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ABSTRACT Understanding the evolution of biopolymers is a key element in rationalizing their structures and functions.
Simple exact models (SEMs) are well-positioned to address general principles of evolution as they permit the exhaustive
enumeration of both sequence and structure (conformational) spaces. The physics-based models of the complete mapping
between genotypes and phenotypes afforded by SEMs have proven valuable for gaining insight into how adaptation and
selection operate among large collections of sequences and structures. This study compares the properties of evolutionary
landscapes of a variety of SEMs to delineate robust predictions and possible model-specific artifacts. Among the models
studied, the ruggedness of evolutionary landscape is significantly model-dependent; those derived from more proteinlike
models appear to be smoother. We found that a common practice of restricting protein structure space to maximally compact
lattice conformations results in (i.e., ‘‘designs in’’) many encodable (designable) structures that are not otherwise encodable in
the corresponding unrestrained structure space. This discrepancy is especially severe for model potentials that seek to mimic
the major role of hydrophobic interactions in protein folding. In general, restricting conformations to be maximally compact leads
to larger changes in the model genotype-phenotype mapping than a moderate shifting of reference state energy of the model
potential function to allow for more specific encoding via the ‘‘designing out’’ effects of repulsive interactions. Despite these
variations, the superfunnel paradigm applies to all SEMs we have tested: For a majority of neutral nets across different models,
there exists a funnel-like organization of native stabilities for the sequences in a neutral net encoding for the same structure, and
the thermodynamically most stable sequence is also the most robust against mutation.

INTRODUCTION

Simple exact models (SEMs) are physically motivated

caricatures of biopolymers (Dill et al., 1995; Chan and

Bornberg-Bauer, 2002). A hallmark of these models is their

highly simplified representations of the sequence and confor-

mational spaces. Among the many versatile SEM approaches,

a common simplification is to utilize self-avoiding lattice

walks to approximately account for conformational varia-

tions. For proteins, sequence variations and interaction

heterogeneity are often modeled by a reduced alphabet with

,20 amino acid types, whereby a set of simple nearest-

lattice-neighbor contact energies, designed to capture certain

major components of the driving forces for folding, is em-

ployed to mimic the intrachain interactions in real proteins.

SEMs were originally developed to study principles of

protein folding, thermodynamic stability (Lau and Dill,

1989), and mutations (Lau and Dill, 1990). Related but more

elaborate lattice representations have also been used for

protein structure prediction (Skolnick and Kolinski, 1990;

Kolinski and Skolnick, 2004). From a modeling perspective,

an important advantage of SEMs is that the ground-state

conformation(s), the density of states, and the partition

function of a given model sequence can be exactly deter-

mined, thereby affording a complete, unambiguous descrip-

tion of the model’s thermodynamics.

Rationale for using SEMs to study evolution

SEMs have few adjustable parameters. This is particularly

valuable for the formulation and evaluation of general

concepts, because the simplicity of SEMs provides for a clear

logical link between a set of assumptions and their conse-

quences in the context of an explicit-chain model (Chan et al.,

2002). Deductive reasoning using SEMs is transparent. It is

not obscured as is sometimes the case in models that entail

complex constructions and invoke approximations of un-

specified accuracy. In the SEM approach, proposed sce-

narios for biopolymer behavior can be tested by performing

relatively inexpensive simulations to explore how the

assumed (input) SEM parameters lead to predictions (output)

that may or may not be consistent with the desired (ex-

perimental) phenomena. In this way, the SEM methodology

can often offer deep insights when it is applied to tackle

questions that cannot yet be addressed by experiments or

atomistic modeling. (For reviews see Chan and Dill, 1993;

Bryngelson et al., 1995; Dill et al., 1995; Karplus and Šali,

1995; Shakhnovich, 1996; Thirumalai and Woodson, 1996;
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Dill and Chan, 1997; Pande et al., 1997; and Chan et al.,

2002, 2004.)

For certain SEMs, an exhaustive mapping between all

possible sequences and their ground-state conformations is

feasible, as was first demonstrated in a short-chain two-

dimensional model (Chan and Dill, 1991). This computa-

tional tractability allows for a physics-based, explicit-chain

embodiment of key evolutionary concepts from theoretical

biology (Lipman andWilbur, 1991). Prime examples include

the idea of neutral evolution, i.e., biopolymers wandering in

a space of equally viable mutants, wherein a neutral network

of sequences encoding for the same structure is intercon-

nected by single-point mutations; and inspiring imageries

of evolutionary processes as walks on a multidimensional

fitness landscape (Maynard-Smith, 1970; Kimura, 1983;

Wright, 1932). Extensive SEM studies of evolutionary

populations under various selection and adaption constraints

have become possible since powerful and inexpensive

computers started to be available ;15 years ago. (See,

e.g., Irbäck and Sandelin, 2000; Cui et al., 2002; Xia and

Levitt, 2002; and Sandelin, 2004, for recent applications to

crossovers and the evolution of protein structure and

stability; see Blackburne and Hirst, 2001; Williams et al.,

2001; and Bloom et al., 2004, for SEM treatments of evo-

lution of function; see Chan and Bornberg-Bauer, 2002, and

Xia and Levitt, 2004a, for reviews.) As an example of these

advances, a key concept that has emerged from SEM studies

is that of the superfunnel, the main subject of this investiga-

tion. The superfunnel paradigm stipulates that sequence-

space topology of neutral nets tend to adopt funnel-like

organizations, and that mutational stability (plasticity) of a

sequence is strongly correlated with its native thermody-

namic stability. Among other insights it affords, this theoret-

ical framework serves to rationalize the often concomitant

thermodynamic and mutational robustness of natural

wild-type proteins (Bornberg-Bauer and Chan, 1999).

THEORETICAL PERSPECTIVES
AND MOTIVATIONS

Simplifying assumptions in SEMs

Even with the SEMs’ drastically simplified representations

of intrachain interaction heterogeneity and chain geometry,

the protein-folding problem is NP-complete for the simplest

of such models (Paterson and Przytycka, 1996; Crescenzi

et al., 1998). In this regard, computational studies of proteins

are more seriously hampered than those of RNA, for which

polynomial folding algorithms exist (Tacker et al., 1996). As

a result, in using lattice protein models for evolutionary

studies, one often has to resort to restricting the conforma-

tional (shape) space by allowing only compact conforma-

tions (Hinds and Levitt, 1996) (by restricting model chains to

an elliptical bounding volume (Hinds and Levitt, 1992)) or

even maximally compact conformations (Taverna and

Goldstein, 2000), or to smaller alphabets (Bornberg-Bauer,

1997a), or both (Li et al., 1996; Cejtin et al., 2002).

