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ABSTRACT Increasingly complex schemes for representing solvent effects in an implicit fashion are being used in compu-
tational analyses of biological macromolecules. These schemes speed up the calculations by orders of magnitude and are
assumed to compromise little on essential features of the solvation phenomenon. In this work we examine this assumption. Five
implicit solvation models, a surface area-based empirical model, two models that approximate the generalized Born treatment
and a finite difference Poisson-Boltzmann method are challenged in situations differing from those where these models were
calibrated. These situations are encountered in automatic protein design procedures, whose job is to select sequences, which
stabilize a given protein 3D structure, from a large number of alternatives. To this end we evaluate the energetic cost of burying
amino acids in thousands of environments with different solvent exposures belonging, respectively, to decoys built with random
sequences and to native protein crystal structures. In addition we perform actual sequence design calculations. Except for the
crudest surface area-based procedure, all the tested models tend to favor the burial of polar amino acids in the protein interior
over nonpolar ones, a behavior that leads to poor performance in protein design calculations. We show, on the other hand, that
three of the examined models are nonetheless capable of discriminating between the native fold and many nonnative
alternatives, a test commonly used to validate force fields. It is concluded that protein design is a particularly challenging test for
implicit solvation models because it requires accurate estimates of the solvation contribution of individual residues. This contrasts
with native recognition, which depends less on solvation and more on other nonbonded contributions.

INTRODUCTION

Despite recent progress, the treatment of the electrostatic

effects due to the surrounding solvent in computer simu-

lations of biological macromolecules remains a challenge

(Simonson, 2001, and references therein).

In the most detailed microscopic approach, solvent mol-

ecules are treated explicitly, and the electrostatic properties

of both solvent and solute are obtained by averaging over

a very large number of configurations of the system. How-

ever, available computer power usually severely limits the

size of configuration space that can be explored, and prob-

lems can arise when long-range electrostatic interactions are

truncated or summed over an infinite periodic array using

Ewald summation techniques (Sagui and Darden, 1999, and

references therein).

This prompted interest in models, which incorporate the

influence of the solvent in an implicit fashion (see Roux and

Simonson, 1999, for review). These are of two main types,

empirical models and models based on continuum electro-

statics.

Empirical models generally assume that the solvation free

energy of the solute is a sum of atom or group contributions.

Each group contribution is approximated by a linear function

of its solvent-accessible surface area (Eisenberg and McLa-

chlan, 1986; Wesson and Eisenberg, 1992; Ooi et al.,1987;

Schiffer et al., 1992) or by the volume it occupies within

a defined solvation shell (Gibson and Scheraga, 1967; Kang

et al., 1988; Colonna-Cesari and Sander, 1990). The surface

area-based models involve deriving group-based solvation

parameters by fitting to amino acid transfer (Eisenberg and

McLachlan, 1986) and vapor-to-water (Ooi et al.,1987) free

energies. Through these empirically adjusted parameters,

these models incorporate the hydrophobic and electrostatic

components of solvation, but they omit the solvent screening

of the interactions between charges, which must be intro-

duced as an additional term.

Solvent models based on continuum electrostatics define

the solute interior and the solvent as regions with different

dielectric constants, and the electrostatic solvation free

energy is computed by solving the Poisson-Boltzmann equa-

tions (Kirkwood and Westheimer, 1938). In their most

popular applications to biological systems, finite difference

algorithms are used to solve these equations for molecular

boundaries of arbitrary size (Honig and Nicholls,1995).

These methods represent a rigorous treatment of continuum

electrostatics, which takes into account self energies

(solvation of single charges) as well as screening effects

(charge-charge and charge-dipole interactions). Their many

successful applications to biological problems (see Bashford

and Case, 2000; Simonson, 2001, for review) have estab-

lished them as a standard in the field.
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But numerical continuum electrostatics also have their

drawbacks. In most implementations (see Simonson, 2001,

and references therein), with the exception of a few (Luo

et al., 2002), the calculations are too time-consuming to be

performed routinely. Often one also encounters convergence

problems, which may depend on the resolution of the solute-

solvent boundary, on the partial charge representation, and

on the difficulty in mapping forces related to the dielectric

boundary onto individual atoms.

In light of these problems semianalytical and analytical

treatments of continuum electrostatics models have been

proposed (for reviews, see Roux and Simonson, 1999;

Lazaridis and Karplus, 1999a; Bashford and Case, 2000;

Simonson, 2001; Feig and Brooks, 2004). In these

approximations the electrostatic potential is usually a com-

plex but differentiable function of the solute atomic positions,

and can therefore be readily updated during energy minimi-

zation and molecular dynamics simulations.

Several of these models are now routinely available in

modelling packages such as CHARMM, AMBER, and

XPLOR, and a number of groups reported good agreement

of their performance with the full continuum approach

for protein-ligand binding (Zou et al., 1999) pKa shifts

(Bashford and Karplus, 1990) and proteins (Jayaram et al.,

1998; Onufriev et al., 2002), and in molecular dynamics

(MD) simulations of proteins and nucleic acids (Dominy and

Brooks, 1999: Schaefer et al., 1998;Williams and Hall, 1999;

Tsui and Case, 2000). These models have therefore been

gaining appreciation as promising alternatives to their more

time-consuming counterparts.

In this article we report a critical appraisal of several

implicit solvation models in the framework of a relatively

novel application area, that of computational protein design.

Computational procedures for protein design aim at solving

the so-called ‘‘inverse-folding’’ problem (Drexler, 1981),

which consists of starting from a given protein 3D

structure—usually a known structure from the Protein Data

Bank (PDB)—and searching for the amino acid sequence or

sequences that are compatible with this structure.

Protein design procedures work by sampling in discrete

steps a very large number of side-chain conformations and

amino acid sequences that can be built onto the considered

backbone (Kraemer-Pecore et al., 2001; Jaramillo et al.,

2001; Lazar et al., 2003). This involves visiting a large

number of states, the majority of which are energetically

unfavorable. These ‘‘frustrated’’ states (Goldstein et al.,

1992) might involve buried charges, exposed hydrophobic

groups, or unfavorable charge-charge interactions. The main

task of the design procedure is to single out from among all

sampled states those with lowest energy. Such low-energy

solutions should in principle represent amino acid sequences

that are likely to adopt the considered 3D structure.

There has been quite some debate about the force fields

appropriate for protein design (Gordon et al., 1999). Most

current force fields consist of ad hoc combinations of several

terms. These usually include a van der Waals term, as well

as additional terms representing hydrogen bonds, residue

secondary structure propensities (Dahiyat et al., 1997), and

solvation effects. The latter term is commonly represented

using empirical models in conjunction with various sets of

atomic solvation parameters (Eisenberg and McLachlan,

1986; Ooi et al., 1987). The balancing between the different

energy terms is generally obtained through weighting

coefficients, which are empirically adjusted to maximize the

fit with experimental data such as melting temperatures of the

designed proteins, or to reproduce nativelike sequences

(Kuhlman and Baker, 2000; Desjarlais and Handel, 1999;

Raha et al., 2000). The number and values of these coeffi-

cients vary among authors, making it difficult to evaluate

and compare the influence of the different terms on the

results.

In this work we assess the performance of implicit solva-

tion models by testing their ability to distinguish between

favorable and unfavorable sequence-structure combinations.

