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ABSTRACT Particle tracking techniques are often used to assess the local mechanical properties of cells and biological fluids.
The extracted trajectories are exploited to compute the mean-squared displacement that characterizes the dynamics of the probe
particles. Limited spatial resolution and statistical uncertainty are the limiting factors that alter the accuracy of the mean-squared
displacement estimation. We precisely quantified the effect of localization errors in the determination of the mean-squared
displacement by separating the sources of these errors into two separate contributions. A ‘‘static error’’ arises in the position
measurements of immobilized particles. A ‘‘dynamic error’’ comes from the particle motion during the finite exposure time that is
required for visualization. We calculated the propagation of these errors on the mean-squared displacement. We examined the
impact of our error analysis on theoretical model fluids used in biorheology. These theoretical predictions were verified for purely
viscous fluids using simulations and a multiple-particle tracking technique performed with video microscopy. We showed that the
static contribution can be confidently corrected in dynamics studies by using static experiments performed at a similar noise-to-
signal ratio. This groundwork allowed us to achieve higher resolution in the mean-squared displacement, and thus to increase the
accuracy of microrheology studies.

INTRODUCTION

The use of video microscopy to track single micron-sized

colloids and individual molecules has attracted great interest

in recent years. Because of its numerous advantages and

great flexibility, video microscopy has become the primary

choice in many diverse tracking experiments encompassing

numerous applications. In biophysical studies, it has been

used to observe molecular level motion of kinesin on

microtubules and of myosin on actin (Gelles et al., 1988;

Yildiz et al., 2003), to investigate the infection pathway of

viruses (Seisenberger et al., 2001), and to study the mobility

of proteins in cell membranes (see Saxton and Jacobson,

1997 for a review). Rheologists have tracked the thermal

motion of Brownian particles to derive local rheological

properties (Mason andWeitz, 1995; Chen et al., 2003) and to

resolve microheterogeneities (Apgar et al., 2000; Valentine

et al., 2001) of complex fluids. Colloidal scientists have

pioneered the use of video microscopy in particle tracking

experiments to study phase transitions (Murray et al., 1990)

and to elucidate pair interaction potentials (Crocker and

Grier, 1994).

The standard setup for particle tracking video microscopy

includes a charge-coupled device (CCD) camera attached to

a microscope that acquires images of fluorescent molecules

or spherical particles. This setup gives access to a wide range

of timescales, from high-speed video rate to unbounded long

time-lapse acquisitions, that are particularly suitable for

studying biological phenomena. Subpixel spatial resolution

is obtained by locating the particle at the extrapolated center

of its diffraction image when it covers several pixels

(Cheezum et al., 2001). At usual magnifications of hundreds

of nanometers per pixels, spatial resolutions of tens of

nanometers is commonly achieved (Crocker and Grier, 1996;

Cheezum et al., 2001). These values are well below the op-

tical resolution of ;250 nm (Inoué and Spring, 1997).

Tracking particles with even higher precision has also

been shown to be feasible with the use of more complex

setups. Among the video-based techniques, low-light-level

CCD detectors operated in photon-counting mode are used

to increase signal (Kubitscheck et al., 2000; Goulian and

Simon, 2000) in single-molecule tracking. For such studies,

background noise and signal levels (number of detected

photons) are the limiting factors (Thompson et al., 2002).

Improved observation techniques (such as internal reflection,

near-field illumination, multiphoton or confocal microscopy)

have been used to reduce the background fluorescence sig-

nal. Furthermore, elaborate extrapolation algorithms have

been employed to refine particle positioning (Cheezum et al.,

2001). Under optimized conditions, spatial resolution as low

as a few nanometers has been achieved (Gelles et al., 1988).

However, in addition to their inherent complexity, these

techniques are not well suited for studying large length-scale

dynamics, as they probe a reduced volume of sample

(Kubitscheck et al., 2000). Furthermore, subnanometer

resolution can be achieved using laser interferometry

(Denk and Webb, 1990) or laser deflection particle tracking

(Mason et al., 1997; Yamada et al., 2000). Although in-

terferometric detection has been recently extended to track

simultaneously two particles (C. F. Schmidt, Vrije Uni-

versiteit Amsterdam, personal communication, 2004), these

methods cannot easily be extended to track several particles

at the same time, unlike video microscopy.
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Among the applications of particle tracking, investigation

of local mechanical properties of a medium, using the particle

as a local probe, is frequently performed. In these studies,

averaged quantities such as the mean-squared displacement

or the power spectral density of the position (Schnurr et al.,

1997) are calculated to quantify the particle’s dynamics.

Thus, a large amount of data must be acquired to ensure high

statistical accuracy, and the enhanced techniques described

above are then not suitable for most studies. To this regard,

video microscopy is both widely available and allows the

acquisition of a large amount of data in minutes leading to

a great statistical accuracy. However, a study by Martin et al.

(2002) recently showed that the limited spatial resolution of

standard video microscopy particle tracking leads to errors

that can significantly alter the physical interpretations. Thus,

a compromise arises in the choice of the tracking technique

between: on one hand, video microscopy with great

flexibility and high statistical accuracy but a low spatial

resolution that limits the validity of microrheological

measurements, and on the other hand, enhanced tracking

techniques with a high spatial resolution but a limited

extensibility to multiple-particle tracking. The spatial

resolution of particle tracking video microscopy has been

thoroughly, both qualitatively and quantitatively, studied by

observing immobilized particles (Cheezum et al., 2001;

Thompson et al., 2002). In this study we refer to this

contribution of the spatial resolution as the ‘‘static error’’ in

particle localization. Due to the finite video frame acquisition

time (also called exposure or shutter time), another sort of

localization error arises when moving particles are observed.

This contribution to the spatial resolution depends on the

dynamics of the imaged particles and thus will be referred to

as ‘‘dynamic errors’’ in the text. To our knowledge, no

quantitative studies have been performed on the effect of

these dynamic errors on the mean-squared displacement or

the power spectral density of the position.

However, both types of error should be considered when

calculating these two averaged quantities. We present

methods to efficiently quantify the influence of these two

types of errors on the estimation of the mean-squared

displacement. We provide precise ways to correct for the

static errors and derive expressions for the dynamic errors of

several model fluids. Therefore, we show that accurate values

of the mean-squared displacement can be obtained using

standard video microscopy.