The ‘‘hydrophobic polar’’ (HP) model (Lau and Dill,

1989; Chan and Dill, 1990, 1991; Dill et al., 1995) is a widely

used two-letter alphabet (i.e., with two residue or monomer

types, H and P). The model was designed to capture the

essential features of hydrophobic interactions, which is

a major stabilizing force in protein folding (Kauzmann,

1959; Dill, 1990). Another popular approach employs more

heterogeneous interaction schemes with a 20-letter alphabet

(Abkevich et al., 1996; Buchler and Goldstein, 1999). In

approaches that allow for the variation of individual contact

interactions that are not based upon residue types, the effec-

tive number of residue types—as a parametrization of inter-

action heterogeneity—can be much higher than 20 (Chan

and Dill, 1996; Buchler and Goldstein, 1999).

By virtue of their simplification, the scope of SEMs is

limited. Recent in-depth analyses indicate that many com-

mon SEMs are insufficient for the finer thermodynamic and

kinetic details of protein folding, especially the high degree

of thermodynamic and kinetic cooperativity exhibited by

many real, small, single-domain proteins. Therefore, as far

as properties of individual proteins are concerned, more

complex modeling constructs are preferable (Chan et al.,

2004). Nonetheless, for evolutionary applications that re-

quire an extended coverage of both the sequence and con-

formational spaces, SEMs remain a uniquely useful tool:

From a practical standpoint, the required extended coverage

of sequence and conformational spaces is currently not

achievable in more complex models. More importantly, at

a physical level, insofar as the consistency principle (G�oo,
1983) or principle of minimal frustration (Bryngelson and

Wolynes, 1987; Bryngelson et al., 1995) is applicable to

natural proteins, and a given SEM’s potential function is

motivated by a major part of the intrachain interactions in

real proteins (e.g., by attempting to capture the hydrophobic

interactions as in the HP model), the SEM sequence-to-

structure mapping is physically viable, for the following

reason: although the SEM potential function may have to be

augmented to achieve a better mimicry of protein energetics

(Chan, 2000; Salvi and De Los Rios, 2003), for a model

sequence that embodies the minimal-frustration principle,

by and large the additional terms are expected to

consistently favor the same native structure as that encoded

by the more rudimentary SEM code (Chan et al., 2002,

2004; Chan and Bornberg-Bauer, 2002; Cui et al., 2002;

Sandelin, 2004). This perspective is supported by recent

insightful analyses of database structures of real proteins.

These studies have demonstrated that the general trends of

both the sequential (along-the-chain; Irbäck and Sandelin,

2000) and spatial (core-packing; Sandelin, 2004) distribu-

tions of hydrophobic residues in real protein structures are

very similar to that predicted by the two-dimensional (2D)

HP model. Echoing the latter observation, the less-than-

perfect correlation between sequence hydrophobicity and
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surface exposure patterns in database proteins has been

found to resemble that of a three-dimensional (3D) off-

lattice hydrophobic-polar model of protein folding as well

(Mölbert et al., 2004).

Restricting to maximally compact conformations:
potential problems

The most commonly used lattices for chain representations

in SEMs are the 2D square lattice and 3D simple cubic

lattices. For the HP model, exact enumerations that account

for all possible self-avoiding walks have been performed

extensively on two-dimensional square lattices to determine

the ground-state conformations of all possible sequences

(Chan and Dill, 1991; Bornberg-Bauer, 1997b; Bornberg-

Bauer and Chan, 1999; Cui et al., 2002; Irbäck and Troein,

2002). In other studies, however, only selected sequences

from an enormous sequence space are considered (e.g., those

along an evolutionary trajectory). Sometimes, for the sake of

computational tractability, the native conformation of a given

sequence is defined as the lowest-energy conformation of

a highly restricted set of maximally compact structures

(conformations) rather than determined exhaustively from

the set of all possible conformations. These include re-

stricting to 2D 4 3 4 and 5 3 5 conformations (Buchler and

Goldstein, 2000; Govindarajan and Goldstein, 1997) and 3D

3 3 3 3 3 (Li et al., 1996) and more recently 3 3 3 3 4

conformations (Cejtin et al., 2002).

As far as polymer physics is concerned, restricting

conformational possibility to maximally compact structures

(or maximally compact states, MCSs) represents a drastic

step with serious consequences (Chan and Dill, 1996).

Artifacts are likely in MCS approaches: Both rigorous lattice

computations (Yue et al., 1995; Micheletti et al., 1998;

Backofen et al., 1999; Ejtehadi et al., 1999; Irbäck and

Troein, 2002) and analyses of real protein structures

(Goodsell and Olson, 1993) indicate that true ground-state

conformations of model proteins with physically plausible

intrachain interactions and real protein native structures are

not necessarily maximally compact. Under the MCS

restriction, the behavior of a model heteropolymer would

no longer be the product of the physical assumption

embodied in the model energy function and conformational

freedom alone, but rather the result of an altered energy

function. Indeed, it has been shown that enforcing MCSs

often changes the ground-state conformation(s) of a given

sequence; the statistics of the sequence-structure mapping

are significantly affected by the MCS restriction as well

(Chan and Dill, 1996). Intuitively, it wouldn’t be surprising

that on average a larger number of sequences would map

onto a given structure (i.e., the structure would have a larger

convergence; Chan and Dill, 1991) if the structural space is

smaller because of the MCS restriction. For the case of

25mer 2D HP sequences (chain length n ¼ 25), exact

enumeration data (Irbäck and Troein, 2002) shows that

99.99% of the sequences determined by the MCS approach

to have a unique ground-state conformation in fact do not, as

these sequences actually have more than one lowest-energy

conformation when the full conformational space is con-

sidered (Chan and Bornberg-Bauer, 2002).

The superfunnel idea: model dependence?

Several general features of the protein sequence-structure

mapping have been rationalized by multiple studies using

a wide range of SEMs (Chan et al., 2002). A robust

property—which applies to RNA as well (Tacker et al.,

1996)—is that some structures (i.e., ground-state conforma-

tions) are much more highly represented than others in the

sequence space. In other words, many more sequences

encode for the over-represented structures (with large

convergence sets) than other structures (with smaller

convergence sets) (Schuster et al., 1994; Li et al., 1996;

Bornberg-Bauer, 1997b; Govindarajan and Goldstein, 1996;

Buchler and Goldstein, 2000). Another robust feature of

protein SEMs is the topological organization of sequences

encoding for the same structure in neutral nets. They tend to

form extensive networks connected by small mutational

steps, on which an evolutionary trajectory may traverse

without changing the structure being encoded (Bornberg-

Bauer, 1997b; Govindarajan and Goldstein, 1997; Bornberg-

Bauer and Chan, 1999; Trinquier and Sanejouand, 1999).

