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ABSTRACT Mechanical properties of single double-stranded DNA (dsDNA) in the presence of different binding ligands were
analyzed in optical-tweezers experiments with subpiconewton force resolution. The binding of ligands to DNA changes the
overall mechanic response of the dsDNA molecule. This fundamental property can be used for discrimination and identification
of different binding modes and, furthermore, may be relevant for various processes like nucleosome packing or applications like
cancer therapy. We compared the effects of the minor groove binder distamycin-A, a major groove binding a-helical peptide, the
intercalators ethidium bromide, YO-1, and daunomycin as well as the bisintercalator YOYO-1 on l-DNA. Binding of molecules
to the minor and major groove of dsDNA induces distinct changes in the molecular elasticity compared to the free dsDNA
detectable as a shift of the overstretching transition to higher forces. Intercalating molecules affect the molecular mechanics by
a complete disappearance of the B-S transition and an associated increase in molecular contour length. Significant force
hysteresis effects occurring during stretching/relaxation cycles with velocities .10 nm/s for YOYO-1 and .1000 nm/s for
daunomycin. These indicate structural changes in the timescale of minutes for the YOYO-DNA and of seconds for the dauno-
mycin-DNA complexes, respectively.

INTRODUCTION

The interaction of ligands with double-stranded DNA is

fundamental for many intracellular processes. Especially

proteins that bind to specific DNA target sequences control

a variety of processes such as regulation, transcription, and

translation. Small binding ligands with reduced or no se-

quence specificity are often able to interfere with those

processes because they are capable of changing mechanical

properties of the DNA strands and are, therefore, frequently

used in cancer therapy (Hurley, 2002). Because of the

complex double-helical structure of DNA, different binding

modes are possible. Besides covalent binding there are

several classes of specific or unspecific noncovalent binding

modes: intercalation between basepairs (Reha et al., 2002),

bisintercalation (Krishnamoorthy et al., 2002), minor groove

binding (Reddy et al., 2001), major groove binding (Niidome

et al., 1996; Eckel et al., 2003), a combination of those

(Larsson et al., 1994), and binding via nonclassical modes

(Lipscomb et al., 1996).

Intercalation is characterized by noncovalent stacking

between adjacent basepairs via interaction with p-orbitals of

these basepairs (Graves and Velea, 2000) and often com-

bined with hydrogen bonding (Reha et al., 2002). Inter-

calation extends and frequently partially unwinds the DNA

double strands, having large impact on the structure of the

nucleosome (McMurray et al., 1991). Furthermore, side

groups of intercalating parts of few ligands also influence the

binding process and accordingly can cause sequence selec-

tive behavior.

Selective binding to the narrow minor groove of AT-rich

sequences by van der Waals interaction, formation of hydro-

gen bonds, and electrostatic interaction is characteristic for

minor groove binders (Reddy et al., 2001). Electrostatic

interaction is characteristic for major groove binders (espe-

cially helical peptide ligands) as well (Eckel et al., 2003).

Minor groove binding drugs, for instance, can interfere with

the specific binding of regulatory proteins by changing the

local bending of DNA (Zimmer and Wähnert, 1986), or

disrupt the nucleosome in a selective way (Fitzgerald and

Anderson, 1999).

Detailed information about the structural aspects of

binding are given by x-ray diffraction (Coste et al., 1999)

and NMR spectroscopy (Gelasco and Lippard, 1998).

Additionally, procedures to detect binding properties by

investigating contour lengths of ligand-DNA complexes by

means of scanning force microscopy (SFM) techniques

(Coury et al., 1996) have been introduced by placing those

complexes onto a treated surface accessible for SFM survey.

Over the last 15 years different ultrasensitive techniques

have been developed that allow measurements of inter- and

intramolecular forces at the single-molecule level. Most

common techniques are based on atomic force microscopy

(AFM) (Binnig et al., 1986) and optical tweezers (Ashkin,

1970, 1997; Ashkin et al., 1986; Svoboda and Block, 1994).