The balance of this article is organized as follows. We first

present a generalized theoreticalmodel to quantify the sources

of error in particle tracking experiments, without restriction to

video-based detection. We focus on the propagation of these

errors on the mean-squared displacement and on the power

spectral density. We then verify the model on purely viscous

fluids using both simulation and experimental methods, and

extend our theoretical prediction to other model fluids. Fi-

nally, we discuss the results, particularly in terms of rheologi-

cal properties, to illustrate how these errors can mislead

physical interpretations. Descriptions of correction methods

are also presented.

THEORY

In this section, we develop amodel to calculate how the errors

in the estimated particle position propagate on the power

spectral density and the mean-squared displacement. To

consider all sources of localization error, we separate the static

contribution from the dynamic contribution. The so-called

‘‘static error’’ arises from noise inherent to any particle-

tracking experiment (Bobroff, 1986). The ‘‘dynamic error’’

comes from the acquisition time (or shutter time) required for

position measurements. In the calculations that follow, we

perform averages on infinitely populated statistical ensembles

and thus do not consider the inherent inaccuracy associated

with the sample statistics of finite-sized ensembles. This is

a good approximation in most particle tracking techniques

adapted to studying local rheologyas these setups aredesigned

to acquire a large amount of data (at least 104 data points in

most cases). In the text, Æ. . .æ designates time averages for

single-particle tracking, whereas for multiple-particle track-

ing, it designates a population and/or time average. Further-

more, the followingmodels are general and do not require any

assumptions about the dynamics of the tracked particles. For

instance, results are equally valid for thermally fluctuating or

actively manipulated (e.g., using optical tweezers) particles.

Static error

We consider a setup that exhibits an intrinsic error in the

determination of a particle’s position as a result of the

underlying noise in the measurements (Bobroff, 1986).

Systematic errors such as calibration inaccuracy or position-

and time-independent offset are not considered here. The

origin of the noise depends on the tracking setup, but without

loss of generality, we assume that the true position x(t) of the
particle at time t is estimated by x̂(t) with the following

relation:

x̂xðtÞ ¼ xðtÞ1 xðtÞ; (1)

where x is a stationary random offset with zero mean Æx(t)æ¼
0 and constant variance Æx2(t)æ ¼ e2 that defines the spatial

resolution e of the setup. The error x is also assumed to be

independent of the position such that Æx(t)x(t#)æ ¼ 0 for any

(t, t#). The autocorrelation function of the position Cx(t) ¼
Æx(t1 t)x(t)æ� Æx(t)æ2 (where t is the lag time), is modified to

Cx̂ðtÞ ¼ CxðtÞ1CxðtÞ; (2)

when the static errors in the measurement are taken into

account. In Eq. 2, Cx(t) is the autocorrelation function of the

error. In the frequency domain, the power spectral density of

the position becomes

Æjx̂x�j2ðvÞæ ¼ Æjx�j2ðvÞæ1 Æjx�j2ðvÞæ; (3)
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as obtained by taking the Fourier transform on both sides of

Eq. 2 and using the Wiener-Khinchin Theorem (Papoulis,

1991). When the mean-squared displacement ÆDx2ðtÞæ ¼
Æ½xðt1tÞ � xðtÞ�2æ is to be calculated, we use the relation

ÆDx2ðtÞæ ¼ 2Cxð0Þ � 2CxðtÞ; (4)

to find

ÆDx̂x2ðtÞæ ¼ ÆDx2ðtÞæ1 2e2 � 2CxðtÞ; (5)

where we have used the definition of the spatial resolution

Cxð0Þ ¼ e2:

Dynamic error

For all experimental setups, a single measurement requires

a given acquisition time s during which the particle is

continually moving. Thus, the position that is acquired at

time t contains the history of the successive positions

occupied by the particle during the time interval [t � s, t].
We model this dynamic error by calculating the measured

position as the average �xxðt;sÞ of all the positions the particle
takes while the shutter is open:

�xxðt;sÞ ¼ 1

s

Z s

0

xðt � jÞdj: (6)

Note that by performing an average over the time s, any

dynamics involving variation of x(t) over a characteristic

time tR , s cannot be resolved. This has important

ramifications as shown in several examples given later (see

the Further Theoretical Results section). In the frequency

domain, Eq. 6 becomes �xx�ðv;sÞ ¼ H�
sðvÞ3 x�ðvÞ with

H�
sðvÞ ¼ ð1� e�ivsÞ=ðivsÞ; so that the power spectral

density of the position is (Papoulis, 1991):

Æj�xx�j2 ðv;sÞæ ¼ jH�
s
ðvÞj2 3 Æjx�j2 ðvÞæ with

jH�
s
ðvÞj2 ¼ sin

2 ðvs=2Þ
ðvs=2Þ2

: (7)

In the timedomain,Eq. 7 iswrittenC�xxðt;sÞ ¼ ½hs � Cx�ðtÞ;
where hs(t) is the inverse Fourier transform of jH�

s ðvÞj2
(that is hs(t) ¼ (s � jtj)/s2 for jtj # s and hs(t) ¼ 0

elsewhere) and ½hs � Cx� designates the convolution of hs and
Cx. We can then calculate the mean-squared displacement

using Eq. 4:

ÆD�xx2ðt;sÞæ ¼ ½hs � ÆDx2æ�ðtÞ � ½hs � ÆDx2æ�ð0Þ with

hsðtÞ ¼
ðs � jtjÞ=s2

for jtj#s;

0 elsewhere:

(
(8)

This relation is linear, but as opposed to the propagation

formula for the power spectrum density (Eq. 7), it is rather

difficult to invert. After simplifying, Eq. 8 can be written for

t $ s:

ÆD�xx2ðt;sÞæ ¼ 1

s
2

Z s

0

½ÆDx2ðt1 jÞæ1 ÆDx2ðt � jÞæ

� 2ÆDx2ðjÞæ�ðs � jÞdj: (9)

We present in the Further Theoretical Results section three

relevant examples for model fluids that give specific insight

on how the mean-squared displacement depends on this

dynamic error. After combining the contributions from the

two errors, we obtain

Æj�̂xx�xx�j2 ðv;sÞæ ¼ jH�
s
ðvÞj2 3 Æjx�j2 ðvÞæ1 Æj�xx�j2 ðv;sÞæ;

(10)

for the measured power spectrum density, and

ÆD�̂xx�xx2ðt;sÞæ ¼ ½hs � ÆDx2æ�ðtÞ � ½hs � ÆDx2æ�ð0Þ1 2�ee2

� 2C�xxðt;sÞ; (11)

for the measured mean-squared displacement, where we

have written the measured static error:

