Olfactory search at high Reynolds number

Eugene Balkovsky*' and Boris I. Shraiman®*s

*James Franck Institute and Department of Mathematics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637; and *Bell Labs,

Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974

Communicated by David W. Tank, Princeton University, Princeton, NJ, July 3, 2002 (received for review October 29, 2001)

Locating the source of odor in a turbulent environment—a com-
mon behavior for living organisms—is nontrivial because of the
random nature of mixing. Here we analyze the statistical physics
aspects of the problem and propose an efficient strategy for
olfactory search that can work in turbulent plumes. The algorithm
combines the maximum likelihood inference of the source position
with an active search. Our approach provides the theoretical basis
for the design of olfactory robots and the quantitative tools for the
analysis of the observed olfactory search behavior of living crea-
tures (e.g., odor-modulated optomotor anemotaxis of moths).

Ifactory search strategies are interesting because of their

relevance to animal behavior (1-6) and because of their
potential utility in practical applications such as searching for
chemical leaks, drugs, and explosives (7). Both the attempt to
characterize and understand the olfactory behavior of living
organisms (1-6) and the more recent effort to design and build
“sniffing machines”—robots that navigate by using odors as a
guide (7-9)—face the common problem of understanding how
the information gained from sporadic detection of odor dis-
persed in a naturally turbulent flow can be efficiently used for
locating the source. Here we shall discuss the statistical aspects
of turbulent odor dispersal and propose a well defined search
algorithm, which we shall first define in the context of a
simplified model of the turbulent plume and later restate in the
form applicable to the natural environment. The proposed
search algorithm can be used in robotic applications and pro-
vides a plausible algorithmic interpretation for aspects of insect
olfactory search behavior.

The most familiar strategy for locating the source of a
substance is chemotaxis (10, 11), which consists of motion in the
direction of a local concentration gradient. Chemotaxis works on
small scales, where the substance spreads by diffusion and the
concentration field is smooth, as is the case for the environment
of bacteria, amoebae, or single eukaryotic cells (11, 12). On the
other hand, larger animals tracing odors in turbulent flows
characterized by high Reynolds number (13)—e.g., in the atmo-
sphere—have to deal with complex fluctuating structure of the
odor plume caused by the randomness in the flow that disperses
it. These fluctuations make the search a much more complex
task. The odor is not always present and when it is present, the
local concentration gradient typically does not point toward the
source (2, 13-16). A more complex strategy is required, and
additional information such as the current wind direction (and
velocity) is essential. One of the best-characterized olfactory
search behaviors is the “odor-modulated optomotor anemo-
taxis”, which is used by males of certain species of moths (see
refs. 1 and 2) to locate the source of a pheromone (i.e., a
potential mate), and which involves, in addition to the sense of
smell, the ability to determine the wind direction.” The moth’s
olfactory pursuit flight exhibits a counterturning pattern: a
succession of turns alternatively to left and right with respect to
the wind direction.] Counterturning is further classified as
(i) “casting” and (ii) “zigzagging” (18-21). The two differ in the
extent of upwind progression: zigzagging is counterturning with
a significant resultant movement upwind, while casting is coun-
terturning with no upwind progression but with wider crosswind
excursion. Casting and zigzagging behavior has been interpreted
(18, 19) as a strategy consisting of upwind progression in the
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presence of odor (zigzagging) and crosswind flight in its absence
(casting). Most generally the two behavioral patterns may be
understood in terms of “exploration” and “exploitation” (22):
the former collects the information and the latter utilizes it.
Below we shall identify the quantitative considerations that
provide the rational basis for this type of behavior in the context
of the olfactory search.

Let us first describe the properties of odor plumes in turbulent
flows (2, 23, 24). Our goal here is to arrive at a simple model of
odor transport and mixing that will nevertheless capture the
statistical features of this phenomenon. If one measures the
concentration of odor far enough downwind of the source, most
of the time no odor will be detected (2). When an odor patch
arrives it is detected as a burst with a complicated small-scale
structure, as local concentration fluctuates strongly while the
patch is passing by. The maximal amplitude of the concentration
within such a patch decreases away from the source, and the
average time between two successive patches increases.* The
probability of encountering an odor patch at any given point is
determined by the statistics of the flow. The mean velocity (and
direction) of the wind, V] is set by the large-scale atmospheric
conditions and hence stays unchanged for periods of time long
compared with the time scale of odor fluctuations. The material
points, and thus odor molecules, move with the local velocity,
which includes fluctuations about V" so that their net motion is
a random walk (due to velocity fluctuations) superimposed on
the drift downwind (due to mean velocity). The fluctuations of
velocity have a correlation length, L, which can be estimated as
the height above the ground (because the height above the
ground restricts the size of the vortices) (13). At scales larger
than the correlation length L, the motion is effectively Brownian
with the diffusion coefficient given by eddy diffusivity, D (25),
which can be estimated as Lv;ns, where vy is the root-mean-
square of velocity fluctuations (13). A patch of odor is blown as
a whole along a Brownian trajectory and is stretched because of
spatial inhomogeneity of the velocity. The stretching produces
small-scale variations of the concentration of odor that decay
because of molecular diffusion. Thus, odor patches have a finite
lifetime because of mixing that occurs abruptly when the smallest
scale of the patch reaches the length scale set by molecular
diffusion (16). The probability of a patch to survive for time ¢ in
the flow is expected to behave as e ~msl-, Because the fluctuating
component of velocity is typically much smaller than the mean,
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TMoths are believed to determine wind velocity visually by observing the drift of ground
objects across their visual field [see David (17)].