Recent works cover AFM force spectroscopy of single DNA

molecules (Rief et al., 1999; Clausen-Schaumann et al., 2000)

as well as of ligand-DNA complexes (Krautbauer et al.,
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2000; Anselmetti et al., 2000; Krautbauer et al., 2002a; Eckel

et al., 2003), demonstrating their significant implications

while investigating mechanical properties of ligand-com-

plexed DNA observable in force-extension measurements.

Optical tweezers systems with their superior force

sensitivity compared to AFM were utilized for measure-

ments of elastic responses of immobilized single- and

double-stranded DNA molecules (Smith et al., 1996; Wuite

et al., 2000; Williams et al., 2001; Wenner et al., 2002;

Sischka et al., 2003), whereas optical fiber setups were used

for probing the molecular extension of a ligand complexed

double-stranded DNA (Cluzel et al., 1996).

Most recently, optical tweezers experiments yield and

reveal changes in the mechanical and elastic properties of

double-stranded DNA molecules in the presence of binding

ligands (Bennink et al., 1999; Husale et al., 2002; Sischka

et al., 2003; Tessmer et al., 2003).

In this work a set of DNA binding agents was investigated,

including a multitude of binding modes such as the minor

groove binder distamycin-A and the supposed major groove

binding a-helical peptide Ac-(Leu-Ala-Arg-Leu)3-NH-

linker, intercalators ethidium bromide, YO-1, and dauno-

mycin, and the bisintercalator YOYO-1. Distinct and

characteristic changes within the mechanical response of

DNA up to forces of 100 pN were identified and attributed to

the corresponding binding mechanisms.

MATERIALS AND METHODS

Our single-beam optical-tweezers instrumentation was described recently

(Sischka et al., 2003). Briefly, an infrared laser (1064 nm) combined with

a commercial inverse microscope achieves maximum trapping forces of

150 pN at a laser power output up to 900 mW. The stability of the optical-

tweezers system is based on dedicated optical and flow-system components

allowing calibrated and precise force-extension measurements with a force

resolution of 0.4 pN at 600 mW during a broad variety of experiments.

For all experiments we took streptavidin-coated polystyrene micro-

spheres (Spherotech, Libertyville, IL) with a diameter of 3.18 mm, which we

used in a diluted suspension of 53 10�4 % w/v. l-DNA was biochemically

modified (Sischka et al., 2003) to ensure tethering to the beads at the be-

ginning of each force measurement.

Beads, l-DNA, and binding ligands were dissolved in 10 mM Tris buffer

(Sigma, Traufkirchen, Germany) (pH 8.0) containing 150 mM NaCl

(Sigma). The concentration of l-DNA was 15 pM whereas the binding

ligands distamycin-A (Sigma), Ac-(Leu-Ala-Arg-Leu)3-NH-linker, ethidi-

um bromide (Merck, Darmstadt, Germany), YO-1 (Molecular Probes,

Eugene, OR), daunomycin (Sigma), and YOYO-1 (Molecular Probes) were

used at a total concentration of 1 mM, respectively. All experiments were

performed at 20�C.

RESULTS AND DISCUSSION

In Fig. 1, the mechanical response to an external force of free

l-DNA and l-DNA complexed with distamycin-A (minor

groove binder), the a-helical peptide Ac-(Leu-Ala-Arg-

Leu)3-NH-linker (major groove binder), ethidium bromide,

YO-1, daunomycin (intercalators), and YOYO-1 (bisinter-

calator) are presented. During these force measurements,

a trap stiffness of 88 pN/mm combined with a molecular

loading rate of 8.8 pN/s was established. Molecular

extensions were converted from piezo stage movements

using the given trap stiffness and the actual measured forces.

To quantify the elastic properties of all measured curves in

the medium- and low-force regime, we determined the mol-

ecule length at a constant external force of 40 pN as well

as the contour and persistence length with the extended

worm-like chain model (WLC) (Marko and Siggia, 1995;

Bouchiat et al., 1999) in the lower force regime with an

upper force limit of 10 pN (Table 1).
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F denotes the applied force, j the persistence length, x the
end-to-end distance, L0 the DNA contour length, and ai nu-
merical coefficients (Bouchiat et al., 1999), respectively.