Æj�xx�j2 ðv;sÞæ ¼ jH�
s
ðvÞj2 3 Æjx�j2 ðvÞæ; (12)

C�xxðt;sÞ ¼ ½hs � Cx�ðtÞ and C�xxð0;sÞ ¼ �ee2: (13)

Note that the ideal static localization errors Æjx�j2ðvÞæ and
2e2 � 2Cx(t) considered at first in Eqs. 3 and 5 are also

transformed by the dynamic error during the course of the

demonstration. It is the resulting quantities Æj�xx�j2ðv;sÞæ and
2�ee2 � 2C�xxðt;sÞ that are actually measured for immobilized

particles, because any experimental measurement has a finite

s. This effect is usually implicitly considered in all models

that relate the spatial resolution to the number of detected

photons or the signal level (such as the one presented in the

Appendix). The former quantities are indeed themselves

connected to the exposure time s through the emission rate

of the light source, which is detector independent. Addi-

tionally, we could have considered the dynamic errors first

and then start from �̂xx�xxðtÞ ¼ �xxðtÞ1�xxðtÞ to obtain the same

results as Eqs. 10 and 11. In the rest of the article,

Æj�xx�j2 ðv;sÞæ and 2�ee2 � 2C�xxðt;sÞ will be referred to as

‘‘static’’ errors.

Applications

The static localization errors are easily corrected in Eqs. 10

and 11. However, to successfully replace the value of

Æj�xx�j2 ðv;sÞæ or 2�ee2�2C�xxðt;sÞ in a dynamic experiment by

the one measured in a static study, one must ensure that the

experimental conditions in both cases are identical. In

particular, noise and signal quality must be reproduced, as

x(t) commonly depends on these parameters in the experi-

mental data. To illustrate the importance of the dynamic

errors, one can calculate the value of jH�
sðvÞj

2
at the Nyquist

frequencyv¼p/s (because the acquisition rate is#1/s).We
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find jH�
sðp=sÞj

2 ¼ 0:4, meaning that the apparent (mea-

sured) power spectral density is only 40% of its true value. In

general, both the static and dynamic localization errors will

have greater effect at high frequencies. As pointed out earlier,

high-frequency corrections can be applied on Æj�̂xx�xx�j2 ðv;sÞæ
because the inversion of Eq. 7 to calculate Æjx�j2ðvÞæ is

straightforward. Moreover, low-frequency statistical inaccur-

acy of themicrorheology techniques, not taken into account in

the derivation, will limit the applicability of the propagation

formulas (Eqs. 10 and 11).

In this article, we used video microscopy to perform

multiple-particle tracking. In this setup, the noise primarily

comes from background signal (that includes for example

out-of-focus particles or autofluorescence of the rest of the

sample), the photon shot noise, the CCD noise (readout

noise and pattern noise, the dark current noise being usually

negligible at video rate) and digitization noise in the frame

grabber. Measurements of the noise in the electronic chain

(CCD and frame grabber) is given in the Appendix. The

tracking measurements are based on a centroid localization

algorithm performed on images of particles. In this

procedure, the spatial resolution can be related to the

tracking parameters used for data processing and to the

noise-to-signal ratio of the raw measurement. In particular,

the spatial error will follow the same temporal distribution

as the pixel intensity noise in the movie. From the noise

characterization shown in the Appendix, the spatial error

can thus be considered temporally white up to at least the

frame-rate frequency as well as independent of the shutter

time at constant brightness. Then we can write C�xxðt;sÞ ¼ 0

for t $ s. Plugging this expression and ÆDx2(t)æ ¼ 2Djtj
into Eq. 11, we find the apparent mean-squared displace-

ment of a particle in a Newtonian fluid (see Eq. 24) for

t $ s:

ÆD�̂xx�xx2 ðt;sÞæ ¼ 2Dðt � s=3Þ1 2�ee2: (14)

The self-diffusion coefficient for a spherical particle is

calculated from D ¼ kBT/(6pah), where kB is the

Boltzmann’s constant, T the absolute temperature, h the

viscosity of the fluid, and a the particle radius. This model is

verified in subsequent sections of the article through

simulations and experiments.

Finally, a tracking setup may suffer from another sort of

error called bias. It is defined as an inaccuracy in locating the

particle that depends on the position (Cheezum et al., 2001).

In that case, x depends on x and the correlation term

Æx(t)x(t#)æ can be nonzero, so that our theoretical predictions

do not apply. For example, localization errors from

pixelization are position dependent, as shown later in the

article. However, we also demonstrate that these bias errors

are small at typical noise-to-signal ratios encountered in our

tracking technique, in accordance with the results of

Cheezum et al. (2001).

METHODS

Experiments

We used a multiple-particle tracking technique that has been described in

detail elsewhere (Crocker and Grier, 1996). Briefly, 2a ¼ 0.925 mm

fluorescent beads (Polysciences, Warrington, PA) were dispersed in the

sample at low volume fraction, f , 0.1%. The samples were first deox-

ygenated to avoid photobleaching and then sealed in a chamber made of

two microscope slides separated by 100-mm thick spacers. The slides were

preconditioned in successive baths of NaOH (1 M) and boiling water for

cleaning. The samples were then imaged using a fluorescent video

microscopy setup consisting of an industrial grade CCD camera (Hitachi

KP-M1A, Woodbury, NY) with variable shutter speed ranging from 1/60 s

to 1/10,000 s, set to frame integration mode, and attached to the side port of

an inverted microscope (Zeiss Axiovert 200, Jena, Germany). We used

a 633 water-immersion objective (N.A. ¼ 1.2) leading to an on-screen

magnification of 210 nm/pxl. The focal plane was chosen near the center of

the chamber (at least 40 mm away from the microscope slides) to minimize

the effect of bead-surface hydrodynamic interactions on the observed

dynamics. Movies were digitized with a frame grabber (Scion LG-3,

Frederick, MD) providing 8-bit dynamic range (that is a range from 0 to 255

analog-to-digital units (ADU)), and recorded using the software NIH Image.