By comparison, more detailed properties of neutral net

organization have thus far been investigated using only

a rather limited set of SEMs. A central feature is the

superfunnel paradigm: Certain neutral nets have been shown

to organize in a funnel-like manner centered around

a prototype sequence (Bornberg-Bauer and Chan, 1999).

This sequence has the largest number of neutral mutations,

the highest thermodynamic stability for the native confor-

mation, and often represents the consensus sequence of the

protein family. For the 2D HP model, native stability tends to

decrease as one moves away in sequence space from the

prototype sequence, thus the sequence-space variation of

native stability with respect to the Hamming distance from

the prototype sequence resembles that of a funnel (Bornberg-

Bauer and Chan, 1999), reminiscent of conformational-space

funnels for protein folding (Leopold et al., 1992; Wolynes

et al., 1995; Dill and Chan, 1997).

Sequences folding not uniquely but with relatively low

degeneracies are enriched in the evolutionary vicinity of

these superfunnels. Some of these sequences connect two or

more neutral nets, simultaneously encode for more than one

structure, and thus can serve as evolutionary switches

(Trinquier and Sanejouand, 1999; Bornberg-Bauer, 2002).

Moreover, uniquely folding 2D HP sequences (and pro-

totype sequences in particular) have been shown to exhibit

a significant degree of modular architecture, sometimes with

clearly identifiable ‘‘autonomous folding units’’ acting as

building blocks for larger structures (Cui et al., 2002; Chan
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and Bornberg-Bauer, 2002). Consequently, and consistent

with recent experiments (Voigt et al., 2002; Otey et al.,

2004), recombinations in conjunction with single-point

substitutions are found to be more efficient in exploring

novel 2D HP structures than single-point mutations alone

(Cui et al., 2002). A subsequent insightful study shows that

recombinations can also lead to significantly higher steady-

state populations of prototype sequences (Xia and Levitt,

2002) than population dynamics based solely on single-point

substitutions (Cui et al., 2002). A more recent investigation

of two variants of the 2D HP model confirmed the existence

of superfunnels for native stability and found superfunnels

for folding rates as well (Xia and Levitt, 2004b), lending

credence to the earlier stipulation that funnel-like organiza-

tion of sequence space should generally apply for ‘‘any

measure of fitness provided that its variation with respect to

mutations is essentially smooth’’ (Bornberg-Bauer and

Chan, 1999). To ascertain the generality and robustness of

superfunnel organizations, here we extend our investigation

to a wider range of SEMs with different model interaction

schemes.

Evaluating and comparing SEMs of evolution

To our knowledge, the most extensive studies to date to

evaluate parameter dependencies in SEMs of evolution have

been carried out by Buchler and Goldstein (1999, 2000).

They considered a collection of 2-, 4-, 20-, and N-letter

models, restricted conformational enumeration to 2D MCSs

that can fit within a 5 3 5 square, and concluded that

structures that are highly designable for two-letter alphabets

are not necessarily highly designable with larger alphabets.

The focus of this study is different, and is complementary

to that of Buchler and Goldstein. In view of potential

problems in reaching a proper physical interpretation of

MCS models (see above), we employ full conformation

enumerations as well as MCS enumerations. To allow for an

exhaustive accounting of sequence space, here we consider

only two-letter alphabets; but we compare highly diverse

two-letter model interaction schemes with different modes of

residue-residue interactions and different degrees of re-

pulsive interactions. In this work, we seek to answer three

questions:

1. How does an overall shift in contact energies from

a mainly attractive potential to one with strong repulsive

interactions influence the aforementioned key features of

the sequence-structure mapping, particularly the biases in

sequence-space structure distribution, the topologies of

neutral nets, and the existence of superfunnels?

2. If there are significant differences among the models we

evaluate, do the differences hinge upon whether the

model potential is proteinlike, i.e., whether the model

attempts to capture the main physical driving forces in

real proteins?

3. How does restricting conformational possibility to MCSs

affect the predicted evolutionary properties?

MODELS AND METHODS

Sequence-structure mappings in this study are constructed using well-

described methods from our earlier work (Chan and Dill, 1991, 1996; Dill

et al., 1995; Bornberg-Bauer and Chan, 1999). Here we compare six two-

letter model interaction schemes, namely the HP, AB, shifted HP, shifted

AB, and the perturbed-homopolymer HP and AB models as defined before

(Chan and Dill, 1996), for chains with n ¼ 18 monomers configured on 2D

square lattices (Fig. 1). For each model, all possible 218 sequences are

analyzed and each of their density of states (number of conformations as

a function of energy) exhaustively enumerated. The physical motivations for

studying these models have been provided and their basic sequence-

structure statistics explored (Chan and Dill, 1996), but their densities of

states and mutational/evolutionary properties have not been systematically

compared. To investigate their dependence on modeling parameters,

evolutionary statistics of all six models are now computed along the line

in previous, more limited studies of the HP and ABmodels (Bornberg-Bauer

and Chan, 1999).

Briefly, in the HP model, the H and P monomers (beads) represent two

classes of amino acids that admit only one type of stabilizing interaction: An

attractive energy e (e, 0) is assigned to a pair of nonsequential H monomers

if they form a spatial nearest-neighbor contact (termed an HH contact). As

discussed above, although the HP model is insufficient for calorimetric

cooperativity and its energy landscape is rather rugged (Chan and Dill,

1994), short-chain 2D HP models are well suited for investigating the

mapping from sequences onto structures (Irbäck and Sandelin, 2000; Chan

et al., 2002, 2004; Chan and Bornberg-Bauer, 2002; Cui et al., 2002;

FIGURE 1 The six heteropolymer models studied in this work. Here the

‘‘shifted’’ and ‘‘perturbed-homopolymer’’ models (Chan and Dill, 1996) are

denoted, respectively, by a prime superscript (#) and a ‘‘max’’ notation. The

energy matrices (with matrix elements eijs) provide the relative interaction

energies of pairwise contact between various types of monomers (i, j). Using

the energy matrices shown, ground-state conformations are determined by

exhaustive enumeration of all possible self-avoiding walks for the HP, HP#,
AB, and AB# models; but enumeration is limited to the maximally compact

conformational states (MCSs) for the HPmax and ABmax models. The

conformations in this figure are the top-ranking structures, i.e., these ground-

state conformations are encoded by the largest number of sequences in their

respective models (cf. Table 1). H, P, A, and B monomers (residues) are

represented by solid and open circles and solid and open squares,

respectively. The sequences shown in this figure are the prototype sequences

of their neutral nets.
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Sandelin, 2004). Indeed, folded structures of short 2D HP sequences have

realistic, proteinlike surface/core ratios, and on average have small ground-

state degeneracy. A small but nonnegligible fraction of these sequences map

uniquely onto only one ground-state conformation and thus may serve as

models of globular proteins (Chan and Dill, 1996).

