed on the
system, with �� � 0.25 and W � 0.3 kcal�mol. The scaling
parameters �si were 0.53 Å, 32 and 32 kcal�mol for rNa-Cl, VNa,
and VCl, respectively. The forces in Eq. 1 were evaluated by short
MD runs with a time step of 0.7 fs performed on six replicas of
the system. The replicas were equilibrated for 200 MD steps at
300 K, and the forces were evaluated by averaging over the
following 500 MD steps. Starting from a distance of 2.6 Å,
corresponding to a contact pair, the ions dissociate after 120
coarse-grained iterations. The dynamics was then continued for
another 350 steps, imposing a maximum separation of the ion
pair of 5 Å, to study the structure of the FES around the
transition state (see Fig. 2). Seven recrossings for the coarse-
grained dynamics were observed. The transition state is located
rNa-Cl 	4.02 Å, VNa 	�120 kcal�mol, and VCl 	81.5 kcal�mol
(see Fig. 2). The overall topology of the FES confirms the
importance of the solvent degrees of freedom for describing the
reaction, since the transition region is in transverse orientation

Fig. 1. Time evolution of the sum of a one-dimensional model potential V(�)
and the accumulating Gaussian terms of Eq. 2. The dynamic evolution (thin
lines) is labeled by the number of dynamical iterations (Eq. 1). The starting
potential (thick line) has three minima and the dynamics is initiated in the
second minimum.
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relative to the axis of the coordinates (21), and hence neither the
distance nor the fields alone can provide an exhaustive descrip-
tion of the dissociation. The transition barrier (S in Fig. 2),
estimated with thermodynamic integration (4) along rNa-Cl, is of
3.3 kcal�mol. The one-dimensional free energy as a function of
rNa-Cl can also be obtained by integrating the three-dimensional
FES (F3) with respect to VNa and VCl as F1 � 1��log[dVNadVCl
exp(��F3)]. This leads to a barrier of 3.4 kcal�mol. Hence, the
method is able to reproduce the one-dimensional free energy
profile estimated with thermodynamic integration.

We have verified that these collective coordinates identify the
transition state and the reaction coordinate also in the dynamical
sense (14). To this effect we prepared a set of replicas of the
system with the critical values of the collective coordinates. We
then followed the procedure described in ref. 21, assigning to the
particles values of the velocity chosen from a Maxwellian dis-
tribution at 300 K, and following the trajectory backward and
forward in time. By this procedure, we found that, within a time
scale of 200 fs, the overwhelming majority of the replicas fell into
one of the two basins of attraction without any recrossing.
Moreover, the time-reversed dynamics leads systematically to
the opposite basin of attraction (14). Finally, if we prepare the
systems with the SHAKE algorithm (18) for a given value of the
collective coordinates, and if the particle velocities are not
reassigned before letting the system evolve freely, the time
needed to go in either of the attraction basins is of the order of
a few ps, and several recrossings are observed. This is due to the
fact that the SHAKE algorithm imposes zero velocities in the

direction of the constraint and it is only after thermalization,
which takes place in a time scale of picoseconds, that the
collective coordinates acquire sufficient velocity to evolve to-
ward the FES minima. This is a strong confirmation that we have
identified the correct transition state.

To characterize the solvent structure during the dissociation,
we have computed the Na–water pair correlation function at the
transition state S. The coordination number, obtained by inte-
grating the pair correlation function up to a distance of 3 Å, is
5.28. This value is consistent with the picture depicted in ref. 21,
in which the sodium at the transition state is shown to be typically
only 5-fold coordinated.

Isomerization of Alanine Dipeptide in Water. As a second applica-
tion, we used our method to explore the FES of an alanine
dipeptide as a function of the backbone dihedral angles � and
� (ref. 22 and references therein). The system is described by the
all-atom AMBER95 force field (20) and solvated in 287 TIP3P
water molecules. The parameters of the coarse-grained dynamics
of Eq. 1 are �� � 0.25 and W � 0.25 kcal�mol, while the scaling
parameters �si are 60° for both � and �. The other settings are
the same as for the simulation of the Na-Cl complex. The FES
of alanine dipeptide in water has been studied in detail by other
authors [refs. 22 (and references therein) and 23], who identified
several minima. Our dynamics (1) is able to capture the overall
features of the FES extremely quickly. Starting from a config-
uration close to the state C7eq [refs. 22 (and references therein)
and 23], the dynamics fills this attraction basin in approximately
45 steps. The minimum is localized at � 	 �80° and � 	 150°.
The estimated free energy at the saddle point is 2 kcal�mol
higher than the free energy in C7eq. This compares to a value of
2.1 kcal�mol obtained in ref. 22 by thermodynamic integration.
Our estimate is obtained with 45 steps of coarse-grained dy-
namics on six replicas, corresponding to a total of only 	120 ps
of microscopic dynamics. After another 150 steps, the dynamics
fills the attraction basin of the state 
r, which corresponds to the
equilibrium configuration of the system, and recrosses to C7eq.
Finally, the dynamics visits the � � 0 region of the configuration
space after 	300 steps. In Fig. 3 we plot the free energy as a
function of � and � after 40, 100, and 200 steps of coarse-
grained dynamics. Also small details of the free energy land-
scape, like the location of the saddle points and the presence of
secondary minima [e.g., the state C5 (23)], can be detected
graphically after a few steps of coarse-grained dynamics. The
one-dimensional free energy profile as a function of � obtained
by analytic integration of the FES reproduces the profile ob-
tained in ref. 22 within 0.2 kcal�mol for all of the values of �.
Concerning the choice of the collective coordinates for this
system, it should be remarked that the dihedral angles � and �
do not provide a complete description of the dialanine isomer-
ization reaction (ref. 22 and references therein), and the real
reaction coordinate also should take into account the solvent
degrees of freedom. Still, our results show that the method is able
to reproduce the overall feature of the FES even if relevant
degrees of freedom are not explicitly included in the collective
coordinate space. This shows that the neglected degrees of
freedom, although relevant for determining the reaction coor-
dinate, are associated with relatively small barriers and are
sampled efficiently during the microscopic dynamics for each
value of � and �, despite the relatively short runs. This is due
to the use of the replicas and to the ability of the dynamics to
retrace the same region of parameter space during the dynamics.