The movies were analyzed offline using programs (Crocker and Grier, 1996)

written in IDL language (Research Systems, Boulder, CO). Because a single

video frame consists of two interlaced fields (each of them containing either

the odd or the even rows of the CCD matrix) that are exposed 1/60 s apart,

60 Hz temporal resolution is achieved by analyzing each field independently.

However, resolution is lost in the direction perpendicular to the interlacing

(Crocker and Grier, 1996). Thus, in our study we analyzed particle motion in

the horizontal direction (hereafter defined to be the x direction). Estimation

of the spatial resolution in this direction is discussed throughout this article.

To verify the models we present in this article, we needed to evaluate

average quantities on sufficiently populated ensembles to minimize the

inaccuracy inherent to finite sample statistics. To calculate the mean-squared

displacement at a given lag time t, an ensemble of displacements is built by

subdividing each trajectory into fragments of length t. Thus a particle labeled

i tracked over a lengthTi leads to a sample containing;Ti/t trajectory steps in
the statistical ensemble. Consequently, higher statistical accuracy is achieved

at short lag times. In all the following, we chose the maximum lag times such

that at least 5 3 104 data points were used to compute the mean-squared

displacement. This leads to a relative error estimated by (53 104)�1/2; 0.5%

that we verified to be well below any other sources of error.

Simulations

Static measurements

We first created an ensemble of 1000 images containing static Gaussian

spots following the brightness distribution given by Eq. 44. The particles

were randomly placed in the initial image and their positions did not change

throughout the length of the movie. Signal-independent Gaussian noise was

generated and added to each frame. Such an additive model is justified for

the video microscopy method used here, as shown in the Appendix. The

apparent radius was varied around the typical values observed for the

particles imaged in the experiments: from 4 pxl to 5 pxl. We have

investigated different noise-to-signal ratios by changing both the level of the

signal and the level of the noise. The multiple-particle tracking algorithms

have been applied to these movies after deinterlacing the fields (see the

previous section), and the spatial resolution was measured from the mean-

squared displacement ÆD�̂xx�xx2æ ¼ 2�ee2 computed in the x direction of the

interlacing. Fig. 1, A–C, show typical particle images created for these

movies at different noise-to-signal ratios, compared to an experimental

image (Fig. 1 D) of a particle obtained using the static measurement

described later.
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Dynamic measurements

A Brownian dynamics simulation was developed to create bead trajectories.

An explicit first-order algorithm (Öttinger, 1996) was used to advance the

position of a particle at time t, r(t):

rðt1DtÞ ¼ rðtÞ1Dr: (15)

The displacement Dr was chosen from a Gaussian distribution satisfying

ÆDræ ¼ 0 and ÆDrDræ ¼ 2DDt d; (16)

where Dt is the time step and d is the unit second-order tensor. Each

trajectory was 106 time steps long and was then transformed in the following

manner:

r̄ðtÞ ¼ 1

n
+
n�1

i¼0

rðt � iDtÞ; (17)

where s ¼ nDt defines the shutter time. We chose D ¼ 0.5 mm2/s, varied n

between 10 and 100, and set the time step to Dt ¼ 1/6000 s, which is 1/100

the value of the frame rate (1/60 s). Thus, the shutter time varied between

1/60 and 1/600 s and we spanned a range of Ds that is comparable to

that found in the experiments. Also, we verified that our results did not

appreciably change for smaller values of the time step Dt. On the resulting

walks, a Gaussian distributed random offset with different standard

deviations �ee ranging from 0.01 to 0.05 mm was added to each position.

Fig. 2 illustrates the different stages of the simulation. Results were

generated from an ensemble of 100 trajectories.

Noise-to-signal ratio extraction

Extracting the statistics of noise present in typical images produced by video

microscopy particle tracking experiments is a challenging task. As explained

in the Appendix, noise in the images is the result of several independent

contributions, and its smallest correlation length is ln ¼ 1 pxl. However, the

FIGURE 1 Sample particle images created during the simulations and

extracted from a typical static experiment. Corresponding brightness profiles

along the white dashed line are displayed under each image, as well as the

corresponding Gaussian function (solid line). The apparent radius in all

images is â ¼ 4:5 pxl: (A–C) Simulated Gaussian spots with the same signal

levels but different noise levels. The resulting noise-to-signal ratios are,

respectively, N/S ¼ 0.1, N/S ¼ 0.05, and N/S ¼ 0. (D) Typical experimental

profile of an in-focus particle image. The noise-to-signal ratio is N/S ¼ 0.01

as extracted from our procedure. The profile differs slightly from a Gaussian

function (solid line) and the image of the particle presents sharper edges than

the theoretical Gaussian profile displayed in panel C.

FIGURE 2 Illustration of the dynamic simulation process to create

trajectories of a Brownian particle that are sampled with a finite shutter

time. First, a trajectory with a large number of time steps is created (A). In the

second image, positions every 50 time steps are retained (B). In the third

image, a position is recalculated by averaging the position of the particle at

the previous 20 time steps (C). Finally, Gaussian random noise is added in

each position (D). Gray trajectories are displayed to compare successive

steps of calculation.
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signal’s spatial frequency domain also includes the frequency 1 pxl�1, as the

edges of the particle images are sharp. Thus, performing high-pass linear

filtering using spatial operators (convolution) or frequency operators

(Fourier transformation) that select only the noise frequency in the image

will not provide a true estimate of the noise. Nonlinear filters (like the median

operator) and morphological grayscale operators (for example, the opening

operator) are often used to reduce the noise in an image (Pratt, 1991).

However, they possess the property of retaining the extreme brightness

values of the raw image in the filtered result. Furthermore, an image obtained

by subtracting the pixel values of the filtered image from the raw image

contains black spots (zero brightness) where the particles are located. Thus,

the brightness distribution of the noise isolated in this image includes an

over-populated peak at 0 ADU, and the noise level is underestimated.

This suggests that the noise cannot be evaluated at the particle positions,

but only in the region of the raw image that is around the particles. We

explain later some limitations of our method following from this

observation. To isolate this region of interest, we used similar methods

encountered in the tracking algorithms. We calculated two filtered images

out of the raw data array: a noise-reduced image G, obtained after

convolution with a Gaussian kernel of half width ln ¼ 1 pxl, and

a background image B, obtained by convolving the raw image with

a constant kernel of size 2w1 1 (w is the typical radius of the mask used for

centroid computation; see Crocker and Grier, 1996 and the Appendix for

more details). We used the criterionG� B$ 1 ADU (or equivalentlyG� B

$ 0.5 if the images G and B are higher precision data arrays) to define the

signal region that is complementary to the region of interest in the whole

image (see Fig. 3 B). As this criterion is very efficient in discriminating

signal from sharp-edged spots (compare Fig. 3, A and B), it does not select

the whole signal arising from a larger object with smooth edges. This effect

is illustrated in Fig. 4. To solve this issue, we then applied a binary dilation

morphological operation on the resulting image with a 2w diameter disk as

the structuring element. This has the effect to extend the area of influence of

each of the spot revealed by the previous criterion (compare Fig. 3, B and C).