In the following, we discuss the experimental findings of

the measured elasticity curves of Fig. 1.

Free dsDNA

The elastic response of a single l-DNA molecule under an

external force shows a distinct plateau, which was first

attributed to a structural change from the dsDNA B-form to

the overstretched S-form (Cluzel et al., 1996). Based on data

obtained by experiments with different ionic strength, tem-

perature, and pH conditions, Wenner et al. (2002) proposed

a model where the overstretching plateau was attributed to

FIGURE 1 Single l-phage DNA molecule and l-DNA molecule

complexed with minor groove binder (distamycin-A), major groove binder

(a-helical peptide Ac-(Leu-Ala-Arg-Leu)3-NH-linker), intercalators (dau-

nomycin, YO-1, ethidium bromide), and bisintercalator (YOYO-1),

respectively, exhibit different elasticity curves indicating individual

mechanical properties (force fingerprints). Total concentration of each

binding ligand was 1 mM, and stretching velocity was 100 nm/s. (Inset)

Worm-like-chain model fit on a free l-DNA in the low-force regime up to 10

pN.
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a force-induced melting process where at the end of the

overstretching process short helical domains of the DNA

hold large melted strands together (Williams et al., 2001,

2002; Wenner et al., 2002). In the following we term this

plateau ‘‘overstretching transition’’. Further elongation

results in a strongly increasing elastic response correspond-

ing to a nonequilibrium melting process (Rief et al., 1999).

In our experiments we observed the overstretching

transition at 64 pN up to an extension of 28 mm (170% of

dsDNA contour length), which is in good agreement with the

results of other groups under similar conditions such as

temperature, ionic strength, and pH value (Cluzel et al.,

1996; Williams et al., 2001, 2002). The extended worm-like

chain model yielded a contour length of 16.0 mm and

a persistence length of 40 nm (Table 1) consistent with

previous studies (Husale et al., 2002; Wenner et al., 2002).

On the basis of the molecular length at a force of 40 pN, we

found a value of 16.4 mm, resulting in a l-DNA (48,502

basepairs) basepair distance of 0.338 nm/basepair, in excel-

lent agreement with previous studies (Husale et al., 2002;

Tessmer et al., 2003).

Minor groove binders

The minor groove binder distamycin-A has only a small

effect on the molecular length of the l-DNA; at an extension

force of 40 pN we observe a slightly increased value of 16.7

mm and a WLC contour length of 16.3 mm. In contrast to the

results for the free dsDNA, the overstretching transition is

shifted to higher force values (from 64 pN to 70–85 pN), and

a drastic change in the persistence length from 40.0 to 26.7

nm can be observed. Noncovalent binding of distamycin-A

to the minor groove of dsDNA is characterized by a

combination of electrostatic, van der Waals, and bifurcated

hydrogen bondings with a strong preference for AT-rich

regions (Coll et al., 1987), which stabilize the double strands

and resist the force-induced melting. AFM force spectros-

copy studies with the minor groove binder netropsin and

l-DNA exhibit a comparable increase in the overstretching

transition (Krautbauer et al., 2002a). Due to the distamycin-

A concentration of 1 mM in our experiments a 1:1 binding

motif is expected to be dominant with a high binding

constant of 107–108 M�1 and a preference of binding to

AT-rich regions (Pelton andWemmer, 1989; Bielawski et al.,

2001). Previous experiments with poly(dG-dC) ds-DNA and

distamycin-A resulted in a slight lowering of the plateau

value of the overstretching transition (Eckel et al., 2003).

This phenomenon in combination with the observation of

a distinct decreased binding affinity for GC-rich regions

(Kassociation ¼ 2 3 105 M�1; Bielawski et al., 2001) is indic-

ative for different binding modes for AT and GC.

Solid-state NMR studies show that distamycin-A in the

1:1 motif effects a significant narrowing of the minor groove

from 9.4 to 7.0 Å (Olsen et al., 2003). We observe

a decreased persistence length, corresponding to an in-

creased bending flexibility. For netropsin, where structural

data result in a widening of the minor groove, an increased

persistence length is described (Tessmer et al., 2003). This is

an indication for a direct dependence of the persistence

length of dsDNA complexed with minor groove binder and

structural changes of the groove.