Discussion
The method is based on the combination of the ideas of
coarse-grained dynamics (16) in the space defined by a few
collective coordinates and the introduction of a history-
dependent bias (2, 11). Constructing dynamics on a FES that

Fig. 2. Free energy as a function of the collective coordinates rNa-Cl, VNa, and
VCl for a Na-Cl complex in water. The two-dimensional free energy F2 shown
here are obtained as F2 � �1�log[dz exp(��F3)], where � is the inverse
temperatures, z is the coordinate not shown here, and the three-dimensional
free energy F3 is estimated with Eq. 3. The contours are plotted every 0.5
kcal�mol. The zero of the free energy corresponds to the metastable minimum
of F in the contact ion pair (C).
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depends on a few collective coordinates, we simplify enormously
the complexity of the problem, which depends exponentially on
the number of degrees of freedom. The FES is much smoother
than the underlying PES and it is topologically simpler, with a
greatly reduced number of local minima. The history-dependent
bias prevents the system from visiting regions it has already
explored. This term is crucial for the efficiency of the method:
for example, Langevin dynamics in the space of the collective
coordinates would provide scant information on the underlying

FES and it would be slower in locating global minima. This has
been checked by performing a Langevin dynamics for the
dissociation of a NaCl molecule in water, with the same collec-
tive variables introduced in Results and adding to Eq. 1 a
Gaussian noise at a temperature T that is gradually reduced (24).
The number of evaluations of the forces required to converge to
the minimum of the FES (i.e., the dissociated state) is well above
1,000, if the temperature is decreased with a logarithic schedule,
as required to ensure quasi-ergodicity in the collective coordi-
nate space (25). A history-dependent bias potential as defined in
Eq. 2 but applied in a regular MD simulation without coarse
graining the dynamics would be efficient in finding escapes from
the local minima, as has been shown (2), but it would not provide
quantitative information about the FES. In particular, Eq. 3
holds only because the dynamic is performed in the collective
coordinates space using the derivatives of the free energy.
Hence, both the coarse-grained dynamics on the FES and the
history-dependent bias are essential ingredients of the method,
and only their combination allows an efficient and accurate
determination of the FES.

Another advantage of our search algorithm is that it can be
easily parallelized over the P replicas, thus optimally exploiting
present-day computer architectures and, moreover, does not
require a very accurate determination of the forces. In fact, in
model calculations on an analytic PES, we have found that the
algorithm is effective even for noise levels as large as 20–30% of
the forces, since the height and the width of the Gaussians is such
that the coarse-grained dynamics explores a region of space of
the size of a Gaussian several times. and the system is only
discouraged (and not prevented) from revisiting the same spot
of configuration space. Hence, the errors in the forces tend to
even out during the evolution. The dynamics (1) is ‘‘self-healing,’’
i.e., it is in principle capable to compensate the effect of
completely wrongly located Gaussians or of a wrong additional
bias potential. We can therefore use quite short runs and a small
number of replicas to evaluate the forces. This is at variance with
thermodynamic integration (18) and the blue moon ensemble
method (1, 4), where a very precise determination of the forces
is needed and where treating multidimensional reaction coor-
dinates is a daunting task. Other techniques, like the umbrella
sampling or bias potential methods (5, 6, 9, 18), allow an accurate
estimate of the FES in many dimensions. The drawback of these
methods is that they are efficient only if a good approximation
for the FES is known a priori, whereas this is not required in our
method.

A last advantage of the method is its ability to provide
qualitative information on the free energy of a system in a very
short time. For example, the overall topology of a FES can be
determined by very few coarse-grained dynamics steps by using
large Gaussians. Subsequently, our qualitative knowledge of the
FES can be improved by using smaller Gaussians, eventually
reducing the dimensionality of the problem by exploiting the
topological information obtained with the large Gaussians.
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