The analyzed models are the empirical atomic solvation

model (EAS) of Ooi et al. (1987), the solvation model imple-

mented in the effective energy function (EEF1) of Lazaridis

and Karplus (1999a), and two analytical approximations to

the generalized Born equation, one by Schaefer and Karplus

(1996), analytic continuum electrostatics (ACE), and the

other by Lee et al. (2002), termed generalized Born using

molecular volume (GBMV). In addition we evaluate the

finite difference Poisson-Boltzmann procedure (Honig and

Nicholls. 1995), since it is often used as the reference against

which implicit solvation models are benchmarked (Tsui and

Case, 2000; Onufriev et al., 2002). For all the examined

models, we use implementations available in CHARMM

(Brooks et al., 1983) and the CHARMM-based protein

design software DESIGNER (Wernisch et al., 2000).

First, these models are used to estimate the contributions of

individual amino acid residues to the folding free energy of

proteinlike decoys, when those residues are placed in thou-

sands of different proteinlike environments similar to those

typically encountered in protein design calculations. From

these data the cost of transferring the different amino acids

from bulk water to the protein interior is estimated and com-

pared between different amino acids positioned in similar

environments. As a control the same calculations are repeated

on different environments from 362 high-resolution pro-

tein crystal structures deposited in the PDB (Berman et al.,

2000).

Second, the CHARMM-based protein design procedure

implemented in DESIGNER is used to illustrate the perfor-

mance of a subset of the examined solvation models in actual

protein design calculations. DESIGNER is particularly well

suited for this task. Its energetic criteria for scoring sequences

are entirely based on CHARMM force fields and involve no

ad hoc scaling or extensive parameter-fitting, except for

adjustments of a few physically meaningful parameters such

as the dielectric constant, and corrections for approximations
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in the calculations of solvent exposure (Wernisch et al.,

2000).

Third, three of the analyzed solvation models EAS, ACE,

and EEF1, are tested as to their ability in distinguishing

between native and nonnative sequence-structure combina-

tions. The EEF1 model was previously reported to perform

successfully in similar tests (Lazaridis and Karplus, 1999b),

prompting its use in protein-folding simulations (Sali et al.,

1994).

The three analyses taken together represent a first instance

in which several implicit solvation models are confronted

with a range of challenges. This is shown to provide useful

insights into the limitations of these models and hints on how

these limitations might be overcome.

METHODS

Scoring and selecting sequences
with DESIGNER

To score and rank computed sequences for a given backbone structure, or

different amino acids in a given environment, we use a quantity akin to the

folding free energy as previously described (Wernisch et al., 2000):

DG
folding ¼ G

folded � G
reference

; (1)

whereGfolded is the protein free energy in the folded state andGreference is the

free energy in a reference state, which is used as a model for the protein

unfolded state.

In designing sequences compatible with a given backbone structure, the

backbone coordinates are kept fixed, and when comparing the free energies

of different amino acids in various environments, both the backbone and the

surrounding side chains are kept fixed. Therefore the evaluation of DGfolding

can be restricted to the part of the free energy that arises from pairwise

interactions between the side chains of the considered residues and between

these side chains and their fixed surroundings.

The side chain-restricted free energy of the folded state is then expressed

as an effective energy, which is the sum of the following terms (Wernisch

et al., 2000):

G
foldedðSCÞ ¼ E

conformationðSCÞ1G
solvationðSCÞ: (2)

E conformation(SC) is the classical conformational energy computed using the

CHARMM 22 force field (MacKerell et al.,1998) and is expressed as a sum

of pairwise contributions. Gsolvation(SC) represents the solvation free energy.

In this force field, side-chain and backbone conformations are represented in

full atomic detail (including all hydrogen atoms).

In the standard protocol of the protein design software DESIGNER,

Gsolvation(SC) is computed using the empirical atomic solvation model (see

below). The electrostatic term is computed using a dielectric constant of 8

and a switching function operating between 6 and 7 Å. Different treatments

of the electrostatic term are used with other solvation models (see below).

Unless otherwise stated, side-chain conformations are modeled using the

backbone-dependent rotamer library of Dunbrack and Karplus (1993).

For all other details of the protein design protocol, the reader is referred to

Wernisch et al. (2000).

Free energy of the reference state

The free energy of the reference state, also restricted to contributions from

side chains only, Greference(SC), is calculated as the sum of the free energy

contributions of isolated amino acids:

G
referenceðSCÞ ¼ +

i

G
referenceðAiÞ; (3)

where Ai are the isolated amino acids, modeled by the standard dipeptide unit

with the N-acetyl-N#-methylamide backbone, and the sum is performed over

the sequence of the protein. As for the folded state, Greference(A) is expressed

as a sum of two terms:

G
referenceðAÞ ¼ E

conformationðAÞ1G
solvationðAÞ; (4)

where E conformation(A) and Gsolvation(A) are the contributions from confor-

mational and solvation energies, respectively.

Calculation of the two energy terms in Eq. 4 involves computing the

Boltzmann averages of the conformational and solvation energies over all

possible side-chain conformations of A. As for the folded state the confor-

mational energy is evaluated using the CHARMM-22 force field, whereas

the solvation energy is evaluated using either Eq. 5 (see below) or other

implicit solvation models.

Solvation free energy models

In this study, the solvation free energy in Eq. 2 is successively represented

by the four different implicit solvation models detailed below.

Empirical atomic solvation model

This is the model implemented in the standard sequence design protocol of

the software DESIGNER (Wernisch et al., 2000). In this model Gsolvation is

expressed as a linear function of the solute-solvent-accessible surface area as

follows (Ooi et al., 1987):

G
solvation ¼ +

i

siASAi; (5)

where ASAi is the accessible surface area of atom i, and si, are the atomic

solvation parameters, which are taken here as those for the vacuum-to-water

transfer process (Ooi et al.,1987). The ASAi is computed using the

CHARMM22 van der Waals radii and a probe radius of 1.4 Å.

In the folded state, Gsolvation is computed as a sum of several contri-

butions. A contribution from the area buried by the interactions between the

pairs of variable side chains, which is approximated by the weighted sum of

the areas buried by all pairs, and the areas buried by the interactions of each

side chain and the template, which are computed exactly. In the standard

DESIGNER settings used here, a weight of 0.5 is applied to the pairwise

term. This was shown to yield values for Gsolvation differing by at most 15%

from those computed using exact surface area calculations (Wernisch et al.,

2000).

In computing Gsolvation in the reference state, where the contributions of

individual amino acids are simply summed (see below), the atomic ASA
values are scaled down by 20%. This downscaling is justified by the fact that

the straightforward summation in Eq. 5 overestimates the solvent accessible

surface area in the unfolded state, because it neglects all interactions between

side chains (Street and Mayo, 1998). Applying this scaling factor amounts to

accounting for such interactions and considering that in the unfolded state

residues are on the average ;20% buried (Khechinashvili et al., 1995).

Effective energy function (EEF1)

This is the solvent-exclusion model with an empirical screening developed

by Lazaridis and Karplus (1999a) and implemented in CHARMM. The

solvation free energy is written as a sum over atom contributions:

DG
solvation ¼ DG

reference �+
j

Z
Vj

fiðrijÞd3
r; (6)
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where DGreference
i is the solvation reference energy of atom i in a reference

state, where it is completely accessible to the solvent. In the CHARMM

implementation the values for DGreference
i are taken as the experimentally

determined vacuum-to-water solvation energies of the corresponding groups

in small molecules (Privalov and Makhatadze, 1993; Makhatadze and

Privalov, 1993), except for the ionic groups which have arbitrary values to

prevent the burial of charged residues (see below).