it has been found that counterturns are self-steered as opposed to gradient-steered (18,

19), which is to say that the moth makes each turn not because it reaches the boundary of
the plume and feels the lateral gradient of the concentration, but because of an internal
turn generator that alternates between right and left.

**The internal small-scale structure of the odor burst in principle contains some informa-
tion about the distance from the source, but extracting it requires considerably more
processing, and we shall limit ourselves to considering the whole burst (or patch) as a
single event.
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Vims << V, the probability of finding an odor patch at a
downstream distance much larger than L is still significant.

This view (16) of odor dispersal, in terms of relatively long-
lived patches of odor exercising a biased random walk, suggests
the following model, which will help us formulate the key issues
relevant to olfactory search. Consider a square two-dimensional
lattice. The sites have coordinates r = (x, y) and the source is at
(0, 0). At each time step the source releases an “odor patch,”
which is advected by the “wind.” The wind velocity can take
three values: (=1, 1), (0, 1), and (1, 1), so that the odor patch
moves according to the following rule: at each time step its
y-coordinate increases by 1 and its x-coordinate gets incremented
by =1 or stays unchanged. The probabilities of the increments
—1, 0, and 1 are py, po, and pr. Without loss of generality we
assume that p;. = po = pr = 1/3, so that the average velocity
points along y-axis.™ This model represents odor dispersion on
the length scale larger than the correlation length, L, which
corresponds to the lattice constant in the model. The three-
dimensional structure of the real plume is not essential, because
it does not dramatically change the nature of the random walk
and statistical distribution of patches. On the other hand, it is
natural to conduct a two-dimensional search (i.e., constant
height above the ground) at least to within distance L from the
source. Hence our choice of a two-dimensional model.

Fig. 1 shows a snapshot of a plume generated by the process
described above. If we wait long enough, a stationary distribution
of patches will be reached, which aty >> 1 has the asymptotic form

x2
i) g

1
p(r) = f——m[
where D = (pr + p1)/2 is the eddy diffusivity. The boundary of
the time-averaged plume has the form [x| ~ (Dy)"2. The prob-
ability to find an odor patch atx >> (Dy)'? is very small. On the
other hand, at x < (Dy)"? the probability is of the order of
(47Dy) 172,

Let us now define the search rules for the model plume. A local
“observer” (our model moth or a robot) can detect (i) the event
of odor patch arrival and (ii) the direction from which the patch
has arrived. This corresponds in reality to the ability to detect
instantaneous odor concentration and instantaneous wind ve-
locity. Each time step, our robot is able to move at most one
lattice step along the y-axis and/or one lattice step along the
x-axis. For simplicity we will assume that the robot does not move
downwind, i.e., it does not increase its y-coordinate. The search
starts after the robot contacts an odor patch for the first time.

Our goal is to find the best search algorithm. An algorithm must
determine where the robot should move at the next moment based
on, in principle, all prior observations. Each algorithm is charac-
terized by the time it takes to find the source—the search time.
Because of the random nature of the plume the search time is a
random quantity. Hence we consider the probability distribution
function (PDF) of the search time, p(t), defined as the probability
that the source is found during a ¢, ¢+ + 1 interval. For some
algorithms the search time can be infinite in some realizations of the
plume, which means the source is never found. Because each
algorithm is characterized by a function, p(f), and not by a number,
the definition of the optimal algorithm is nonunique: one can
choose different optimization criteria. Below we shall seek an
efficient algorithm in the sense of the mean search time.