This last operation potentially eliminates several valid data points, but it

significantly prevents the noise distribution from being biased by unwanted

high brightness values that might be found near the particle images. Fig. 3

illustrates the different steps of our method, applied on a typical dynamic

image. The noise is then the standard deviation of the brightness values of

the raw image mapped to the region of interest.

Extraction of the signal is more straightforward. Only images of particles

that participate in the statistical study are considered. The signal is then well

defined by the difference between the local maximum brightness value of the

spot and the average brightness value around the spot.

This method has been successfully verified on the simulated images and

on the static experiments presented in the next section to an accuracy of

96%. However, this method has several limitations. For example, the con-

centration of particles cannot be too high because the region of interest for

the noise extraction will not be found. Another important limitation is the

assumption that the noise is spatially uniform. This is required to have a noise

level in the region around the particles (where the noise is extracted by our

procedure) that is identical to the one found where the particles are located

(which influences the particle position estimation). By construction, this is

the case for the simulations. In real images, nonuniformity of noise can be

caused by its signal dependency (as it is the case for the shot noise

contribution, for example). However, we show in the Appendix that this has

a negligible effect. Other sources of nonuniformity include uneven

illumination in the field of view or autofluorescence of the rest of the

sample. Thus, the background noise can have a wide range of spatial fre-

quencies. We explain in the Appendix that even background noise with a

large correlation length has negligible influence in our setup. In addition,

for dynamic experiments the computation of noise on a single frame can be

biased by background fluorescence coming from particles that are out of

focus and do not influence the estimation of positions for detected particles.

An average over all frames takes advantage of the background fluorescence

time fluctuations to accurately determine the noise involved in the particle

localization. However, if the medium is too stiff or viscous, large motions

of the particles are suppressed over the timescale of a movie. Thus, this

eventual bias in the noise is constant throughout the entire length of the

movie and the noise is not accurately estimated.

FIGURE 3 Principle for the extraction of the noise-to-signal ratio from

a single movie frame. (A) A raw image taken out of a typical experimental

movie for dynamic measurements. For clarity, intensity has been scaled to

lie in the whole range from 0 to 255 ADU. (B) Regions of signal (white
regions) selected based on the criterion that in these regions the noise-

reduced image exceeds the background image by 1 ADU or more (see text).

(C) Result of the binary dilation operation applied on the previous image.

This operation is required as the previous signal extraction does not include

large images of out-of-focus particles (see Fig. 4). The black area is the

region of interest that will be used to calculate the noise.
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RESULTS

Estimation of �ee using fixed beads

To experimentally estimate �ee;we fixed the fluorescent probes
on a glass microscope slide, recorded movies containing

1000 frames of the immobilized beads with different shutter

times, and performed the multiple-particle tracking algo-

rithm on the deinterlaced movies. We retained only the

x position for each particle, and discriminated isolated

particles from aggregates of several particles. We were

able to vary the noise-to-signal ratio by changing the

intensity of the excitation light source using neutral density

filters. By varying the plane of observation, the particle

images were captured in and out of focus to provide images

that are similar to those actually observed in dynamic

studies. Apparent radius and signal level were also varied in

this manner. The noise-to-signal ratio was extracted from

each frame using the procedure described in the Methods

section, and the overall ratio was estimated by averaging

over the entire movie. The resulting estimate of noise-to-

signal ratio compared well with measurements performed on

manually extracted background regions in several frames.

We successfully compared the standard deviation �ee ¼
Æ�̂xx�xx2æ� Æ�̂xx�xxæ2
� �1=2

that defines the spatial resolution �ee calcu-

lated from the individual trajectories with the value calculated

from the mean-squared displacement �ee ¼ ÆD�̂xx�xx2æ=2
� �1=2

at

short lag times, for which statistical accuracy is best (see the

Methods section). Fig. 5 A shows the experimental variation

of �ee with noise-to-signal ratio N/S, as compared to the

theoretical predictions given by Eqs. 50 and 55 obtained

using, respectively, Gaussian and hat-like spots for the

particle images (cf. Fig. 4 A). We found good agreement

between the theory applied on Gaussian spots (Eq. 50) and

the experimental data. The scatter of the points around the

linear fit (solid line in Fig. 5) comes from different apparent

radii encountered in the experiment. Fig. 5 B compares the

results of the simulation with the theoretical slopes. Because

the Gaussian form was chosen for the spot in the simulations,

the slight difference of the results with theory comes only

from the pixelization of the images that is taken into account

in the simulations. However, in the experiments, the

pixelization is also inherent and the linear fit mainly exhibits

values of �ee smaller than found in the simulations: �ee ¼
268:53N=S11:3 nm for the experimental data (solid line in
Fig. 5) as compared to �ee ¼ 314:53N=S10:2 nm on average

for the simulation (not shown in Fig. 5). This difference

arises from the true experimental shape of the spot seen in

Fig. 1 D, which has sharper edges than the Gaussian form.

Thus we found that the experimental behavior slightly

deviates from the Gaussian behavior toward the hat-spot

behavior.

Another effect of pixelization is to create a constant offset

D�̂xx�xxoff between the position estimated in the odd and even

field for a single immobile particle. We show in Fig. 6 A an

experimental observation of this constant shift. As a result,

the trajectory �̂xx�xxðtÞ of a single particle exhibits a 30-Hz

periodic signal with amplitude D�̂xx�xxoff : The resulting mean-

squared displacement averaged over an ensemble of fixed

beads also oscillates between 2�ee2 and ÆD�̂xx�xx2offæ12�ee2; so that

our estimation of �ee is biased. Furthermore, one cannot expect

to see �ee vanishing as N/S approaches 0. From our experi-

ments at low noise-to-signal ratio, we measured ÆD�̂xx�xx2offæ
� �1=2

; ÆjD�̂xx�xxoff jæ; 1 nm: The causes of such an offset can be

multiple: different noise and/or signal in the even and odd

field coming from the acquisition, spatial distortion, etc. We

investigated one cause that is closely related to image

FIGURE 4 The use of the binary dilation operation for signal area

selection. (A) Model particle images: a hat-like spot on the left and a

Gaussian spot on the right, both with comparable apparent radius. In panels

B–D, gray lines are brightness profiles along the white dashed line seen in

panel A. (B) Brightness profile of the results of the background filter (solid

line) and the noise-reduction filter (dashed-dotted line). (C) The solid line

represents the signal selection using the criterion that the noise-reduced

image exceeds the background image by 1 ADU or more; this criterion is

efficient for the hat-like profile whereas the Gaussian profile is not fully

selected. (D) Selected signal after applying the binary dilation operation on

the previous selection; both profiles are now fully included in this selection.
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FIGURE 5 Evolution of the spatial resolution �ee with the noise-to-signal