The second term is an integral over the solvation free energy density of

group i at point r. It contains contributions from solute-solvent energy,

solvent reorganization energy, solute-solvent entropy, and solvent re-

organization entropy. The integral is over the volume Vj of group j that
displaces solvent molecules around i; the summation is over all groups j

surrounding i, and rij is the distance between groups i and j. In the discrete

approximation, the integral is replaced by the product of the solvation free

energy density of atom i times the volume Vj, with the latter being approxi-

mated by the volume of a sphere of a given radius.

The solvation free energy density is assumed to be a Gaussian function of

the dimensionless distance from the atom:

fiðrÞ4pr2 ¼ ai expð�x2i Þ; (7)

with xi ¼ ðr � RiÞ=li; where Ri is the van der Waals radius of i, li is the

correlation length, and ai ¼ 2DGfree=ðli
ffiffiffiffi
p

p
Þ is a proportionality coefficient

with DGfree being the solvation free energy of the isolated atom.

The values of the various parameters (atom types i, their volumes Vi, their

correlation lengths L, DGreference and DGfree) required to compute the

solvation free energy using Eqs. 6 and 7, and various other settings were

taken as described in Lazaridis and Karplus (1999a). This includes the use of

neutralized ionic side chains and a distance-dependent dielectric function

applied to all atoms, including buried ones.

The generalized Born approximations ACE
and GBMV

The ACE solvation model, introduced by Schaefer and Karplus (1996),

belongs to the models based on the generalized Born equation. This equation

gives an approximation to the electrostatic screening interaction energy

Escreening
ij between two charged groups in the presence of a continuum

dielectric:

DE
screening

ij ¼ 1� 1

e

� �
qiqj

ðr2ij 1 bibj exp½�r
2

ij=4bibj�Þ1=2
; (8)

where qi and qj are the atomic partial charges, e is the solvent dielectric

constant, and bi and bj are the effective Born radii, computed as follows:

bi ¼ �ð1� 1=eÞq2

i

2DE
self

i

; (9)

where DEself
i is the solvation free energy of group i.

The total solvation free energy is expressed as a sum of three terms:

DG
solvation ¼ +

i

DE
self

i � 1

2
+
j 6¼i

E
screening

ij 1DE
nonpolar

i

 !
: (10)

DEnonpolar
i is a surface area-dependent approximation to the hydrophobic

solvation term. The screening term Escreening
ij depends on the structural

environment through the bi variable of the surrounding groups. DEself
i is

computed using an approximation to the integral of the energy density of the

electric field over space.

The more recent generalized Born implementation by Lee et al. (2002),

abbreviated GBMV, is a successor of the ACE model, where Eq. 9 is

replaced by a higher-order empirical correction term for the Born radii that

improves their fit with the radii calculated from Poisson theory. In the

calculations performed here we used the GBMV setting recommended by

Feig et al. (2004).

Solvation with the finite difference
Poisson-Boltzmann procedure

The electrostatic contribution to the solvation free energy is computed using

the fullest treatment of continuum electrostatics embodied in the finite

difference Poisson-Boltzmann (FDPB) procedure. We use the procedure

implemented in the CHARMM package. The van der Waals radii and partial

charges are those of the CHARMM22 parameter set. The probe size for water

is 1.4 Å, and the values of 4 and 80 are used for the protein and solvent

dielectric constants, respectively. The calculations are performed using

a dielectric constant of 4 for evaluating the Coulomb term and a box with

dimensions equaling twice the maximum diameter of our protein decoys,

with 99 grid points in each dimension. A single focusing iteration is per-

formed.

The FDPB calculations, being very computationally demanding, are

applied to a smaller subset of 990 decoy structures (see below). The

electrostatic component of the solvation free energy is computed by

performing the FDPB calculations in vacuum (solvent dielectric ¼ 1) and in

water (solvent dielectric ¼ 80) and taking the difference:

DG
PB ¼ G

PB

water � G
PB

Vacuum: (11)

The solvation free energy is then computed as the sum of the electrostatic

components and a surface area dependent nonpolar solvation term as

follows:

DG
solvation ¼ DG

PB
1 g ASA; (12)

where ASA is the protein solvent-accessible surface area (computed using

a probe radius of 1.4 Å) and g ¼ 6 cal/Å2 is the proportionality coefficient

for the vapor-to-water transfer free energy versus accessible surface area

(Ben Naim and Marcus, 1984).

Generating proteinlike decoys with
random sequences

To generate a very large number of different environments for amino acids,

where they would experience the entire range of solvent exposures (from

completely exposed to completely buried), while being surrounded by

residues with various degrees of polarity, structures were built into which

random sequences were fitted, as follows.

First, we selected 45 high-resolution protein x-ray structures and 45

structures corresponding to models of minimum energy sequences computed

by DESIGNER in full-design calculations performed previously (Jaramillo

et al., 2002).

Second, the selected structures were unfolded using the protocol of Elcock

for generating nativelike unfolded states of proteins (Elcock, 1999). The

unfolding involved gradually increasing the Van der Waals radii to 3.0 Å, in

steps of 0.5 Å. At each step, the electrostatic interactions were switched off

and the energy of the structure was minimized using 50 steps of steepest

descent followed by 250 steps of conjugate gradient minimization. The

resulting unfolded structures had a minimal number of interactions while

keeping a residual nativelike topology, making it possible to easily thread

onto each of them a sequence chosen at random. The resulting structures

displayed on average a root-mean-square deviation of 8 Å with the original

structures.

Third, the random sequences were built into each of the unfolded

structures using the ‘‘naı̈ve’’ rotamer library recently proposed for misfolded

structures, which contains only one rotamer per amino acid, thereby

avoiding the costly task of side-chain modeling (Samudrala et al., 2000).

In a fourth and last step, each structure was relaxed by first performing

300 steps of Newton-Raphson minimization, followed by a 50-ps (1 ps ¼
10�12 s) molecular dynamics run with EEF1 and then another 300 Newton-

Raphson iterations. This produced structures displaying on average a root-

mean-square deviation of 12.3 Å relative to the original structures.
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All in all, this yielded 1372 polypeptide structures, displaying some

degree of compactness. This ensemble of decoys comprises .80,000 res-

idues, where each of the 20 amino acids appears.4000 times, given that the

amino acids in the random sequences were chosen from a uniform proba-

bility distribution.

Data on protein crystal structures

In a second set of calculations we considered a set of 362 protein crystal

structures deposited in the PDB, having 61–410 residues. These structures

were selected using the PQS server (Henrick and Thornton, 1998) by

searching for structures that are monomeric, with no disulphide bridges. This

yielded 7954 matches, which were pruned, using the PISCES server (Wang

and Dunbrack, 2003), to yield a subset with ,25% sequence identity and

a resolution better than 2.5 Å. Those were ‘‘cleaned’’ further to remove

structures with gaps, yielding a final set of 362 structures, whose PDB-

RSCB codes are given in the supplementary material.

Computing protein-to-water transfer
free energies

Using the structures built as described above, the free energy cost of burying

an amino acid residue to various extents in proteinlike environments was

computed. This was done by computing for all instances of a given amino

acid type the solvent-accessible surface area of the residue and its interaction

free energy (including the conformational as well as solvation terms) with

the remainder of the protein.

The cost of transferring an amino acid from the bulk solvent, where it is

completely accessible, to the protein interior, where it is completely buried,

was estimated by computing the difference:

DGtransferðAÞ ¼ GburiedðAÞ � GaccessibleðAÞ; (13)

where Gaccessible(A) is the average free energy of the amino acid A, when its

accessibility is in excess of 80%, and Gburied(A) is the average free energy of

the same amino acid when it is completely buried (,1% accessibility to

solvent).