In contrast, in the AB model, like monomers attract and unlike monomers

repel (Chan and Dill, 1996). Although this investigation focuses on 2D AB

and related models, it is worth noting that variations of the AB model have

been studied extensively in 3D applications as well (Shakhnovich and Gutin,

1993; Socci and Onuchic, 1994). The repulsive interactions in the AB model

enable more ‘‘designing out’’; hence the number of sequences having

a unique ground-state conformation (g ¼ 1 sequences) is much higher in the

AB model than in the HP model (Table 1). However, the AB model is less

proteinlike because the A and B monomers tend to segregate in the native

structure (see bottom row of Fig. 1), and they do not appear to correspond to

any physicochemical classification of amino acid residues. As such, the AB

interaction potential is instructive as an example of heteropolymer models

that can achieve proteinlike ground-state uniqueness via a manifestly

nonproteinlike interaction scheme.

For each of the above models we apply two variations: 1), using a shifted

energy matrix with stronger repulsive interactions; and 2), restricting con-

formational variation to MCSs. Building on the HP and AB models, their re-

spective shifted models incorporate stronger repulsive interactions (Fig. 1),

which tend to enhance interaction specificity. It is noteworthy that both

MCS restriction (see above) and shifting represent significant changes in the

physics of intrachain interactions. As has been critically discussed for a class

of 3D 20-letter lattice models (Abkevich et al., 1996), a shifted interaction

potential may bear little resemblance to the original unshifted interaction

scheme (Chan and Dill, 1996; Chan, 1999; Chan et al., 2002).

RESULTS AND DISCUSSION

Sequence statistics

A contrast of the degeneracy, encodability and neutral net/

superfunnel statistics of the six models is given in Table 1. A

small part of this data, in particular that for the HP and AB

models, has been discussed in other contexts (Chan and Dill,

1996; Bornberg-Bauer and Chan, 1999); this information is

included here to provide a more comprehensive comparison.

In general, repulsive interactions are more conducive to

designing out nontarget structures. Hence they tend to

decrease sequence degeneracy and enhance structural

encodability (Chan and Dill, 1996). Consistent with this

expectation, Table 1 shows that shifting does not have too

much effect on the statistics for the AB model, which already

has its own repulsive interactions. But it has a very promi-

nent effect on the more proteinlike HP model: The number of

nondegenerate (encoding) sequences of the shifted HP#
model increases by almost fivefold relative to that of the HP

model. This is partly because the HP model has only attrac-

tive and neutral interactions and therefore its energetics is

quite nonspecific before shifting.

The upper-middle conformation in Fig. 1 provides an

example of a structure that is not encodable in the HP model

TABLE 1 Summary of sequence-structure-mapping statistics of the six models studied in this work and their neutral nets and

evolutionary superfunnel-related properties

HP HP# HPmax AB AB# ABmax

No. of g ¼ 1 sequences (% of sequence space) 6349 (2.4%) 30196 (11.5%) 32927 (12.6%) 34700 (13.2%) 34706 (13.2%) 37226 (14.2%)

No. of g ¼ 1 sequences with maximally compact

ground states

1142 971 32927 26342 25174 37226

% of g ¼ 1 sequences with maximally compact

ground states

18.0% 3.2% 100% 75.9% 72.5% 100%

No. of neutral sets (i.e., No. of encodable

structures)

1475 6693 1224 4127 4490 1577

No. of encodable structures that are maximally

compact

331 310 1224 1493 1493 1577

% of encodable structures that are maximally

compact

22.4% 4.6% 100% 36.2% 33.3% 100%

Average neutral set size 4.3 4.5 26.9 8.4 7.7 23.6

No. of neutral nets 1706 7347 2349 16270 17116 12442

Average neutral net size 3.7 4.1 14.0 2.1 2.0 3.0

% of neutral sets that are fragmented (for neutral

sets with .2 sequences)

25.3% 14.2% 59.2% 100% 100% 100%

Size of largest neutral net 48 51 267 26 22 72

Longest neutral path in the largest neutral net 7 8 12 6 5 11

% of neutral nets conforming to the superfunnel

paradigm (for neutral nets with .2 sequences)

88.8% 88.7% 66.0% 64.2% 64.5% 66.4%

The number of neutral sets is equal to the number of encodable structures. The longest neutral path in a neutral net refers to the maximum Hamming distance

separating two sequences within the same neutral net. The percentage of superfunnel-conforming HP neutral nets in this table is identical to that determined

before (Bornberg-Bauer and Chan, 1999). For the AB model, the present computation indicates that 1390 (35.8% ¼ 100% � 64.2%) of the 3882 neutral nets

with more than two sequences each do not conform to the superfunnel paradigm. They encompass a total of 6548 AB sequences. This result differs slightly

from the corresponding 1378 nonsuperfunnel AB neutral nets (35.5% of 3882, encompassing 6484 sequences) we reported previously (Bornberg-Bauer and

Chan, 1999). (The number 1348 on page 10692 of this reference is a typographical error.) This discrepancy is insignificant as it arises merely from minute

differences in the roundoff of the floating-point values for native stability in the two independent calculations. For all 12 additional neutral nets determined

here to be nonsuperfunnels, the native stability of the AB sequence of maximal mutational stability is almost identical to the maximum stability of the given

AB neutral net.
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but is encodable in the shifted HP#model. Indeed, in the HP#
model, this top-ranking structure is not only encodable, but is

maximally encodable, with 51 sequences sharing it as their

common unique ground-state conformation. This structure is

not very compact. It has two monomers at one chain end

sticking out. Obviously, such a structure would not be

encodable in the HP model because in that case a dangling

chain end can bend, either resulting in an increase in the

number of favorable contacts (if the chain end is an H that

can form contacts with other Hs on the surface of the rest of

the protein) or leading to a degenerate ground state. In the

HP# model in our study, however, sequences can be chosen

such that any bending of this two-monomer chain end would

result in a repulsive interaction and therefore is disfavored.