Major groove binders

The elastic response curve of l-DNA complexed with the

a-helical peptide Ac-(Leu-Ala-Arg-Leu)3-NH-linker, which

binds in the major groove (Niidome et al., 1996; Eckel et al.,

2003), is characterized by an intersected transition (between

17 and 22 mm) between the elastic stretching of B-DNA at

low forces and the less pronounced overstretching transition

(22–27 mm) at 80–85 pN. Similar to distamycin-A, the force

extension curve exhibits a merging of the overstretching

transition into the nonequilibrium melting transition at exten-

sions beyond 28 mm. The molecule length at 40 pN and

the WLC contour length is slightly increased to 17.1 and

16.5 mm, respectively, and a reduced persistence length of

29.4 nm was calculated. This observation can be associated

with an electrostatic binding along with a compensation of

the negatively charged DNA backbone by the guanidino

groups of the peptide (Niidome et al., 1996), which neu-

TABLE 1 Molecular parameters for DNA-ligand complexes

Complex Binding mode

Molecule length

at 40 pN WLC contour length WLC persistence length Overstretching transition

Free dsDNA – 16.4 mm 16.0 mm 40.0 nm 62–65 pN at 18–27 mm

Distamycin-A Minor groove 16.7 mm 16.3 mm 26.7 nm 70–85 pN at 18–27 mm

a-Helical peptide Major groove 17.1 mm 16.5 mm 29.4 nm 80–85 pN at 22–27 mm;

crossover at 17–22 mm

Ethidium bromide Intercalating 22.5 mm 20.4 mm 20.7 nm No transition

YO-1 Intercalating 23.2 mm 19.8 mm 29.2 nm No transition

Daunomycin Intercalating 20.9 mm 19.8 mm 28.1 nm No transition

YOYO-1 Bisintercalating 23.5 mm 21.8 mm 11.8 nm No transition

Molecular parameters extracted from worm-like-chain model fit of experimental data of free double-stranded l-DNA and dsDNA complexed with

distamycin-A, a-helical peptide Ac-(Leu-Ala-Arg-Leu)3-NH-linker, ethidium bromide, YO-1, daunomycin, and YOYO-1. The concentration of each binding

ligand was set to 1 mM, respectively.
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tralizes the intrinsic charge and extends the flexibility of

the complexed dsDNA.

Recent investigations (Eckel et al., 2003) did not

reveal the intersected transition within the complex of Ac-

(Leu-Ala-Arg-Leu)3-NH-linker and poly(dG-dC) dsDNA,

so we implicate our results to a different binding behavior of

Ac-(Leu-Ala-Arg-Leu)3-NH-linker between GC-rich and

AT-rich regions.

Recently, l-DNA complexed with SYBR-Green I (Mo-

lecular Probes) has been investigated using a dual-beam

optical-tweezers setup (Husale et al., 2002). Because SYBR-

Green I is a major groove binder, the elasticity curve exhibits

similarities to our results, such as a decreased persistence

length, a faint and tilted overstretching plateau around 1.5

fractional extensions (f.e.) of B-DNA, and a characteristic

intersected transition in the range between 1.1 and 1.35 f.e.

(18–22 mm).

Intercalators

The effect of three different DNA monointercalating agents

ethidium bromide, YO-1, and daunomycin, and the bisin-

tercalating agent YOYO-1 was investigated. For all

intercalators it was found that the plateau attributed to the

overstretching transition completely disappeared, the mole-

cule length at 40 pN and the WLC contour length increased,

and the persistence length was considerably reduced

compared to free dsDNA (see Table 1). In contrast to groove

binding, intercalation is additionally stabilized by ionic

interaction between a positively charged group (a protonated

imino group in ethidium bromide and YO-1, and a protonated

amino group in daunomycin and YO-1) of the intercalator

and the negatively charged phosphate DNA backbone. This

unspecific electrostatic binding of the intercalators reduces

the net charge and extends the flexibility of the DNA, which

explains the decrease of the persistence length.