RESULTS

Contributions of amino acids to the folding free
energy as a function of solvent exposure

The contribution to the folding free energy of 1372 pro-

teinlike decoy structures is evaluated for individual amino

acid side chains positioned in ;4000 different proteinlike

environments, similar to those typically encountered in

protein design calculations. The decoy structures are

generated as described in Methods. The free energy con-

tribution of an amino acid A is computed as the difference

(DDGi(A)) between the decoy folding free energies in the

presence and absence of the considered amino acid in

position i, using the thermodynamic cycle shown in Fig. 1.

Thus, DDGi takes into account the total free energy cost of

desolvating in part or in whole the amino acid itself, as well as

the cost of the partial desolvation of neighboring residues and

the vacuum interaction terms of the considered residue with

all surrounding atoms.

The calculations are carried out with four implicit

solvation models. The EAS model of Ooi et al. (1987), the

EEF1 model of Lazaridis and Karplus (1999a), and two

analytical approximations to the generalized Born equation,

ACE (Schaefer and Karplus, 1996) and GBMV (Lee et al.,

2002). In addition, calculations are performed with the

classical finite difference Poisson-Boltzmann procedure.

Folding and transfer free energies with the
EAS model

Fig. 2 plots the contributions to the folding free energy of

Val, Thr, and Lys respectively, as a function of their solvent

accessibility (SA) in the decoy structures. The folding free

energy was computed using the all-atom CHARMM22 force

field in combination with the solvation term of Ooi et al.

(1987), parameterized as previously described (Wernisch

et al., 2000; see Methods). Each plot was obtained by

computing DDGi for one of the considered amino acids in all

structures and all positions within each structure where it was

found, totalling ;4000 different values.

We see that the free energy contribution of the hydropho-

bic side chain Val (Fig. 2 a) is highly favorable (�11 to �3

kcal/mol) when this side chain is nearly completely buried

(SA values ,0.1) and that it becomes less favorable as the

solvent accessibility of the side chain increases. The spread in

values is quite large, most likely due to the different environ-

ments in which the Val side chains in our decoy structures

find themselves, as discussed below.

FIGURE 1 Thermodynamic cycle for calculating the contribution of an

amino acid side chain to the folding free energy of a decoy structure. DG

folding is the contribution of the considered residue (back bone and side

chain) to the free energy of folding of the protein (here the decoy). DG (BB)

folding is the contribution of the backbone of the considered residue to the

folding free energy of the decoy. DGw-solv(SC) is the free energy cost of

introducing the side chain into the water solvent. DGd-solv (SC), is the free

energy cost of introducing the same side chain into the decoy structure. This

cost includes the interaction energy of the side chain with the surrounding

residues in the decoy as well as the cost of burying side-chain atoms and

surrounding decoy atoms.
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Fig. 2 b shows the equivalent plot obtained for the

isosteric but more polar Thr side chain. The contribution of

Thr to the folding free energy is similar to that of Val when

this residue is nearly completely buried (SA ,0.1). But

unlike for Val, this contribution remains roughly constant

and favorable as the side chain becomes more solvent

exposed. The spread in values is on the whole larger than for

Val, given that the Thr side chain can make H-bonds with

neighboring groups in some environments and not in others.

The clear differences between the Val and Thr plots are

hence consistent with the physical chemical properties of the

two side chains, in particular with the fact that Val is less

soluble than Thr in bulk solvent.

The equivalent plot for the charged Lys side chain is shown

in Fig. 2 c. The spread of free energy values is particularly

large, reflecting the great variability in the local environments

of this amino acid in our decoys. Some of the completely

buried Lys side chains provide very stabilizing contributions

(from �18 to �16 kcal/mol), due to the H-bonds they make

with other polar residues. The more accessible of these side

chains also provide stabilizing contributions, albeit of lower

magnitude (from �8 to �6 kcal/mol).

Similar plots are generated for all the amino acid side

chains, save for prolines and glycines. Using those plots we

then compute for each of the considered amino acids the free

energy contribution averaged over slabs of solvent accessi-

bility, when the residue is completely buried (0 , SA #

0.01) and when it is completely accessible (0.80, SA# 1),

respectively. The difference between these two values is

defined as DGT, the free energy cost of transferring the side

chain from pure water to the protein interior.

Fig. 7 a plots the DGT values and their associated standard

deviations for the different amino acids, ordered according to

a commonly used hydrophobicity scale (Engelman and

Steitz, 1981). This plot shows, first of all, that the standard

deviations of the DGT values are very large, in line with the

large spread in the folding free energy values of individual

residues. Next it reveals that the DGT values of the nonpolar

residues are in general lower than those of polar and charged

ones, and that the average DGT values of the nonpolar

residues tend to increase with decreasing hydrophobicity. It is

particularly noteworthy that the values for polar residues

such as Thr or Asn are significantly larger than those of

hydrophobics such as Val or Ile(leu), with limited overlap

between the distributions of the DGT values for these two

types of residue. The highest DGT values are displayed by

Arg, Tyr, and His residues, with those for Lys and the nega-

tively charged Asp and Glu residues displaying somewhat

lower values.

Folding and transfer free energies with EEF1 and
the generalized Born solvation models

The calculations described above were repeated using the

EEF1 and two generalized Born solvation models, ACE and

GBMV, respectively (see Methods). Fig. 3 illustrates the

results obtained with EEF1 for the same three residues as

those discussed above. Val (Fig. 3 a) displays rather tightly
clustered values that start at about �4 kcal/mol for low

exposures of ,0.1 Å2, increasing slowly and linearly to

values of about 15 kcal/mol for completely exposed Val

side chain. Thr (Fig. 3 b) displays significantly more

negative free energy values in buried positions (from �24

to�22 kcal/mol) than Val. These values remain negative but

become progressively less favorable as the Thr side chain

becomes more exposed. A roughly similar trend is observed

for Lys (Fig. 3 c), but the free energy values of buried Lys

residues are now in the�44 to�22 kcal/mol range when the

residues are completely buried, and increase to ;�16 kcal/

mol when they are completely exposed.

The DGT values for the different amino acids computed

from these data are shown in Fig. 7 b, together with their

FIGURE 2 Contributions of individual amino acids to the folding free energy (kcal/mol) of proteinlike decoys, as a function of their solvent accessibility,

computed with the EAS solvation model. (a) Energy of the Val side chain versus its SA for 4018 random environments. (b) Energy of the Thr side chain versus

its SA for 4174 random environments. (c) Energy of the Lys side chain versus its SA for 4176 random environments. The energy values were computed as

indicated in Fig. 1 and described in the text. The SA is defined as the ratio of the side-chain ASA in the decoy over its ASA when it is completely solvated.
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standard deviations. These values are plotted in the same order

of increasing side-chain polarity as for the plot of Fig. 7 a. It is
striking to see that except for Trp, hydrophobic amino acids

have, on average, a less favorable water-to-proteinDGT values

than polar residues, with the lowest value overall being dis-

played by Arg, representing a rather nonphysical behavior.