ratio N/S. For all three plots, the dashed lines and the dashed-dotted lines are
theoretical slopes calculated from Eqs. 50 and 55, respectively, with w ¼ 7

pxl and â evenly incremented from 4 to 5 pxl (the slopes increase as â

decreases). The solid line is the linear fit to the experimental static

measurements: �ee ¼ 268:53N=S11:3 nm: (A) Experimental evaluation of �ee
at different N/S using fixed beads (h). Apparent radius â extracted from

particle images ranged from 4.09 to 4.96 pxl. The nonzero y-intercept in the

linear fit comes from the constant offset between positions calculated from

odd and even field images (see text and Fig. 6). (B) Result of the simulations

(s) for w ¼ 7 pxl and â ranging from 4 to 5 pxl. We verify the linear

behavior of �ee versus N/S, with increasing slopes as â decreases. However,

because the pixelization is inherent in the simulations, there are systematic

deviations from the corresponding theoretical slopes computed using Eq. 50

with same â (dashed lines). (C) Data extracted from the same set of dynamic

experiments shown in Fig. 7, using values of �ee as calculated by Eq. 20

(symbols are the same as in Fig. 7).

FIGURE 6 Illustration of the position offset and bias measured from the

two different camera fields. (A) Experimental position measurements of a

single particle fixed to a slide at low noise-to-signal ratio (N/S¼ 0.005). The

dots are results of 1000 measurements, and present two distinctly different

positions extracted from the two fields. The offset in the y direction per-

pendicular to the interlacing is significant. The offset D�̂xx�xxoff is calculated by

differencing the averaged position estimated in each field (the two solid lines).
(B) Schematic of amodel to explain the observed offset. On the left, the center

of a Gaussian spot is positioned at (dx, dy) of a pixel corner. On the right, the

resulting positions estimated from the odd and the even field of the same

image are shifted (the magnitude of D�̂xx�xxoff has been increased for clarity). (C)

Measurement of the bias as a function of the position of the particle from

a pixel corner at low N/S. The different symbols correspond to the two dif-

ferent fields, such that the difference of the two plots corresponds to D�̂xx�xxoff :
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pixelization. As illustrated in Fig. 6 B, this offset depends on
the position (dx, dy) of the real profile center inside a single
pixel (see Fig. 6 B for precise definition of dx and dy). We

calculated the distribution of the values taken by D�̂xx�xxoff as

both dx and dy uniformly spans the range [�0.5, 0.5[ pxl,

by using our simulation technique with Gaussian spots and

N/S¼ 0. We found that ÆD�̂xx�xx2offæ
� �1=2

; ÆjD�̂xx�xxoff jæ; 0:5 nm and

is fairly independent of the apparent radius of the particle in

the range â ¼ 4� 5 pxl:
Finally, we used the static simulations to evaluate the bias

error described in the Theory section. In each frame we

compared the true position of each particle (an input in our

simulation) with the corresponding value found by the

tracking algorithm. After time averaging over all frames, we

found the bias Æ�̂xx�xx � �xxæ ¼ bð�xxÞ to be a 1-pxl periodic function
of the xposition of the bead, fairly independent of the noise-to-
signal ratio for N/S , 0.1 and of the apparent radius for

4, â, 5 pxl; comparable to results obtained by Cheezum

et al. (2001). In Fig. 6 C, we show the measured bias b(dx) on
both fields, odd and even, and for dx in the range [�0.5, 0.5[

pxl and dy¼ 0 (the shape is not appreciablymodified for other

values of dy). Also, when averaged over all particles, Æb2æ1/2;
Æjbjæ ; 10�2 pxl ; 2 nm. As opposed to the field offset

described in the previous paragraph, the bias is not

a component of the mean-squared displacement for the static

experiments, as it adds a time-independent offset to each

immobile particle position. In dynamic experiments, it will

have negligible influence because Æbð�xxÞ2æ, 4 nm2 is much

smaller than a typical value of 100 nm2 for �ee2 (see next

section). Additionally, the cross-correlation of �xxðtÞ and

bð�xxðtÞÞ needs to be evaluated (see the Theory section) and is

negligible in many circumstances as shown in the next

section.

Dynamic error

To verify Eq. 14, we applied multiple-particle tracking on

water and on solutions of glycerol at concentrations 20%,

40%, 55%, and 82% volume fraction. The expected viscosi-

ties for these five Newtonian solutions at room temperature

(T ¼ 23�C) are;1, 2, 5, 10, and 100 mPa 3 s, respectively,

weakly modified by the addition of particles at low volume

fraction. We recorded movies of the fluorescent beads for

a length of 5000 frames at 30 Hz (2 min, 45 s), that is 10,000

fields at 60 Hz. Four shutter times were used for acquisition:

s ¼ 1/60, 1/125, 1/250, and 1/500 s. These long movies

provided enough statistics to accurately estimate the mean-

squared displacement at small lag times, and the intercept

ÆD�̂xx�xx2 ð0;sÞæ and the slope 2D were evaluated by linear fit of

the mean-squared displacement for lag times ranging from 1/

60 s to 0.1 s (i.e., using the first six experimental points). We

verified that at these lag times, at least 5 3 104 trajectory

steps were used to compute the mean-squared displacement

(see the Methods section).

Fig. 7, A and B, shows the variation of the intercept with

the scaled shutter time Ds for both these experiments and the

simulations described earlier. According to relation Eq. 14,

the theoretical model predicts

ÆD�̂xx�xx2 ð0;sÞæ ¼ �2=33 ðDsÞ1 2�ee2: (18)

This formula was verified by our experiments and

simulations. For the simulations, we found the slope of

�2/3 and the intercepts of the lines compared well with 2�ee2;
where �ee is the spatial resolution we input into the simulation.