Ethidium bromide and YO-1

The binding of ethidium bromide to dsDNA is structurally

characterized by an increase of the basepair distance by

0.34 nm/per molecule (Coury et al., 1996). The contour length

20.4 mm indicates that on average every fourth intercalation

site has been occupied by an ethidium bromide molecule,

a result that was also found by Husale et al. (2002). The

corresponding persistence length is reduced to 20.7 nm,

which is in excellent agreement with recent results (Tessmer

et al., 2003; Husale et al., 2002). The intercalator YO-1,

which has been investigated by AFM techniques (Eckel et al.,

2003), is characterized by a smaller reduction of the

persistence length to 29.2 nm, whereas the contour length

(19.8 mm) is almost equal to that of ethidium bromide.

Force-extension curves of dsDNA complexed with ethidium

bromide or YO-1 exhibit no hysteresis effects for stretching

and relaxing velocities between 100 and 8000 nm/s.

Daunomycin

l-DNA complexed with daunomycin (also known as

cerubidine or daunorubicin in medical chemotherapy; Fig. 2

A), recently investigated with AFM force spectroscopy

(Eckel et al., 2003), exhibits an increase of the contour length

to 19.8 mm and a decrease of the persistence length to 28.1

nm. Daunomycin, like other anthracyclines, is stabilized

during intercalation by its electron-deficient anthraquinone

part, with hydrogen bonds and electrostatic interaction

additionally enhancing the binding stability between the

minor groove of the dsDNA and the amino sugar part of

daunomycin (Wang et al., 1987). This explains the large

resistance of daunomycin complexed dsDNA against an

external force, indicated by a steep rise within the force-

extension curve that yields a molecular length of 20.9 mm at

40 pN.

During extension/relaxation at cycle velocities beyond

1000 nm/s, we identified distinct hysteresis effects (Fig. 2 B).
To our knowledge this is the first observation of non-

FIGURE 2 (A) Force-extension curves of a single l-phage DNAmolecule

and in the presence of DNA intercalator daunomycin (1 mM) obtained at

a stretching velocity of 100 nm/s. (B) At higher velocities, daunomycin

intercalated DNA reveals distinct hysteresis effects during extension re-

laxation cycles.
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equilibrium processes for monointercalating substances. This

hysteresis finding is highly reproducible and can therefore

not be attributed to melting hysteresis effects as reported

(Krautbauer et al., 2002b).

YOYO-1

Similar to daunomycin, dsDNA complexed with the

bisintercalating agent YOYO-1 exhibits distinct force hys-

teresis effects and is characterized by an increase of the

contour length to 21.8 mm and a strong decrease of the

persistence length to 11.8 nm (Fig. 3 A). These results have
been obtained during stretching experiments down to veloc-

ities of 10 nm/s and at YOYO-1 concentrations of 1 mM.

Similar to other intercalators the increase of the contour

length can be explained by intercalating between adjacent

basepairs. However, YOYO-1 stacks two aromatic ring

systems (connected by an aliphatic diamine ‘‘backbone’’)

into two intercalation sites causing a ‘‘clamp-like’’ binding

motif. We relate the strong decrease of the persistence length

to two protonated amino and two protonated imino groups at

one YOYO-1 molecule that reduce the intrinsic charge of the

DNA backbone and strongly increase its flexibility.

The force hysteresis was found to depend on the cycle

velocity and the applied maximum force (Fig. 3, B and C)
and is consistent with results of Bennink et al. (1999). All

force hysteresis effects were found to be highly repro-

ducible during stretching and relaxation and can, therefore,

not be attributed to a melting hysteresis effect. The observed

hysteresis is accompanied by a shift of the elasticity curve

to smaller extension values with increased experimental ve-

locities.

Retention force decay and hysteresis effects of
daunomycin and YOYO-1

To investigate the hysteresis phenomenon in more detail we

carried out the following experiment: while monitoring the

force, a l-DNA molecule in the presence of 1 mM dauno-

mycin or YOYO-1 was rapidly overstretched (12,000 nm/s,

5000 nm/s, and 2000 nm/s) to different maximum forces.