Results obtained with the ACE model are illustrated in

Figs. 4 and 7 c and those obtained with the GBMVmodel are

shown in Figs. 5 and 7 d. The ACE free energy versus SA

plots of Val and Thr (Fig. 4, a and b) display qualitatively

the same behavior as in the calculations with EEF1, although

the actual values differ somewhat. The Lys plot (Fig. 4 c) is,
however, quite different. Unlike with EEF1, in the ACE

model the Lys free energy contribution becomes more

favorable as the side chain exposure increases with, on

average, free energy values of �80 kcal/mol for completely

buried Lys side chains to values near �100 kcal/mol when

they are completely exposed. Overall, however, this yields

average DGT values that are roughly similar for the different

amino acids, irrespective of their polarity with, however,

extremely large standard deviations for the four charged

residues, E, K, D, and R (Fig. 7 c).
The behavior of the GBMV folding free energy curves

(Fig. 5) is somewhat different. The spread in values is sig-

nificantly reduced for all three side chains, when their ac-

cessibility exceeds ;20%. We see furthermore that the free

energy values change little with residue exposure and more

strikingly, that folding free energy values for Thr and Lys,

respectively a polar and charged residue, are lower than for

the hydrophobic Val residues, representing a rather non-

physical behavior, once again. Fig. 7 d, which displays the

GBMV DGT values for all the 20 amino acids, reveals

a qualitatively similar behavior to that observed with ACE

(Fig. 7 c), but with an even more marked similarity between

FIGURE 3 Contributions of individual amino acids to the folding free energy (kcal/mol) of proteinlike decoys, as a function of their solvent accessibility,

computed with the EEF1 solvation model. (a) Energy of the Val side chain versus its SA for 4018 random environments. (b) Energy of the Thr side chain versus
its SA for 4174 random environments. (c) Energy of the Lys side chain versus its SA for 4176 random environments. The energy values were computed as

indicated in Fig. 1 and described in the text. The SA is defined as the ratio of the side-chain ASA in the decoy over its ASA when it is completely solvated.

FIGURE 4 Contributions of individual amino acids to the folding free energy (kcal/mol) of proteinlike decoys, as a function of their solvent accessibility,

computed with the ACE solvation model. (a) Energy of the Val side chain versus its SA for 4018 random environments. (b) Energy of the Thr side chain versus
its SA for 4174 random environments. (c) Energy of the Lys side chain versus its SA for 4176 random environments. The energy values were computed as

indicated in Fig. 1 and described in the text. The SA is defined as the ratio of the side-chain ASA in the decoy over its ASA when it is completely solvated.
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the average DGT values of polar and nonpolar residues. We

see, in particular, that Arg has a tighter distribution of DGT

values than with ACE, but features one of the lowest average

values of the entire plot, which is even lower than those of

most nonpolar residues.

Folding and transfer free energies with
Poisson-Boltzmann electrostatics

To complete the analysis, the same calculations as those

described above were also performed using the finite

difference Poisson-Boltzman approach (Gilson et al.,1993)

as described in Methods. Fig. 6 plots the resulting SA-

dependent free energy contributions of Val, Thr, and Lys,

respectively. The DGT plots are given in Fig. 7 e.

Val and Thr (Fig. 6, a and b) display a similar behavior as

in the calculations with the ACE model, although the spread

of values for both amino acids, but particularly for Thr, is

somewhat narrower in the FDPB plots, but not as narrow as

in the GBMV plots of Fig. 5. In contrast, the SA-dependent

Lys plot (Fig. 6 c) is different from that with ACE or from

any of the other implicit solvation models tested here (Figs. 3

c and 4 c). The side-chain free energy shows little variability
with the SA, but displays a very wide spread in values,

spanning a record range of ;180 kcal/mol.

Overall the FDPB method yields average amino acid DGT

values that show no clear trend as a function of amino acid

polarity (Fig. 7 e). This is partly due to the very large spread

of values, resulting in large standard deviations (.30 kcal/

mol), particularly for the charged side chains (E, D, R, andK).

FIGURE 5 Contributions of individual amino acids to the folding free energy (kcal/mol) of proteinlike decoys, as a function of their solvent accessibility,

computed using the generalized Born implementation of Lee et al. (2002). (a) Energy of the Val side chain versus its SA for 4018 random environments. (b)

Energy of the Thr side chain versus its SA for 4174 random environments. (c) Energy of the Lys side chain versus its SA for 4176 random environments. The

energy values were computed as indicated in Fig. 1 and described in the text. The SA is defined as the ratio of the side-chain ASA in the decoy over its ASA

when it is completely solvated.

FIGURE 6 Contributions of individual amino acids to the folding free energy (kcal/mol) of proteinlike decoys, as a function of their solvent accessibility,

computed using the FDPB electrostatics and surface area-dependent hydrophobic term. (a) Energy of the Val side chain versus its SA for 4018 random

environments. (b) Energy of the Thr side chain versus its SA for 4174 random environments. (c) Energy of the Lys side chain versus its SA for 4176 random

environments. The energy values were computed as indicated in Fig. 1 and described in the text. The SA is defined as the ratio of the side chain ASA in the

decoy over its ASA when it is completely solvated.
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Thus, on the whole, the trends observed with the FDPB

procedure applied using the standard CHARMM partial

charges and atomic radii are similar to those obtained with

the generalized Born-based ACE and GBMV models. These

trends remain unchanged after making several variations of

the FDPB protocol, which include different definitions for

the solvent boundary, different partial charge sets, and differ-

ent procedures for side-chain modeling, as discussed below

and presented in the supplementary material.

Amino acid transfer free energies in protein
crystal structures

Although our decoys are proteinlike they obviously do not

represent thermodynamically stable structures and are clearly

more poorly packed than native proteins. To investigate the

effect that this might have on the folding and transfer free

energy values computed with the different implicit solvation

models, we repeated some of the calculations described

above on a set of 362 known high-resolution protein crystal

structures, representing between 3000 and 6000 different

environments for the 20 amino acids. In particular we

computed the SA-dependent residue folding free energies

and the corresponding transfer free energies using the EAS,

EEF1, and GBMV models. Having verified that the values

obtained with the GBMV model were highly correlated with

those computed with the FDPB method (correlation co-

efficient ¼ 0.99), we did not perform calculations with the

latter method.

The folding free energy versus SA plots for Val, Thr, and

Lys computed with all three models are given in the

supplementary material (Figs. S3–S5). The average DGT

values and corresponding standard deviations are plotted in

Fig. 8, for all the amino acids for which the number of ob-

servations was sufficient. A first general observation that can

be made from this figure is that in the well-packed crystal

structures the average amino acid DGT values are often lower

than those obtained with the decoys (Fig. 7). This is the case

in particular for the DGT values of hydrophobic and charged

amino acids computed with the EAS and the GBMV models,

but not of the polar ones (Fig. 8 versus Fig. 7). Interestingly,

GBMV yields larger standard deviations for the DGT values

computed in the crystal structures than in the decoys.

The lower transfer free energies for nonpolar residues in

the crystal structures are probably a consequence of better

packing of the protein core in these structures than in our

FIGURE 7 Transfer free energies of amino acids from water to the protein interior, computed using the five different implicit solvation models analyzed in

this study. The transfer free energy was computed as DGtransferðAÞ ¼ GburiedðAÞ � GaccessibleðAÞ;whereGaccessible(A) is the average free energy of the amino acid

A, when its accessibility to solvent is.80%, andGburied(A), is the average free energy of the same amino acid when it is completely buried (,1% accessibility).