For the experimental data, we also found a slope of�2/3 and

extracted a constant intercept of 23 10�4 mm2 leading to an

average spatial resolution �ee ¼ 10 nm: We show in Fig. 7 C
the error in the measured mean-squared displacement

intercept as compared to the theoretical behavior expected

for �ee ¼ 10 nm: For both simulations and experiments, we

computed this error in the following way:

relative error ¼
����ÆD�̂xx�xx

2 ð0;sÞæ� ð23 10
�4 � 2Ds=3Þ

ð23 10
�4 � 2Ds=3Þ

����;
(19)

where both ÆD�̂xx�xx2 ð0;sÞæ and Ds are expressed in mm2. When

2Ds/3; 23 10�4 mm2, the values of ÆD�̂xx�xx2 ð0;sÞæ are small

and the corresponding relative error can reach large values.

This explains the peak observed in Fig. 7 C at Ds ; 3 3

10�4 mm2. For other values of Ds, the relative error is;2%

or less and ;10% or less for simulations and experiments,

respectively.

Our results were aligned on a unique master line of slope

�2/3 and intercept 2�ee2 only if �ee was kept identical from one

tracking experiment to the other. As suggested by our static

study, we had to verify that the noise-to-signal ratio was kept

identical from one movie to another. This is an experimental

challenge because the noise-to-signal ratio cannot be

evaluated a priori. Because the illumination collected by

the CCD decreases as the shutter time is reduced, identical

signal was recovered by raising the intensity of the excitation

light source. However, we had no control over the resulting

noise. Thus, to validate our measurements, we computed the

exact spatial resolution �ee using the inverted formula

�ee ¼ ÆD�̂xx�xx2 ð0;sÞæ= 21Ds=3
� �1=2

; (20)

and we extracted the noise-to-signal ratio using the pro-

cedure explained earlier. The resulting points compare well

with the static study, as shown on Fig. 5 C. However several
data points present significant deviation from the averaged

static measurements. The noise-to-signal ratio of two points

extracted from experiments made with 82% glycerol (solid
circles) are overestimated. In the movies corresponding to

these two data points, the background fluorescence is not

uniform, and the noise level calculated by our algorithm

deviates from the actual noise influencing the particle

centroid positioning. This bias constantly affects the noise
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estimation because the highly viscous medium eliminates

relevant variations of the background fluorescence over the

duration of the movie. Thus, the noise-to-signal ratio

resulting from a time average over the whole movie is

inaccurate. This limitation of our N/S extraction procedure

was pointed out earlier. Also, two points exhibits larger

values of �ee than expected. They correspond to the larger

values of Ds encountered in our set of experiments: in water

(diamonds) and in 20% glycerol (triangles) with s ¼ 1/60 s.

However, as seen in Fig. 7 C, the corresponding relative

error, more relevant because given in terms of mean-squared

displacement, does not exceed 10%.

To complete the experimental verification of Eq. 18, we

performed an additional set of experiments in which Ds was

kept constant, but the noise-to-signal ratio was varied. Beads

were tracked in 20% glycerol solution and movies were

acquired at s ¼ 1/125 s, giving Ds ; 2 3 10�3 mm2. The

results are shown in Figs. 5 and 7 by the inverted triangles.

For N/S evenly incremented from 0.03 to 0.1, identical Ds
were extracted (see the dotted line in Fig. 7 A), and the exact
spatial resolution calculated using Eq. 20 is in good

agreement with the static experiments (cf. Fig. 5 C).
Finally, we investigated the influence of bias on the

mean-squared displacement. We used the Brownian dy-

namics simulations to create one-dimensional trajectories

�xxðtÞ; and added a position dependent localization error

�xxðtÞ ¼ bð�xxðtÞÞ at each time step. The bias is well modeled

by b(x) ¼ 0.023 sin(2px) where both b and x are expressed
in pixels (see Fig. 6 C). The bias is negligible when particle

motions amplitude (Dttot)
1/2 (where ttot is the duration of

tracking) is large as compared to the bias period of 1 pxl.

We observe that for 1-mm-diameter beads tracked for 3 min,

the bias remains negligible for solutions up to 1000 times

more viscous than pure water when only time average on

a single particle is performed, but to much higher values

when a population average is performed on several particle

trajectories.

FURTHER THEORETICAL RESULTS

In this section we use Eq. 9 to calculate the dynamic error for

three standard model fluids. The Voigt and Maxwell fluids

are the simplest viscoelastic model fluids that are commonly

used to model the mechanical response of biological ma-

terials (Fung, 1993; Bausch et al., 1998). A third model

in which the mean-squared displacement exhibits a power-

law dependency with the lag time is also investigated. This

model is relevant to microrheological studies, where data are

often locally fit to a power law to easily extract viscoelastic

FIGURE 7 Dependence of the mean-squared displacement intercept

ÆD�̂xx�xx2ð0;sÞæ on the scaled shutter time Ds. Both ÆD�̂xx�xx2ð0;sÞæ and D are

evaluated from a linear fit at small lag times. The solid symbols are from

experimental results and the open circles are from simulations. For all

experiments, the noise-to-signal ratio was kept constant, except for the

inverted triangles that are extracted from a set of experiments in 20%

glycerol with s ¼ 1/125 s that have been performed with different noise-to-

signal ratio (the dotted lines in panels A and B indicate the averaged Ds for

this set of experiments). (A) Linear-linear plot. The dashed lines represent

slopes of �2/3 with intercept 2�ee2 (the value of �ee is indicated in nanometers

on the right-hand side of each line). The simulation results lie on the lines

with corresponding input values of �ee (see text), and the experimental points

obtained at identical noise-to-signal ratio (see Fig. 5) are in accordance with

an intercept of 2 3 10�4 mm2 (�ee ¼ 10 nm). The set of experiments

performed at fixed Ds but with different N/S lie on lines with different

intercepts corresponding to different values of �ee: (B) Linear-log plot to

expand the region at small scaled shutter time Ds. (C) Relative error to the

theoretical trend 2 3 10�4 � 2Ds/3 mm2, as calculated using Eq. 19. The

peak in the error corresponds to the regime where 2Ds/3 ; 2 3 10�4 mm2

(see text).
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properties (Mason, 2000). This last model is also known as

the structural dampingmodel, recently used to fit the mechan-

ical response of living cells (Fabry et al., 2001).