After stopping the extension, we observed an exponential

decay of the retention force to a lower stable value (Fig. 4 A).
During the force decay, the trapped bead is retreated toward

the center of the optical trap, causing an elongation of the

stretched DNA given by the trap stiffness divided by the

force difference. In these experiments we observed elonga-

tions of ,300 nm.

The relative force decays increase with the stretching

velocities and are independent from the maximum retention

force (Fig. 4 B). For dsDNA complexed with YOYO-1 the

time constants derived from exponential fits show an almost

linear dependence from the maximum retention forces and

were independent from stretching velocities (Fig. 4 C).
Values from 0.26 s for a maximal retention force of 10 pN to

1.21 s for 83 pN were observed. For daunomycin the linear

dependence was only found for retention forces,45 pN, the

values range from 0.13 s at 10 pN to 0.68 s at 45 pN. For

higher forces the decay times are constant, which indicates

changes in the molecular extension process.

FIGURE 3 (A) YOYO-1 (1 mM) bisintercalated l-phage DNA molecule

reveals hysteresis effects during extension/relaxation loop even at low

stretching and relaxing velocities. (B) At increased velocities, elasticity

curves are shifted to lower extension values. (C) Hysteresis effects at

different maximum forces during stretching/relaxation loops of YOYO-1

bisintercalated l-phage DNA.
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The observed hysteresis and retention force decays

suggest that the dsDNA strands complexed with these two

intercalators are not in equilibrium at the given pulling

speed. Rief et al. introduce a model based on a coupled two-

level system for biopolymer extensibility, where segments of

the molecule undergo conformational changes (Rief et al.,

1998). Under an external force the length of each segment

changes based on thermodynamics. With this model the

hysteresis effects and the retention force can be explained.

For YOYO-1 the process of segment elongation is re-

markably slow. Pulling velocities of 10 nm/s with a molec-

ular extension of a few microns result in a timescale of

minutes, whereas for daunomycin the transition from equi-

librium to the nonequilibrium state is in the timescale of

seconds.

This elongation of the segments can in principle be

attributed to force-induced changes in the molecular

structure or to intercalation of additional molecules into the

stretched DNA. Because of the high association constant of

YOYO-1 (1012 M�1; Larsson et al., 1994) and even for the

lower constant of daunomycin (105 M�1; Coury et al., 1996),

both intercalators may associate to dsDNA by electrostatic

interaction in a fast (for our experiments, undetectable)

timescale, but the intercalation itself (especially those of both

aromatic ring systems of YOYO-1 into dsDNA) takes place

on a much slower timescale, as can be inferred from the cal-

culated time constants.

CONCLUSIONS

Mechanical properties of l-DNA (dsDNA) complexed with

different binding ligands were analyzed in single-molecule

optical-tweezers experiments. The differences between

binding modes, such as minor groove binding, major groove

binding, and (bis)intercalation could be distinguished by

analyzing the mechanical response of a single dsDNA mol-

ecule to an applied external force. Different binding prop-

erties of the minor and major groove binder for AT- and

GC-rich regions could be identified upon comparing our

measurement with recently published AFM results. The

persistence length of DNA complexed with minor groove

binders might be related to changes in the width of the minor

groove: narrowing results in a decreased persistence length,

a topic to be investigated in more detail in the future.

Force hysteresis effects during stretching/relaxation cycles

and retention force decays were found for the bisintercalator

YOYO-1 and for the intercalator daunomycin, which we

relate to a slow force-induced elongation of DNA segments.

This can be attributed to a structural change or the inter-

calation of additional molecules to the stretched dsDNA.

The observation that the other binding ligands investigated

(i.e., distamycin-A, the a-helical peptide Ac-(Leu-Ala-Arg-

Leu)3-NH-linker, ethidium bromide, and YO-1) lack force

hysteresis still remains to be explained. It could be, for these

ligands, that the applied force induces no additional time-

FIGURE 4 (A) Fast stretching of YOYO-1 bisintercalated and dauno-

mycin intercalated l-phage DNA with a velocity of 5000 nm/s and 12,000

nm/s, respectively, to a maximum force and immediate stopping un-

veils an exponential decay of the retention force with time. (B) Percentage

of exponential decay of the retention force as a function of maximum

retention force for YOYO-1 and daunomycin. (C) Relaxation time as

a function of maximum retention force for YOYO-1 and daunomycin.