This example illustrates graphically the utility of repulsive

interactions in designing out alternate conformations that

would otherwise compete with the target ground state.

A similarly large increase (more than fivefold) in the

number of uniquely folding (g ¼ 1) sequences results from

modifying the HP model to the HPmax model; but not from

modifying the AB model to the ABmax model. The increase

is so much more prominent for the HP family because most

often fewer HH contacts are achievable in MCSs than in

more open conformations. Therefore, when open conforma-

tions are eliminated in the HPmax model, a much higher

fraction of the 1673 MCSs becomes encodable (from 331/

1673 ¼ 19.8% to 1224/1673 ¼ 73.2%, cf. Table 1). On the

other hand, in the (unrestricted) AB model, most of the 1673

MCSs (1493/1673 ¼ 89.2%) are already encodable. So

imposing the MCS restriction only leads to a marginal

increase in encodability to 1577/1673 ¼ 94.3% in the

ABmax model. In the AB model, the native conformations of

a large majority (75.9%) of the 34,700 uniquely folding

sequences are MCSs to begin with. Consequently, only

marginal increases in the number of g ¼ 1 sequences are

effected by shifting (six sequences, 0.017%) and MCS

restriction (2526 sequences, 7.3%).

In short, for the more proteinlike HP family, shifting the

intrachain interaction energies greatly enhances the designing

out capability, whereas enforcingMCSs artificially designs in

many more structures. Both effects lead to a very large

increase in the number of uniquely folding sequences. In

contrast, the corresponding effects are—though not non-

existent—quite insignificant for the AB family of models.

Neutral sets

We next turn to the statistics of neutral sets and neutral nets

(Schuster et al., 1994; Renner and Bornberg-Bauer, 1997;

Bornberg-Bauer and Chan, 1999). A neutral set of a given

structure is the set of all g ¼ 1 sequences that have it as their

ground-state conformation. Previously, it has also been

referred to as a convergence set (Chan and Dill, 1991). Thus,

an encodable structure is one with a nonempty neutral set.

Basic encodability statistics of the six models in Table 1 was

explored (Chan and Dill, 1996), and aspects of neutral set

properties of the HP and AB models were investigated

(Bornberg-Bauer and Chan, 1999). But no systematic study

has been conducted to compare the sizes of their neutral sets

with that of the shifted and MCS-restricted versions of these

models.

Table 1 indicates that for the HP family, the number of

encodable structures (i.e., the number of neutral sets)

undergoes a large increase (�4.5-fold) when the HP model

is modified to the shifted HP# model, which allows more

designing out. Since most of the encodable structures in the

HP model are not MCSs, changing the HP model to the

HPmax model results in a small decrease in the number of

neutral sets, notwithstanding the large increase of neutral sets

for MCSs. On the other hand, shifting the AB model to the

AB#model only leads to a small increase in neutral sets (363

more neutral sets, representing a mere 363/4127 ¼ 8.8%

increase). Because of the repulsive interactions it contains,

the AB model encodes many more structures than the HP

model, and much of this enhanced encodability comes from

more open structures. Thus, it is not surprising that imposing

MCS restriction on the AB model results in a large decrease

(from 4127 to 1577) in the number of neutral sets.

As noted above, despite the AB and AB# models’ ability

to encode relatively open conformations, they have much

stronger preferences for MCSs than the more proteinlike HP

and HP#models. This difference is most strikingly illustrated

by the sizes of their neutral sets for MCSs versus those for

non-MCSs. For the HP and HP# models, the average MCS

neutral set sizes are, respectively, 1142/331 ¼ 3.5 and 971/

310¼ 3.1. These are slightly smaller than the average neutral

set size of 4.6 for non-MCSs in both the HP and HP#models,

indicating that MCSs are not particularly favored in the HP

and HP# interaction scheme. This situation is drastically

different from that in the AB and AB# models: Average

MCS neutral set sizes are 17.6 and 16.9 for the AB and AB#
models, respectively, whereas average non-MCS neutral set

size is only 3.2 for these models. In other words, for these

models, the average MCS neutral set is more than five times

larger than the average non-MCS set, implying that the AB

and AB# interaction scheme is strongly favorable to MCSs.

Hence enforcing MCS on the AB model is in some respects

redundant in that it produces little change to the sequence-

structure statistics (see Table 1 and discussion above).

Despite these important differences, there is one clear

trend of neutral set size distribution that is robust across all

six different models. Generally, a few large neutral sets

dominate over many small neutral sets in a Zipf-like version

(detailed data not shown), as was observed previously for

several different models of biopolymers (Schuster et al.,

1994; Li et al., 1996; Bornberg-Bauer, 1997b). Here we find

that distributions of neutral net size also follow a similar

pattern (see below).
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Neutral nets

A neutral net is a subset of a neutral set for which all

sequences are interconnected with one another via a series of

single point mutations. A neutral set can be fragmented into

several neutral nets if not all of the sequences in the set are

interconnected. These interconnections are depicted in Fig. 2

for neutral nets from four different models. Corresponding

drawings for the HP and AB models are available elsewhere

(Bornberg-Bauer and Chan, 1999).

Interestingly, most of the HP and HP# neutral sets are not
fragmented (Table 1). Their average neutral net/set size

ratios are 3.7/4.3 ¼ 0.86 and 4.1/4.5 ¼ 0.91, respectively. In

contrast, all neutral sets in the AB family of models are

fragmented. As a result, the corresponding neutral net/set

size ratios for the AB (0.25) and AB# (0.26) models are much

smaller. The average neutral set size in the AB and AB#
models are about twice that of the HP and HP# models. One

contributing factor to this phenomenon is the A 4 B

symmetry in these models: Given a structure is encoded by

an AB sequence, a sequence obtained by interchanging the

A and B monomers in the given sequence will also encode

for the same structure. However, for the n ¼ 18 AB and AB#
models presented here, any two sets of neutral sequences

connecting to two individual sequences related by A 4 B

interchange are not interconnected to each other (the

‘‘longest neutral path’’ entries in Table 1 for AB and AB#
are less than n/2 ¼ 9), thus all of their neutral sets involve

a basic A 4 B fragmentation. Nonetheless, even after this

factor of 2 is taken into account, on average the neutral sets

in the AB and AB# models (�4 neutral nets per neutral set)

are still significantly more fragmented than that in the HP

and HP# models (�1.1–1.2 neutral nets per neutral set).