Dark circles represent average values, and bars, standard deviations. (a) DGtransfer computed with the EAS solvation model. (b) DGtransfer computed with the

EEF1 solvation model. (c) DGtransfer computed with the ACE solvation model. (d) DGtransfer computed with the GBMV solvation model. (e) DGtransfer

computed using FDPB and a surface area-dependent hydrophobic term (see Methods).
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decoys. The origin of the lower energies of charged residues

might reflect the occasional existence in native proteins of

buried charged side chains that have evolved to form

favorable interactions with the rest of the protein. We could

indeed check that in a few of the crystal structures, Lys and

Arg side chains had very low interaction energies (;�30 to

�40 kcal/mol, with EAS). Such low energies were rarely if

ever detected in the decoys.

Of the three tested models, EAS appears here, too, to

produce the best separation between the distributions of the

DGT values for nonpolar versus polar amino acids, although

this separation is less than in the decoys. On the whole, the

standard deviations of the DGT values are also lower than

those obtained with the EEF1 and GBMV models and lower

than those computed with the EAS model in our decoys.

Protein design with implicit solvation models

Having assessed how the different solvation models fare in

evaluating the free energy cost of transferring amino acids

from water to the protein interior in our proteinlike decoys,

we now proceed to evaluate their effectiveness in selecting

amino acid sequences likely to stabilize a nativelike protein

structure in actual protein design calculations.

In protein design procedures such as those used here and

elsewhere (Dahiyat et al., 1997; Raha et al., 2000; Koehl and

Levitt, 1999a,b; Kuhlman and Baker, 2000), energies are

computed as a sum of single-residue and residue-pair

contributions. Energy terms involving many-body contribu-

tions can therefore not be readily included, unless approx-

imated by pairwise terms. Of the different solvation models

analyzed here, only two could therefore be evaluated in the

context of actual protein design calculations. These are the

EAS model, which includes a surface area-dependent term

for which pairwise approximations have been derived by

some of us (Wernisch et al., 2000) and by other authors

(Street and Mayo, 1998), and the EEF1 model, where the

solvation free energy density is expressed as a sum of

pairwise contributions (Lazaridis and Karplus, 1999a).

Results obtained using these two solvation models in

protein design calculations on the structure of the completely

helical 54-residue engrailed homeobox domain protein

(PDB_RCSB code 1enh) are presented in Figs. 9 and 10.

Fig. 9 lists, for the design calculation with each solvation

model, the minimum energy sequence and a summary of the

sequence profiles derived from the entire family of selected

low-energy sequences—those within a given energy window

above the minimum energy sequence. The calculations

performed using the EAS model (Fig. 9 a) yield sequences

with, on average, 16.6% identity to the wild-type homeobox

FIGURE 8 Transfer free energies of amino acids from water to the protein interior, in 362 high-resolution protein crystal structures deposited in the PDB.

The energies were computed using three of the implicit solvation models analyzed in this study. The transfer free energies were computed as detailed in the

legend of Fig. 7. Shown are the average values (dark circles) and corresponding standard deviations (bars). (a) DGtransfer computed with the EAS solvation

model. (b) DGtransfer computed with the EEF1 solvation model. (c) DGtransfer computed with the GBMV solvation model.

FIGURE 9 Profiles of the designed sequences computed by DESIGNER

for the homeodomain protein (RSCB-PDB code 1enh), using the EAS

model (a) and the EEF1 model (b), respectively. The first row lists the

residue number. The second and third rows list the wild-type sequence and

the consensus-designed sequence (the most probable amino acid at each

position along the polypeptide), respectively, using the one-letter amino acid

code. Subsequent rows list the amino acids that occur with a frequency

.10%. Buried positions (those with a solvent-accessible surface area of

,25% in the native structure) are colored red in the wild-type sequence.

Designs with the EAS model produced a total of 104 sequences; those with

the EEF1 model produced 186 sequences.
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domain sequence. This identity is higher for buried residues

(38% on average) than for residues on the protein surface

(7%), as previously reported (Jaramillo et al., 2002).

A very different result is observed for the sequences

designed using the EEF1 model (Fig. 9 b). These sequences
differ much more from the wild-type sequence, with, on

average, 8.5% identity for all residues and 10% identity for

buried residues. Quite strikingly, many of the hydrophobic

amino acids in the wild-type are replaced by either polar

amino acids or Trp or Phe residues, so that the designed

proteins contain a large proportion of polar or aromatic

amino acids, even in the protein core.

This result clearly contradicts what we know about pro-

teins and about the role played by the hydrophobic effect in

stabilizing the folded state. But it can be readily rationalized

on the basis of the amino acid transfer free energies computed

with the EEF1 model in our decoys (Fig. 7 b), or in the native
crystal structures (Fig. 8 b). We see indeed that, on average,

the transfer free energies for hydrophobic side chains such as

Leu, Val, and Ala are all several kcal/mol higher than those of

polar amino acids such as Thr, Tyr, and Arg, rather than the

other way around. These polar amino acids are therefore

systematically favored over nonpolar ones in the protein

design calculations even in buried positions, leading to

physically unsound sequence selections. Likewise, Phe and

Trp side chains have lower transfer free energies than

the other hydrophobic amino acids, favoring their ready

incorporation into the protein core in the design calculations.

Fig. 10 illustrates the arrangement of core side chains in

the 3D structures built for the minimum energy sequences

obtained using the EAS and EEF1 models, when these are

superimposed onto the native homeobox domain structure.

Inspection of this arrangement confirms that the protein

designed using the EAS model (Fig. 10 a) is nativelike, as

the side-chain types and conformations in the designed and

native proteins are very similar. This is clearly not the case

for the protein designed using the EEF1 model. The core of

the latter protein contains buried polar groups (e.g., 2 Arg

and 1 His residues), which often form H-bonds to other polar

groups (Fig. 10 b).
The protein designed using EEF1 also displays some

unusual—and possibly physically unsound—constellations

of surface residues, as illustrated in Fig. 11 a. It features close
interactions between the side chains of Arg 34 and Arg

37 (4.2 Å distance between nitrogen atoms of different

arginines), as well as a completely buried Arg 38. Close inter-

actions of this type are not observed in the native homeo-

box structure (Fig. 11 c), which contains many positively

charged side chains on the surface, involved in DNA binding,

or in the minimum energy-designed protein with the EAS

model (Fig. 11 b), which yields an increased proportion of

charged side chains on the protein surface (Jaramillo et al.,

2002).

Distinguishing between nativelike and
misfolded structures

To evaluate the suitability of a given force field for conforma-

tional search procedures or for fold prediction, a simple test is

FIGURE 10 Arrangements of amino acid side chains in the core of the

minimum energy-designed protein and the wild-type protein for the

homeodomain protein, using the EAS model (a) and the EEF1 model (b),

respectively. The side chains in the wild-type structures are colored yellow,

those of the designed structures are colored using the CPK convention. It is

clearly visible that the sequence and structures designed using the EAS

model are more nativelike than the one designed using the EEF1 model. In

the latter structure, several buried hydrophobic residues are replaced by

polar ones.

FIGURE 11 Arrangements of amino acid side chains on the surface of

minimum energy-designed and wild-type homeodomain proteins. The

minimum energy-designed proteins were computed using the EEF1 and

EAS models, respectively. (a) Minimum energy-designed protein using the

EEF1 solvation model. (b) Minimum energy-designed protein using the

EAS solvation model. (c) Wild-type homeodomain crystal structure (PDB

RSCB-code 1enh).
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commonly performed (Lazaridis and Karplus, 1999b;Wodak

and Rooman, 1993). The amino acid sequence of a protein,

whose 3D structure is known, is modeled into a set of decoys,

represented by backbones of unrelated proteins retrieved from

the Protein Data Bank or by compact proteinlike structures

generated computationally. The force field is then used to

compute the energies of the modeled nonnative decoys and

of the native protein structure.A suitable force field is required

to yield a distinctly lower energy for the native sequence-

structure combination than for the nonnative ones.