Due to high-extension velocity for daunomcin, short-time data acquisition

implicates less data averaging, which effects more statistical noise and larger

error bars.
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dependent change in molecular conformation, but it is also

possible that the said effect takes place on a much faster

timescale than our experiment (milliseconds, or even faster).

In further experiments with very high stretching velocities

this question will be addressed. Experiments like our

retention force-decay measurements with the force-clamp

technique should be able to give quantitative data to describe

this fundamental slow structural transition process.

For daunomycin we found in the decay time analysis an

unexpected transition from a linear to a constant dependence

on the maximal retention force at 45 pN. This gives an

interesting hint to a change in the elongation process from

a low- to a high-force regime, which will be addressed in

further experiments.
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Bennink, M. J., O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins,
J. S. Kanger, B. G. de Grooth, and J. Greve. 1999. Single-molecule
manipulation of double-stranded DNA using optical tweezers: interaction
studies of DNA with RecA and YOYO-1. Cytometry. 36:200–208.

Bielawski, K., S. Wolczynski, and A. Bielawska. 2001. DNA-binding
properties and cytotoxity of extended aromatic bisamidines in breast
cancer mcf-7 cells. Pol. J. Pharmacol. 53:143–147.

Binnig, G., C. F. Quate, and C. Gerber. 1986. Atomic force microscope.
Phys. Rev. Lett. 56:930–933.

Bouchiat, C., M. D. Wang, J. F. Allemand, T. Strick, S. M. Block, and V.
Croquette. 1999. Estimating the persistence length of a worm-like chain
molecule from force-extension measurements. Biophys. J. 76:409–413.

Clausen-Schaumann, H., M. Rief, C. Tolksdorf, and H. E. Gaub. 2000.
Mechanical stability of single DNA molecules. Biophys. J. 78:1997–
2007.

Cluzel, P., A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and
F. Caron. 1996. DNA: an extensible molecule. Science. 271:792–794.

Coll, M., C. A. Frederick, A. H.-J. Wang, and A. Rich. 1987. A bifurcated
hydrogen-bonded conformation in the d(AT) base pairs of the DNA
dodecamer d(CGCAAATTTGCG) and its complex with distamycin.
Proc. Natl. Acad. Sci. USA. 84:8385–8389.

Coste, F., J. M. Malinge, L. Serre, W. Shephard, M. Roth, M. Leng, and C.
Zelwer. 1999. Crystal structure of a double-stranded DNA containing
a cisplatin interstrand cross-link at 1.63 A resolution: hydration at the
platinated site. Nucleic Acids Res. 27:1837–1846.

Coury, J. E., L. McFail-Isom, L. D. Williams, and L. A. Bottomley. 1996.
A novel assay for drug-DNA binding mode, affinity, and exclusion
number: scanning force microscopy. Proc. Natl. Acad. Sci. USA. 93:
12283–12286.

Eckel, R., R. Ros, A. Ros, S. D. Wilking, N. Sewald, and D. Anselmetti.
2003. Identification of binding mechanisms in single molecule-DNA
complexes. Biophys. J. 85:1968–1973.

Fitzgerald, D. J., and J. N. Anderson. 1999. Selective nucleosome
disruption by drugs that bind in the minor groove of DNA. J. Biol.
Chem. 274:27128–27138.

Gelasco, A., and S. J. Lippard. 1998. NMR solution structure of a DNA
dodecamer duplex containing a cis-diammineplatinum(II) d(GpG) intra-
strand cross-link, the major adduct of the anticancer drug cisplatin.
Biochemistry. 37:9230–9239.

Graves, D. E., and L. M. Velea. 2000. Intercalative Binding of Small
Molecules to Nucleic Acids. Curr. Org. Chem. 4:915–929.