Although MCS restriction dramatically increases the

average neutral set size for both the HP and AB models, it

significantly increases only the average neutral net size of the

HP model but not that of the AB model. On average, the

HPmax neutral sets (1.9 nets per set, net/set size ratio¼ 0.52)

are more fragmented than the HP and HP# models, but are

less fragmented than the AB family of models (7.9 nets/set

for ABmax, corresponding average net/set size ratio¼ 0.13).

MCS restriction induces a large increase in the average net

size for the HP model (from 3.7 to 14.0), but leads to only

a slight increase for the AB model (from 2.0 to 3.0). MCS

restriction allows for the emergence of much larger neutral

nets in both the HPmax and ABmax models. But the largest

neutral net in the HPmax model is almost four times as large

as that in the ABmax model. The largest HPmax neutral net

comprises 267 sequences, compared to 48 for the largest HP

neutral net. The longest continuous path of neutral mutations

in the largest HPmax neutral net is 12, almost twice as long

as that for the largest HP neutral net. As conformational

space is reduced in the MCS models, sequences that

previously encode for different structures or are degenerate

are now grouped together to form larger neutral nets. In other

words, many sequences that fold to a particular structure in

the HPmax scheme would not do so if the conformational

space was not restricted. This finding is also consistent with

FIGURE 2 Topology of the larg-

est neutral net in the (a) HP#, (b)
HPmax, (c) AB#, and (d) ABmax

models. Sequences encoding for the

same structures (provided in Fig. 1)

are represented by solid symbols

(dots, circles, triangles, etc.); and
mutational connectivity by a single-

point substitution between two

sequences is depicted by a line

joining a pair of symbols. For

a given neutral net, the prototype

sequence and the sequence with

maximum native stability (as de-

fined in Fig. 3 below) are marked,

respectively, by an open circle and

an open square. A neutral net

conforms to the superfunnel para-

digm if both conditions are satisfied

by the same sequence. In a, c, and

d, different symbols denote sequen-

ces with different Hamming distan-

ces from the prototype sequence

(Bornberg-Bauer and Chan, 1999).
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a recent investigation of two n¼ 24 2D HP-like models (Xia

and Levitt, 2004b). Taken together, as for other aspects of

the sequence-structure mapping discussed above, MCS re-

striction appears to have a much more profound impact on

the more proteinlike HP model than on the AB model.

Conformity to the superfunnel paradigm and
ruggedness of evolutionary landscapes

The prototype sequence of a neutral net has the maximum

number of neutral neighbors and thus is mutationally most

stable. In other words, the prototype sequence is connected

by single-point substitutions to the largest number of other

sequences in the neutral net. When there is more than one

such sequence in a neutral net, the prototype sequence is

taken to be the one that also has the highest native thermody-

namic stability (Bornberg-Bauer, 1997a; Bornberg-Bauer

and Chan, 1999).

Fig. 2 shows that sequences in a neutral net are

topologically organized around the prototype sequence.

This applies to the four models shown in the figure as well

as HP and AB model neutral nets depicted previously

(Bornberg-Bauer, 1997b; Bornberg-Bauer and Chan, 1999;

Chan and Bornberg-Bauer, 2002). To ascertain the thermo-

dynamic stability of model native (ground-state) structures,

densities of states of all g ¼ 1 sequences of the shifted and

MCS models are determined here by exhaustive conforma-

tional enumeration, as has been performed for the HP and

AB models (Bornberg-Bauer and Chan, 1999). Following

the procedure laid out in this reference, the partition function

of every g ¼ 1 sequence in all six models is constructed. The

strengths of intrachain interactions are controlled by an

overall parameter e (e , 0). Using the relative pairwise

contact energy eij between monomer types i and j in Fig. 1

for the different models, the energy of an i, j contact is
assigned to be eeij with Boltzmann weight exp(�eeij/kBT),
where kBT is Boltzmann constant times absolute tempera-

ture. Then, native stability of every sequence is quantitated

by the �e/kBT value at the given sequence’s thermodynamic

folding-denaturation transition midpoint, i.e., when the frac-

tional Boltzmann population of the unique ground-state con-

formation is 1/2, as we have formulated before. Sequences

with thermodynamically more stable native structures have

smaller midpoint (�e/kBT) values.
Aneutral net is said to conform to the superfunnel paradigm

if its prototype sequence (of maximal mutational stability,

a sequence-space property) is also the sequence with the

maximum native thermodynamic stability (a conformational-

space property) among the sequences in the neutral net

(Bornberg-Bauer and Chan, 1999). Table 1 assesses the

degree to which neutral nets of different models conform to

this paradigm (bottom line of entries). A majority of neutral

nets in all sixmodels follow the superfunnel paradigm, but the

percentages of superfunnel-conforming neutral nets are

significantly higher (�90%) for the HP and HP# models

than for the other four models (�65%). In this particular

regard, it is noteworthy that theMCS-restrictedHPmaxmodel

resembles the AB family of models rather than displaying

kinship with the HP and HP# models.

Fig. 3 provides examples of both superfunnel-conforming

(a, c, and d) and nonsuperfunnel neutral nets (b). In this

figure, the prototype sequence coincides with the sequence

with maximum native stability for the HP, AB#, and ABmax

neutral nets, but the prototype and maximum-stability

sequences are different for the HPmax neutral net shown

(cf. Fig. 2). In the graphs in Fig. 3, the single-point

substitutions are represented by lines joining pairs of

sequences with successive Hamming distances from the

prototype sequence. In general, the smoothness of a super-

funnel may be characterized by the slopes of these lines. A

positive slope implies that the given mutation increases (or

decreases) native stability when the sequence moves closer

toward (or farther away from) the prototype sequence. On

the other hand, a negative slope means that the given

mutation would lead to a decrease in native stability when

the sequence is moved closer toward the prototype sequence,

and vice versa. The HP# superfunnel in Fig. 3 has no

negative slopes; all of its 115 mutational connections have

positive slopes (a feature very similar to that of the largest

HP model; Bornberg-Bauer and Chan, 1999). We therefore

regard this superfunnel as ‘‘smooth,’’ because when the

model HP# protein evolves toward the prototype sequence,

its native stability increases monotonically. In contrast, the

less proteinlike AB# and ABmax superfunnels in Fig. 3 are

more ‘‘rugged’’—as is the case for the largest n ¼ 18 AB

superfunnel (Bornberg-Bauer and Chan, 1999)—in that they

have many negative slopes, some of which are quite steep.