First consider a simple strategy, which will help to understand
the more efficient one. Suppose that the robot waits at one site
until it gets an odor patch. Then it moves to the site from which

*The model can be readily generalized to include the fluctuations of the y-component of
the velocity. One can also include a finite lifetime of particles by introducing the
probability for the particle to disappear.
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Fig. 1. Asnapshot of the model odor field (y = 100). Broken line bounds the
parabolic region where most odor patches are concentrated. Graph on the
bottom represents the probability density function of patch distributionaty =
100. Arrow indicates the mean wind direction.

the patch came. This will always lead to the source, i.e., the
probability to miss the source is zero for this strategy. It is
possible to analytically calculate the PDF of the search time.
Near the peak it has the Gaussian form

1 { (t—ts)} 5
p(t)~\/27rAeXp_ oA [ [2]

2 2
ts“)%”eXP(*fE*>, A yoeXp( o )
4Dy, 2Dy,

where ro = (xo, yo) is the initial position of the robot, and # is the
“typical” search time. The Gaussian approximation does not
hold for times much longer than #.. In that limit (i.e., t >> f;) one
can derive that PDF decays as p(f) o« 3.

From this expression for the PDF one can see that the strategy
has severe drawbacks. If the initial position is inside of the
parabolic region, xo = (Dyo)"?, the typical search time goes as
ya2. However, from outside of the parabolic region x, = (Dyo)“2
the search time grows with x faster than exponentially, exp(x3/
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4Dy,), which means that the strategy does not work well for
points away from the plume axis. The PDF variance A also
increases rapidly with xy, and in addition the long time asymp-
totic form of the PDF is a power law, p(¢) o« 3, which mean that
there exists a relatively high probability that the search takes
much longer than the typical time, ¢,. This is explained by the
robot’s tendency to get trapped outside of the parabolic region
on the way toward the source.

The same drawbacks are inherent to the maximum-likelihood
algorithms (26, 27). In these strategies one estimates the probability
for the source to be located at any given point conditional on the
history of observation and then moves in the direction of the most
likely source location. However, unless one waits for a long time so
that many particles are observed, this conditional probability turns
out to be a flat function of coordinates—i.e., many source locations
around the maximum have approximately the same probability. As
a consequence, search algorithms of maximum-likelihood type
suffer from the drawbacks described above: (i) the search time
increases rapidly if the initial position is shifted outside of the
parabolic region and (if) the probability that the search takes much
longer than the mean time is substantial.

The inefficiency of the passive search algorithms is related to
a small probability of encountering odor patches. To avoid this,
one should not waste time waiting for odor patches that arrive
rarely and instead one should actively explore the space. To
construct an efficient algorithm one should take the following
facts into consideration. (i) If a patch is observed, it is obvious
that the best strategy is to make a step in the direction from which
it has arrived. Each odor patch observation greatly reduces the
uncertainty about the source position: if (xo, yo) is the position of
the odor patch one time step ago, the source can only be located
in the interior of the cone y — yo = *(x — x¢), y < yo (see Fig.
2). (if) The probability to encounter a patch at two neighboring
sites is almost equal (see Eq. 1). (iif) In the absence of a patch,
waiting at one site brings very little information about the source.
On the other hand, making one step reduces the uncertainty of
the source location by one point. It follows that making a step is
always preferable over waiting. When one is moving, all of the
points in the cone must be visited in order not to miss the source.
The simplest way to do this is to visit all of the values of x within
the cone at given value of y, and then move toy — 1. In the above
example, we visit the points (xo £ 1,y — 1) and (xo,yo — 1) and
make sure that the source is not located (or is located) at one of
these points. After these points have been visited, the closest
points that have to be checked are located aty =y, — 2. Now
there are five of them: atx = x¢ = 2,x = xo = 1, and x = x, (Fig.
2). This procedure is repeated until the robot encounters another
odor patch. Then the number of possible source locations gets
greatly reduced as the cone of possible positions collapses to a
new one with the vertex at the point of encounter. The cones are
nested, so only the position where last patch was encountered has
to be remembered.

Fig. 3a shows a typical trajectory. Because the number of
points to be visited is small after hitting a particle, and grows
thereafter, the amplitude of the counterturns is small immedi-
ately after encounter of an odor patch and then grows. The net
upwind component of robot velocity is largest after an encounter
and gets smaller with time as 1/7/2.

Within our model one can again analytically calculate the PDF
of search time

Ll
p(t) —4V%exp o ) [3]

with the typical search time

ty=ay)". [4]
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Fig. 2. (a) An odor patch arriving from P = (xo, yo) detected at R. Circles
indicate possible source locations inside the “causality’” cone with the vertex
at P. Broken line is the boundary of the parabolic region corresponding to
relatively high likelihood of source location. The nodes inside the parabolic
region are shown as filled circles. (b) A counterturning trajectory inside the
cone.