The EEF1 model was previously shown to perform

adequately in such tests (Lazaridis and Karplus, 1999b).

Here, three of the analyzed solvation models, the EAS, EEF1,

and ACEmodels, are subjected to an analogous test similar in

spirit to the classical test ofNovotny et al. (1988).We consider

two proteins of similar size, that adopt different folds, the all-a

homeobox domain and the all-b SH3 domain proteins. For

each domain the family of natural sequences is obtained from

multiple alignments available in PFAM (Bateman et al.,

2002). These alignments are pruned of sequences with unusu-

ally large or numerous insertions or deletions, and structural

alignments are used to improve the sequence alignment in

regions. The final number of considered sequences is 534 for

SH3 and 1225 for the homeodomain.

These sequences are successively modeled onto the repre-

sentative structure of each protein family, using the side-

chain modeling procedure implemented in DESIGNER.

These structures are the N-terminal SH3 domain from

C-crk (PDB-RCSB code 1cka) and the engrailed homeobox

domain structure (PDB-RCSB code 1enh). The sequence-

structure alignments for the homologs were taken directly

from the multiple alignments, and those for the nonhomologs

were obtained by simply aligning successive residues in the

sequence-structure pair.

Fig. 12 illustrates the results obtained by modeling the 534

sequences of SH3 domains onto the backbones of the SH3

and homeodomain structures, respectively. Very similar re-

sults were obtained when performing the symmetrical experi-

ment, whereby the 1225 sequences of the homeodomain

family are successively modeled onto the backbones of the

C-crk SH3 domain and homeodomain, respectively (see

supplementary material, Fig. S6).

The different panels of Fig. 12 display four distinct distri-

butions of energy values. The first represents the energies

computed for the structures representing native sequences of

SH3 proteins modeled onto the backbone of their represen-

tative structure (red bars). The second represents the energies
of the structures in which sequences from the SH3 domains

are modeled into the homeodomain backbone (green bars).
The third and fourth distributions represent the energies

computed for a set of 4978 random sequences built onto the

homeodomain and SH3 representative structures, respec-

tively. These sequences were generated considering equal

probabilities for the 20 amino acids at each residue position,

FIGURE 12 Distinguishing between nativelike and misfolded structures

using various implicit solvation models. (a) Distributions of protein energies

computed using the EAS solvation model. (b) Distributions of protein

energies computed using the EEF1 solvation model. (c) Distributions of

protein energies computed using the ACE solvation model. Each of the plots

displays four different distributions. The one displayed with red bars

represents the energies computed when the natural sequences of the SH3

domain are mounted onto the backbone of the C-crk SH3 domain (PDB-

RCSB code 1cka). The green bars represent energies of the natural SH3

domain sequences mounted onto the engrailed homeodomain backbone

(PDB-RSCB code 1enh). The blue and yellow bars represent energies of

random sequences (see text for details), when those are mounted onto the

SH3 (1cka) backbone and homeodomain (1enh) backbone, respectively.
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and using DESIGNER to model the side-chain conforma-

tions.

We see that the force fields incorporating all three con-

sidered solvation models yield on average lower energies

for the native sequence-structure combinations, where the

natural sequences of the SH3 domain are mounted onto the

backbone of the C-crk SH3 domain, than for the nonnative

combinations, where the SH3 sequences are mounted onto

the backbone of the unrelated engrailed homeodomain.

Furthermore, the separation between the energy distribu-

tions for native and nonnative sequence-structure combina-

tions in the different panels of Fig. 12 is rather good. With

energies for the native sequence structure combinations be-

tween 77 and 141 kcal/mol lower, on average, than those of

the nonnative combinations.

With all three solvation models, the two energy distribu-

tions display nevertheless some overlap, indicating that a

fraction of the SH3 domain sequences display similar

energies when these sequences are mounted onto SH3 and

homeodomain backbones. This most likely reflects the wide

sequence variability of this family, which is usually also

accompanied by some variability in the corresponding

structures, thereby blurring the difference between sequences

modeled into the backbone of a homolog versus a non-

homolog.

Interestingly, we find that the smallest overlap between

energies of nativelike and nonnative structures is obtained

with the EAS model in all tests (see Fig. 12 and Fig. S6 in

supplementary material), whereas the largest overlap occurs

with the ACE model (Fig. 12 c), in line with the large spread
of values in the energy versus accessibility plots of indi-

vidual amino acids (Fig. 4).

It is furthermore noteworthy that the energies computed

for the models built by fitting random sequences into either

the SH3 or homeobox backbones overlap rather well with

those of the nonnative sequence-structure combinations—

where the SH3 sequences are mounted onto the homeo-

domain backbone. Occasionally however, one set of these

random structures yields rather low energies, similar to those

computed for nativelike structures. This happens mostly with

the EEF1 model, as illustrated in Fig. 12 b, and Fig. S6 of the
supplementary material.

We thus see that all three tested force fields are capable of

distinguishing reasonably effectively between the native and

nonnative conformation of a given protein sequence, even

when the native conformation is modeled by the backbone of

a homolog. This result confirms previous findings on the

adequate performance of the EEF1 model in this regard, but

contrasts with the findings described above on the rather

poor performance of all the considered implicit solvation

schemes, save for the EAS model, in both the transfer free

energy and protein design calculations.

The ability to discriminate between native and nonnative

conformations is hence no guarantee for adequate perfor-

mance in protein design or transfer free energy estimations.

The reason is that the latter two types of calculations directly

gauge the solvation contributions of individual residues and

residue pairs. In contrast, fold discrimination is much less

dependent on solvation and more on other nonbonded terms.

This is illustrated in the studies of Novotny et al. (1988) and

Lazaridis and Karplus (1999b), which show that adequate

native fold recognition can be achieved solely on the basis of

the vacuum CHARMM potential. The important role played

by van der Waals and Coulomb interactions is also clearly

evident from fold discrimination results obtained previously

with EEF1 (Lazaridis and Karplus, 1999b).

DISCUSSION

In this work, we assessed the performance of five different im-

plicit solvation models in two large-scale systematic tests. In

one, we evaluated the contribution of individual amino acids

to the folding free energy of proteinlike decoys by computing

the cost of transferring the amino acids from bulk solvent to

the protein interior. The main aim of this test was to challenge

the differentmodelswith situations commonly encountered in

protein design calculations, without actually having to per-

form these calculations with all the models, since some of

them did not lend themselves to such calculations.

The results of this test lead to rather unexpected obser-

vations. Four of the tested solvation models, the EEF1 effec-

tive energy function, two generalized Born approximations

(ACE and GBMV), as well as the fullest continuum solvation

treatment embodied in the FDPB calculations, display in-

adequate performance. These models yield higher or similar

water-to-protein transfer free energies for nonpolar as for

many of the polar residues and as a result, favor the burial of

polar amino acid in the protein interior over nonpolar ones,

which goes counter to our understanding of the hydrophobic

effect.

Actual protein design calculations performed for the en-

grailed homeobox domain protein, using one of the

models—the EEF1 force field—confirm these findings.

The lowest energy sequences designed using this force field

were very different from the wild-type sequence. They had

polar residues buried in the protein interior, and unfavorable

electrostatic interactions between side chains on the protein

surface. On the other hand, protein design calculations

performed on the same template but using the EAS model,

yielded more nativelike sequences, having nonpolar residues

in the protein core and stabilizing interactions between polar

and charged residues on the protein surface. We could show

that this favorable behavior was paralleled by a reasonable

performance of the EAS solvation model in our systematic

decoy-based test.