Hurley, L. H. 2002. DNA and its associated processes as targets for cancer
therapy. Nat. Rev. Cancer. 2:188–200.

Husale, S., W. Grange, and M. Hegner. 2002. DNA mechanics affected by
small DNA interacting ligands. Single Mol. 3:91–96.

Krautbauer, R., H. Clausen-Schaumann, and H. E. Gaub. 2000. Cisplatin
changes the mechanics of single DNA molecules. Angew. Chem. Int. Ed.
39:3912–3915

Krautbauer, R., S. Fischerländer, S. Allen, and H. E. Gaub. 2002a.
Mechanical fingerprints of DNA drug complexes. Single Mol. 3:97–103.

Krautbauer, R., L. H. Pope, T. E. Schrader, S. Allen, and H. E. Gaub.
2002b. Discriminating small molecule DNA binding modes by single
molecule force spectroscopy. FEBS Lett. 510:154–158.

Krishnamoorthy, G., G. Duportail, and Y. Mely. 2002. Structure and
dynamics of condensed DNA probed by 1,1#-(4,4,8,8-tetramethyl-4,8-
diazaundecamethylene)bis[4-[[3-methylbenz-1,3-oxazol-2-yl]methyli-
dine]-1,4-dihydroquinolinium] tetraiodide fluorescence. Biochemistry.
41:15277–15287.

Larsson, A., C. Carlsson, M. Jonsson, and B. Albinsson. 1994. Char-
acterization of the binding of the fluorescent dyes YO and YOYO to
DNA by polarized light spectroscopy. J. Am. Chem. Soc. 116:8459–
8465.

Lipscomb, L. A., F. X. Zhou, S. R. Presnell, R. J. Woo, M. E. Peek, R. R.
Plaskon, and L. D. Williams. 1996. Structure of a DNA-porphyrin
complex. Biochemistry. 35:2818–2823.

Marko, J. F., and E. D. Siggia. 1995. Stretching DNA. Macromolecules.
28:8759–8770.

McMurray, C., E. W. Small, and K. E. van Holde. 1991. Binding of
ethidium to the nucleosome core particle. 2. Internal and external binding
modes. Biochemistry. 30:5644–5652.

Niidome, T., N. Ohmori, A. Ichinose, A. Wada, H. Mihara, T. Hirayama,
and H. Aoyagi. 1996. Binding of cationic alpha-helical peptides to
plasmid DNA and their gene-transfer abilities into cells. J. Biol. Chem.
272:15307–15312.

Olsen, G. L., E. A. Louie, G. P. Drobny, and S. Th. Sigurdsson.2003.
Determination of DNA minor groove width in distamycin-DNA
complexes by solid-state NMR. Nucleic Acids Res. 31:5084–5089.

Pelton, J. G., and D. E. Wemmer. 1989. Structure characterization of a 2:1
distamycin A d(CGCAAATTGGC) complex by two-dimensional NMR.
Proc. Natl. Acad. Sci. USA. 86:5723–5727.

Reddy, B. S. P., S. K. Sharma, and J. W. Lown. 2001. Recent developments
in sequence selective minor groove DNA effectors. Curr. Med. Chem.
8:475–508.

Reha, D., M. Kabelac, F. Ryjacek, J. Sponer, J. E. Sponer, M. Elstner,
S. Suhai, and P. Hobza. 2002. Intercalators. 1. Nature of stacking
interactions between intercalators (ethidium, daunomycin, ellipticine,
and 4#,6-diaminide-2-phenylindole) and DNA base pairs. Ab initio
quantum chemical, density functional theory, and empirical potential
study. J. Am. Chem. Soc. 124:3366–3376.

Rief, M., J. M. Fernandez, and H. E. Gaub. 1998. Elastically coupled two-
level systems as a model for biopolymer extensibility. Phys. Rev. Lett.
81:4764–4767.

Rief, M., H. Clausen-Schauman, and H. E. Gaub. 1999. Sequence-
dependent mechanics of single DNA molecules. Nat. Struct. Biol. 6:346–
349.

410 Sischka et al.

Biophysical Journal 88(1) 404–411
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