This feature means that a mutation that brings an AB-type

sequence closer to the prototype sequence can sometimes

lead to a significant decrease in native stability. In this

respect, it is clear from Fig. 3 that the largest HPmax neutral

net (a nonsuperfunnel) also has a high degree of sequence-

space ruggedness, further indicating that the evolutionary

properties of the MCS-restricted HPmax model are quite

dissimilar to that of the more proteinlike HP or HP# model.

Two peculiar features of the smooth HP# superfunnel in

Fig. 3 are readily related to its particular native structure and

the HP# interaction scheme (Fig. 1). First, mutations at some

of the sites in the more open parts of this superfunnel’s native

conformation, namely the two-monomer dangling end and

the cavity-encircling loop, lead only to minute decreases in

native stability. A case in point would be a P / H mutation

of the second-last monomer at the dangling end. This type of

mutation results in almost nonexistent stability gaps (Ds;

Bornberg-Bauer and Chan, 1999) between the prototype

sequence and some of the low-lying (high native stability)

nonprototype sequences in this superfunnel. Second, all

three mutations on the prototype sequence that lead to

a dramatic decrease in native stability (changing the

midpoint (�e/kBT) from 1.66 to .5) involve an H / P
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mutation of the third monomer from the nondangling end of

the native conformation. It is clear that this is an important

‘‘anchoring’’ site of the structure; and it is quite remarkable

that changing its interaction from being attractive to re-

pulsive can even be tolerated.

Fig. 4 shows the distribution of neutral net size (insets) and
the variation of native stability of the prototype sequence as

a function of neutral net size (main plots). As for neutral sets
(Schuster et al., 1994; Li et al., 1996; Bornberg-Bauer,

1997b), all six models have many small neutral nets but only

a few large neutral nets. On average, native stability of the

prototype sequence increases (lower midpoint (�e/kBT))
with increasing size of the neutral net, although the stability

of prototype sequences of some smaller neutral nets can

exceed that of larger nets. This observation suggests that

structures that have larger neutral nets (which tend also to

have larger neutral sets or greater designabilities; Li et al.,

1996, 1998; Koehl and Levitt, 2002; Wingreen et al., 2004;

see also Govindarajan and Goldstein, 1996; Buchler and

Goldstein, 2000) are more capable of being encoded by

sequences with higher native thermodynamic stabilities.

Structural correlations between different
interaction schemes

Table 2 and Fig. 5 study the relationship between encodable

structures in different models. Different models encode

different structures. Some structures are encodable in one

model but not encodable (i.e., have designability ¼ 0) in

others. Hence, the analysis here applies only to overlapping

structures that are encodable in both of the models being

compared. In some cases, such as that of HP versus HPmax

and HP# versus ABmax, the numbers and percentages of

overlapping structures are small, underscoring that the

physics embodied by these models are very different. We

rank the encodable structures in a model by their neutral set

sizes (Table 2). Here we focus on how well correlated is the

rank of a given structure in a model with the rank of the

same structure in another model. A high correlation is

expected if the physics of the two models are similar.

Conversely, a low correlation would imply that the driving

forces in the two models favor significantly different sets of

chain architectures. Table 2 affords such structural corre-

FIGURE 3 Native stabilities of the

(a) HP#, (b) HPmax, (c) AB#, and (d)
ABmax sequences in the neutral nets in

Fig. 2 are indicated by short horizontal

levels. They correspond to the (�e/kBT)
value (vertical scale) at the transition

midpoint. Neutral single-point muta-

tions (lines in Fig. 2) are indicated here

by lines joining horizontal levels. The

horizontal scale provides the Hamming

distance from the prototype sequence of

the given neutral net. Note that each

horizontal level in the ABmax neutral

net in d represents a sequence as well as

the sequence obtained by performing

A 4 B interchange on it.
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lation data between every possible pair of different models

studied in this work. Example scatter plots are provided in

Fig. 5.

Table 2 highlights the fact that the HP and AB families of

models share little in common. This is not surprising in view

of their very different interaction schemes. The nine

correlation coefficients between the two families (the top

three rows and the right-hand three columns at the upper

right of Table 2) are all small, ranging between 10.2 and

�0.2 (Fig. 5 d). On the other hand, the correlation within the
AB family is uniformly extremely high (three boxes at the

lower right of Table 2; Fig. 5 c). The percentages of

overlapping structures are 94% or more, with all three

structural correlation coefficients .0.9. As noted above,

shifting and MCS-restriction apparently do not have much

effect on the sequence-structure mapping of the AB model.

The correlation between the HP and HP# model is also high,

though not to the same degree as that among the AB family

of models. This suggests that the similarities between the HP

and HP# models are substantial, especially among the

structures with large neutral sets (Fig. 5 a). One conspicuous
aspect is that the native structures in both models have

clearly discernible hydrophobic cores and most of them are

not maximally compact (Fig. 1 and Table 1). This finding is

also consistent with recent rigorous analyses of one

particular class of HP-like models (Ejtehadi et al., 1999;

Shahrezaei and Ejtehadi, 2000). In contrast, the present

structural correlation between either the HP or the HP#
model with the HPmax model is significantly lower

(correlation coefficient ,0.6; Fig. 5 b), again suggesting

that enforcing MCS on the more proteinlike HP model tends

to lead to serious artifacts.

FIGURE 4 Distribution of neutral net

sizes (insets) and native thermodynamic

stability of the prototype sequences, for

the (a) HP, (b) AB, (c) HP#, (d) AB#, (e)
HPmax, and (f) ABmax models. For

every model studied, each inverted

triangle shows the average native sta-

bility (as measured by the (�e/kBT) at
the transition midpoint) among the

prototype sequences of neutral nets of

a given size; the highest and lowest

native stabilities among the same set of

prototype sequences are indicated by

a square and a dot, respectively. (Note

that a higher (�e/kBT) value here means

that the native state is thermodynami-

cally less stable.) Insets show the

number of neutral nets NðvÞ as a func-
tion of size v. Solid or dashed lines

connecting data points in this figure

serve merely as a guide for the eye. We

note that panels a and b, for the HP and

AB models presented here, are the

corrected version of, and should there-

fore replace, the upper panels of Figs. 3

and 4 in Bornberg-Bauer and Chan

(1999). Owing to a technical oversight,

instead of recording the thermodynamic

stabilities of prototype sequences as

they should, the previously published

figures erroneously provided the corre-

sponding statistics for the sequences

that are most stable in their neutral nets.

Despite this error, the discrepancies

between the two sets of results are

very minor, since a majority of neutral

nets are superfunnels with the prototype

sequence also being the most stable.