Clearly, our decoy structures, as well as most of those built

during the design calculations represent suboptimally packed

systems that are furthermore not in thermodynamic equilib-

rium with their surroundings. To check the influence that

these properties may have on the results, we performed
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a second large-scale test. In this latter test, the EAS and EEF1

models as well as GBMV, a more recent generalized Born

implementation, were used to evaluate the contribution of

individual amino acids to the folding free energy as well as

their solvent-to-protein transfer free energies in a set of 362

high-resolution crystal structures deposited in the PDB.

These are in principle experimentally determined structures

representing well-packed equilibrium conformations. The

computed energies did however display essentially the same

trends as with our decoys. The simple EAS model yielded on

average lower solvent-to-protein transfer free energies for

nonpolar than for polar amino acids. In contrast, the EEF1

model produced an opposite trend: on average, polar amino

acids had lower transfer free energies than nonpolar ones.

Transfer free energies computed with the GBMV model

showed an intermediate behavior, and displayed a large

spread, particularly for charged amino acids.

These observations, taken together, lead us to the fol-

lowing conclusions. One is that the large-scale systematic

tests performed either on proteinlike decoys or on high-

resolution crystal structures are useful for benchmarking

force fields for protein design calculations. Second, we

conclude that protein design calculations and our proxy

benchmarks constitute far more stringent tests for protein

force fields than those most commonly performed. Indeed the

tests to which the EEF1, ACE, and many other models were

previously subjected involved mainly checking that they did

not unfold the protein during standard molecular dynamics

simulations and that they adequately represented protein

solution conformations (Schaefer et al., 1998), or that they

were capable of discriminating between the native fold and

many nonnative alternatives (tests performed with EEF1,

Lazaridis and Karplus, 1999b).

Analogous native recognition tests performed here for all

five solvation models show them to perform roughly equally

adequately (data not shown). These tests are hence not a good

benchmark for these models. We see indeed that the EEF1

model performs well in native recognition tests but yields the

worst results for amino acid transfer free energies in both

native crystal structures and decoys, and performs poorly in

protein design calculations. This discrepancy arises because

solvation effects are not adequately represented in this model.

Our calculations clearly reveal this problem because they

directly evaluate transfer/folding free energies of individual

amino acids and hence their solvation properties. On the

other hand, fold discrimination as commonly practiced is

primarily driven by nonbonded contributions (often mainly

van der Waals), with a smaller influence from solvation, as

already evident from previous work (Novotny et al., 1988;

Lazaridis and Karplus, 1999b).

This suggests that the EEF1 model can therefore not be

trusted for systematic conformational or sequence space

explorations such as those in previously reported studies of

complete unfolding pathways of proteins (Sali et al., 1994), or

those that sample nonnative regions in sequence space

(Kuhlman and Baker, 2000). Its use in docking calculations,

involving macromolecules or small molecules should also be

critically reevaluated.

Of the remaining four models tested here only the EAS

model displays acceptable performance both in ranking the

solvation energies of different amino acids in our systematic

test and in protein design calculations. Ironically, this model

is the simplest and the oldest of the four implicit solvation

models tested here. It is also the default model currently

available in the DESIGNER software (Wernisch et al., 2000;

Jaramillo et al., 2002), and was one of the first models to be

incorporated into standard molecular dynamics software

(Wesson and Eisenberg, 1992).

On the other hand, having found that the more sophisti-

cated generalized Born models, ACE and GBMV, as well as

the FDPB treatment, do not perform well in our systematic

tests, we predict that they would likewise perform poorly in

actual protein design calculations.

The reasons underlying the poor performance of EEF1 and

the two generalized Born models are not immediately

obvious, given that these models involve many approxima-

tions and empirical parameter adjustments. One potential

problem with EEF1 and ACE could be that they can yield

nonzero solvation energies for deeply buried groups, which

in EEF1 can be rather large and stabilizing, especially for

ionic groups (Lazaridis and Karplus, 1999a). With ACE,

problems can also arise from inadequate modeling of the

effective Born radii, which are a very sensitive component of

the model.

The poor performance of the FDPB and the GBVM

solvation models is much more surprising. The FDPB model

is presently considered as the reference against which various

more approximate treatments must be compared, and GBMV

is one of the more recent implementations of the generalized

Born approximation, shown to mimic well the FDPB be-

havior (Lee et al., 2002). Other generalized Bornmodels were

also reported to reproduce well FDPB results (Edinger et al.,

1997; Schaefer and Karplus, 1996), but without actu-

ally comparing the computed values to any experimental

measures.

Such comparisons were, however, reported previously for

transfer and hydration free energies of peptides and organic

compounds computed with the FDPB, and shown to yield

satisfactory results (Sitkoff et al., 1994, 1996), but the latter

studies involved fitting the atomic partial charges, the atomic

radii, and the solvent probe radius for calculating the

molecular boundaries. The FDPB calculations reported here

were performed in very much the same manner as in the

latter reported works. We used the same proportionality

constant for the surface area-dependent hydrophobic terms,

but with a unique solvent probe size of 1.4 Å for both solvent

and vacuum calculations, and standard CHARMM partial

charges and radii. However, using different probe sizes for

the vacuum (zero) and solvent (1.4 Å) calculations, as in

Sitkoff et al. (1996) but keeping the standard CHARMM

Computational Protein Design and Solvation 169

Biophysical Journal 88(1) 156–171



charges and radii, or replacing them with the radii of Nina

et al. (1999) did not improve the results (see Figs. S1 and S2

of supplementary material).

Explaining these disturbing findings will clearly require

further analysis. An important aspect to investigate is the

influence that very unusual molecular boundaries, such as

those defined by the poorly packed environments generated

in our decoys, could have on the FDPB calculations. We see

indeed that the GBMV amino acid transfer free energies

behave more like we expect them to with regard to the

differences between polar and nonpolar amino acids in

crystal structures (Fig. 8 c) than in our decoys (Fig. 7 d).
Probably parameters of the models could be adjusted to

correct some of the problems. For example, in the FDPB

solvation, the nonpolar contribution to the solvation free

energy is approximated by a surface area-dependent term (see

Methods), which could be modified to penalize more the

burial of hydrophilic groups (Wagner and Simonson, 1999).

It should be clear, however, that the conclusions reached in

this study do not necessarily apply to other proposed approxi-

mations to the generalized Born formalism, which have not

been tested here (for review, see Feig and Brooks, 2004),

since each implementation embodies different approxima-

tions.

It must likewise be stressed that several of the criteria

whereby we judged a solvation model to perform well in

evaluating transfer free energies or in protein design

calculations are extremely crude. For the transfer free

energies, only a rough ranking of hydrophobic versus polar

amino acids was evaluated. The performance in protein

design calculations was also evaluated qualitatively. We

examined the incorporation of polar versus nonpolar amino

acids in the protein interior, and checked for unusual inter-

actions between polar residues on the protein surface.

With the current status of these solvation models, this is

sufficient for pointing out their most blatant limitations.

Hence, our finding that the EAS model performs better than

all the other models tested here by no means certifies it as an

accurate solvation model. Such certification will require

much finer and more quantitative tests, aimed at reproducing

not only solvation energies but also changes in protein

stability caused by mutations, which would be evaluated in

a realistic situation where adjustments of the protein back-

bone can also take place.
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