Here, a and b are constants of order one. Most significantly and
in contrast with the “passive” strategy considered before, the
search time f is independent of the crosswind coordinate xy,
which means the search takes approximately the same time even
if the initial position is outside of the parabolic region. This result
is a consequence of the counterturning strategy: after the first
contact with odor, the robot starts to move upwind with increas-
ing crosswind amplitude, so that with a high probability the next
patch will be encountered inside the region x| = (Dy)'? (see Fig.
3). The PDF has a sharp maximum at ¢ ~ t; and decays
exponentially for # > t—i.e., the search time is approximately
the same independently of the realization of the plume. This
behavior is explained by the fact that the number of odor patches
encountered by the robot is relatively small, so most of the time
is spent exploring points in the cones. Finally, the power-law
dependence of ¢, on yy has the exponent 5/4, which is smaller
than the corresponding exponent 3/2 for the passive algorithm,
so that even the search that starts on the axis of the plume is
faster. This advantage can be seen in Fig. 4a, which compares the
histograms of the search times obtained by Monte Carlo simu-
lations of the two algorithms. The strong dependence of the
passive search time distribution on x( (note the logarithmic scale
of ¢ in the figure) is evident even for moderate [xo|/(Dyo)"? (Fig.
4b); simulating a passive search that starts further off axis is
unreasonably time consuming.

Let us now consider a modification of the algorithm, which
further diminishes the search time at the expense of a small
probability to lose the plume. It also allows one to get rid of the
lattice and adapt the search algorithm to a continuous space. In
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Fig. 3.
is (20, 100). (a) The search is performed inside causality cones. (b) The modified
search, where only the points inside the parabolic high-likelihood regions are
searched. Arrow indicates the mean wind direction. The broken lines show the
region of high probability to encounter an odor patch.

Typical search trajectories for the two algorithms. The initial position

principle, one should visit all of the points in the cone, because
the source can be at each point with a nonzero probability.
However, for some points the probability can be quite small.
Such points can be omitted from the search. Let us disregard the
points inside the cone for which the probability to find the source
is smaller than some (small) constant, p.. Then from Eq. 1 we
obtain a parabolic region

1
—x)? = 4D(y; — y)In[ ————], 5
=) 0 = y)in c\47TD(y,-y)> 131

marked by a broken line in Fig. 2. The search time PDF in this
case has the same form as Eq. 3 with ¢, = ayy(/®. The typical
search time, #;, has a somewhat weaker dependence on y, than
the other algorithms; however there exists a small probability to
miss the source. A search trajectory for this algorithm is shown
in Fig. 3b.

Although we have formulated the search algorithm in terms of
a two-dimensional lattice model, it is readily generalized to
search in real three-dimensional turbulent plumes. The charac-
teristic length scale (the analogue of the lattice constant in the
model) is the correlation length, L, set by the height above the
ground. The search is summarized by the following steps:
(i) detect odor, (i) start crosswind counterturning so that
upwind progression per turn is of the order of L and the
transverse amplitude grows as (Dy/V)"2, where V is the mean
wind velocity, D is the eddy diffusivity, and y is the upwind
displacement from the point of last encounter with odor. In this
way the robot passes within L of any point within the search
domain. The upwind projection of the robot’s velocity decreases
as [v2L2V/(Dr)]'3, where t is time elapsed since the last encoun-
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Fig. 4. Histogram of the search time obtained numerically by using Monte
Carlo simulations. (a) With initial condition (0, 50). (b) With initial condition
(10, 50). Solid line shows the histogram for the passive search algorithm,
broken line, for the active search algorithm. Note the logarithmic scale of t.
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ter of odor patch (v is the constant ground speed of the robot).
The number of counterturns depends on ¢ as [v2?V/(DL)]"3.

The essential component of the search strategy is the cross-
wind motion, which prevents the searcher from getting trapped
in the regions of exponentially small probability, increasing the
rate with which patches of odor are encountered, and hence
increasing the rate of information acquisition. The resultant
transverse motion is biased toward the midline of the plume
because that is where odor patches are more frequent. Thus, the
algorithm could be reformulated as the search for the midline of
the plume constrained by minimizing the probability of over-
shooting along the longitudinal direction.

To conclude, we have proposed an olfactory search algorithm
designed to function in turbulent flow. The efficiency of the
proposed algorithm derives from the implementation of the
counterturning strategy, which resembles the observed olfactory
search behavior of moths. The parameters of the counterturns—
i.e., amplitude and upwind drift velocity—are adapted to the
measurable statistical properties of the flow. This algorithm can
be readily implemented in a robotic device, provided the latter
is equipped with, in addition to a chemosensor, an anemometer
to continuously measure wind velocity. We have not attempted
to rigorously prove the optimality of the proposed search
algorithm. Last but not least, our quantitative analysis of search
strategies exposes the role of counterturning and provides
insight into olfactory search behavior of insects and other
creatures. It is likely that zigzagging and casting of the moth are
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not fundamentally different but merely correspond to the ex-
tremes of a counterturning behavior (28). Making further com-
parisons between theoretical search algorithms and observed
search patterns will require new quantitative experiments with
moths in turbulent plumes. The proposed quantification of the
search strategy in terms of PDF of search time could be applied
in an experimental context. It would also be interesting to
rigorously prove the optimality of the proposed search strategy
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