Consequently, the general trends ex-

hibited by the two sets of figures are

virtually identical, and the conclusions

of the previous study remain un-

changed.
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CONCLUDING REMARKS

This comparative study of six two-letter SEMs of protein

evolutionary landscape has been based on exact, unrestricted

exhaustive enumeration of sequence and conformational

spaces. Thus, results in this work partly bridge a gap in

theoretical understanding between earlier full-conformation

evolutionary studies of one or two two-letter alphabets

(Bornberg-Bauer, 1997b, 2002; Bornberg-Bauer and Chan,

1999) and more recent comparative studies of MCS-

restricted models with larger alphabets (up to 20 letters for

residue-based interactions; Buchler and Goldstein, 2000). As

emphasized above, SEMs are uniquely suited for posing and

TABLE 2 Correlation of structure rank in different models

HP# (6693) HPmax (1224) AB (4127) AB# (4490) ABmax(1577)

HP (1475) 0.74 (1317) 0.56 (331) �0.15 (550) �0.17 (540) 0.10 (327)

89.3% 27.0% 37.3% 36.6% 22.2%

HP# (6693) 0.59 (310) �0.19 (964) �0.20 (1004) 0.11 (306)

25.3% 23.4% 22.4% 19.4%

HPmax (1224) 0.20 (1106) 0.20 (1106) 0.18 (1172)

90.4% 90.4% 95.8%

AB (4127) 0.98 (4095) 0.92 (1493)

99.2% 94.7%

AB# (4490) 0.91 (1493)

94.7%

Structures are ranked by the sizes of their neutral sets in a given model; the structure with the largest neutral set is ranked 1, and so on. When two or more

structures have the same neutral set size, they are assigned the same rank, in a ‘‘golf ranking’’ manner. For example, in the HP model, the three largest neutral

set sizes are 48, 37, and 36, and the number of neutral sets with such sizes are, respectively, 2, 4, and 2. Thus, the structures encoded by these eight neutral

sets are ranked accordingly as 1, 1, 3, 3, 3, 3, 7, 7. The rank of a structure depends on the model interaction scheme. For every pairing of the six models

studied here, the Pearson correlation coefficient for the rank of the (overlapping) structures that are encodable in both models is provided as the first entry in

each box of this table. The number of overlapping structures is given in parentheses (second entry in each box). This overlapping number as a percentage of

the total number of encodable structures of the less encodable model is also provided (bottom entry in each box). The total number of encodable structures for

each of the models (from Table 1) is shown in parentheses with the model names.

FIGURE 5 Correlation of structure

ranking: (a) HP versus HP#; (b) HP

versus HPmax; (c) AB versus ABmax;

and (d) HP versus AB models. For

a given model, encodable structures are

ranked by the sizes of their neutral

(convergence) sets. For a pair of models

being compared here, the ranks of every

structure encodable in both models are

provided by the two horizontal scales

(the rank can be different in the two

models), whereas the number of struc-

tures sharing a given pair of ranks is

indicated by the vertical scale.
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addressing questions of general principles in biomolecular

evolution, and for rationalizing patterns in the protein

structure database (Irbäck and Sandelin, 2000; Sandelin,

2004) and recent experimental findings (Otey et al., 2004).

SEM approaches are complementary to analytical treatments

of evolution and modeling techniques that utilize more

elaborate but less tractable chain representations (see, e.g.,

Kauffman and Levin, 1987; Macken and Perelson, 1989; van

Nimwegen et al., 1999; Ancel and Fontana, 2000; Bastolla

et al., 2003a,b).

A central advantage of SEMs is that they provide explicit-

chain models of complete sequence-structure mapping that

are built upon polymer physics, albeit only in a rudimentary

manner. It is this physical aspect that sets SEMs apart from

other forms of model sequence-structure mapping, whose

physical plausibility is often uncertain since basic polymer

properties such as chain connectivity and excluded volume

are not taken into account in some of these approaches. It

follows that the physicality of the SEM constructs one uses

for studying protein evolution is of overarching importance.

One should strive to capture as much essential physics of

proteins as possible and reduce arbitrariness in the model

sequence-structure mapping, and achieve these goals within

the confine of limited computational resources. From this

vantage point, any restriction on sequence and conforma-

tional variation should be critically examined.

Here we found that several key qualitative features of the

evolutionary sequence-structure mapping are fairly robust

across the models we have investigated. These include

a strong bias in sequence-space structure distribution (some

structures have much bigger neutral sets than others), possi-

bility of extensive neutral nets, and to some extent the confor-

mity of neutral nets to the superfunnel paradigm. These

similarities suggest that these properties are rather general for

explicit-chain models of genotype-phenotype mapping.

However, it is equally important to realize that there are

quantitative as well as more subtle differences among the

models studied here. Interestingly, the more proteinlike HP

and HP# models appear to have smoother superfunnels,

much less fragmented neutral sets (a neutral set may be

viewed as a protein family encoding for the same structure),

and a significantly higher fraction of their neutral nets

conforming to the superfunnel paradigm than the other

models. We found that restricting conformational variation

to MCSs has a much more drastic effect on the more pro-

teinlike HP model than on the AB interaction scheme. It is

clear that such a restriction imposes a significant change in

the fundamental physics of the hydrophobicity-like inter-

actions of the HP model. In several respects, such as neutral

set fragmentation, neutral net ruggedness, and conformity to

the superfunnel paradigm, the MCS-restricted HPmax model

deviates substantially from the original HP model, some-

times as much as that of the differences between the AB

family of models and the HP model. As a result, the

structural correlation between the HP and HPmax models is

not high, since many prominent structures in the HP model

are not MCSs and thus are precluded in the HPmax scheme.

It also appears that because of the MCS-restricted models’

severe constraints on the folded shapes, modular protein

evolution cannot be readily addressed by these constructs. In

contrast, modularity and autonomous folding units arise

naturally in the unrestricted HP model (Cui et al., 2002;

Irbäck and Troein, 2002; Chan and Bornberg-Bauer, 2002).

All in all, we conclude that these facts should always be

taken into serious account, and caution should be exercised

in the physical interpretation of results from MCS-restricted

evolutionary models.

An instructive future extension of this analysis would be

to employ full conformational enumeration to evaluate

sequence-structure mapping models with larger alphabets,

including rigorously addressing the degree to which the

physics of their intrachain interactions is proteinlike (Chan,

1999; Chan et al., 2002). In view of the more complex

calculations that this would entail, recent developments in

constraint-based computational techniques (Backofen et al.,

1999) should be of use in this endeavor.
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