Voigt fluid

We first examine the Voigt model (Fung, 1993) for which the

complex shear modulus frequency spectrum is of the form

G�ðvÞ ¼ G(1 1 ivtR), where tR is the fluid’s relaxation

time. In such a medium, the mean-squared displacement of

an inertialess bead is that of a particle attached to a damped

oscillator:

ÆDx2ðtÞæ ¼ Dx
2

0ð1� e
�t=tRÞ with Dx

2

0 ¼
2kBT

6paG
: (21)

Using Eq. 9, we then calculate

ÆD�xx2ðt;sÞæ ¼ Dx20
e
�s=tR � 11 ðs=tRÞ

ðs=tRÞ2=2

"

�e
�t=tR

coshðs=tRÞ � 1

ðs=tRÞ2=2

�
; (22)

for which we verify

ÆD�xx2ðt; 0Þæ ¼ ÆDx2ðtÞæ: (23)

The viscous limit is obtained for t=tR � 1 (because s #

t, we have also s=tR � 1):

ÆD�xx2ðt;sÞæ ¼ 2Dðt � s=3Þ; (24)

where D ¼ kBT/(6pah) is the bead self-diffusion coefficient

and h is the viscosity of the fluid (h ¼ GtR in the Voigt

model). Equation 24 was found by Goulian and Simon

(2000) and is experimentally verified in our study. The elastic

limit is obtained when t=tR � 1 for which

ÆD�xx2ðt;sÞæ ¼ Dx
2

0

e
�s=tR � 11 ðs=tRÞ

ðs=tRÞ2=2
: (25)

Furthermore, if s=tR � 1; as is the case for a purely

elastic solid (tR ¼ 0), we find that D�xx2ðt;sÞ ¼ 0: As

previously mentioned, dynamics occurring at timescales

smaller than s cannot be resolved. This is a fundamental

problem encountered when studying Maxwell fluids, as

outlined in the next section.

Maxwell fluid

For the Maxwell fluid model (Fung, 1993), G�ðvÞ ¼
GivtR=ð11ivtRÞ, and the mean-squared displacement of

an inertialess embedded bead is (van Zanten and Rufener,

2000)

ÆDx2ðtÞæ ¼ Dx20ð11 t=tRÞ with Dx20 ¼
2kBT

6paG
; (26)

for which we calculate:

ÆD�xx2ðt;sÞæ ¼ Dx
2

0

tR
ðt � s=3Þ: (27)

This result is identical to that found for a purely viscous

fluid (Eq. 24). The plateau region observed in Eq. 26 for t ,

tR corresponds to a frictionless bead in a harmonic potential.

Because we also neglect inertia in this model, it is a peculiar

limit where the particle can sample all possible positions

infinitely fast. Thus, after position averaging over any finite

timescale, the particle is apparently immobile and the re-

sulting mean-squared displacement is zero. Consequently,

the elastic contribution in Eq. 26 is unobservable.

Power-law mean-squared displacement

The propagation of the dynamic error can be applied to

a regime in which the mean-squared displacement follows

a power law:

FIGURE 8 Effect of the dynamic error on particles that exhibit a power-

law mean-squared displacement. (A) Comparison of ÆD�~xx~xx2ð~ttÞæ (solid lines)

with the true ÆD~xx2ð~ttÞæ (dashed lines) for different values of a. Short lag time

behavior is always superdiffusive. (B) Minimum lag times required to

consider that the dynamic error has negligible effect. To solve ÆD�~xx~xx2ð~ttÞæ ¼
0:99ÆD~xx2ð~tt99%Þæ; we use a globally convergent Newton’s method that be-

comes inefficient for a , 0.35.
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ÆDx2ðtÞæ ¼ At
a
; (28)

or in a dimensionless formwith ~xx2 ¼ x2=ðAsaÞ and ~tt ¼ t=s:

ÆD~xx2ð~ttÞæ ¼ ~tt
a
: (29)

We find

ÆD�~xx~xx2ð~ttÞæ ¼ ð~tt1 1Þ21a
1 ð~tt � 1Þ21a� 2~tt

21a � 2

ð11aÞð21aÞ : (30)

In Fig. 8 A we compare the true mean-squared

displacement ÆD~xx2ð~ttÞæ with the one that includes our model

dynamic error ÆD�~xx~xx2ð~ttÞæ: We see that the amplitude of the

Brownian fluctuation is decreased by this error (lower

apparent mean-squared displacement). At the smallest lag

time ~tt ¼ 1; we calculate the apparent diffusive coefficient as
a function of the true a:

�aað~tt ¼ 1Þ ¼ d logÆD�~xx~xx2ð~ttÞæ
� �

dðlog~ttÞ

����
~tt¼1

¼ 11
a

2
. 1; (31)

which means that apparent superdiffusion will always be

induced by the dynamic error. This can lead to significant

misinterpretation of experimental data (see the Discussion

section).

To establish a criterion to neglect dynamic error, we

evaluate the minimum dimensionless lag time ~tt99% such that,

for ~tt. ~tt99%; we have ÆD�~xx~xx2ð~ttÞæ=ÆD~xx2ð~ttÞæ ¼ 99% at least. In

Fig. 8 B, we computed ~tt99% for a ranging in ]0, 1]. We see

that as the material gets stiffer (that is, as a decreases), the

criterion ~tt � 1 is not sufficient to avoid large dynamic error.

DISCUSSION

We have classified the sources of spatial errors of particle

tracking into two separate classes: static and dynamic. We

have been able to precisely quantify each contribution for the

particular case of Brownian particles moving in purely

viscous fluids. Theoretical models for the errors were

developed and validated using both simulations and experi-

ments. The magnitudes of the static and dynamic errors were

varied by, respectively, changing the noise-to-signal ratio and

the shutter time of the measurements. In the Newtonian fluids

we studied with video microscopy, both dependencies are

linear. We found that the contributions from the two errors

have antagonistic effects, and in some cases comparable

values.

One parameter frequently used to characterize thermal

motion is the diffusive exponent a(t) introduced in the

previous section, and defined as:

aðtÞ ¼ d logÆDx2ðtÞæ
� �

dðlogtÞ : (32)

When directly computed from the estimate of mean-

squared displacement of probes in a purely viscous fluid, one

finds the apparent diffusive exponent:

�̂aa�aaðtÞ ¼ 11 �ee2=ðDtÞ � s=ð3tÞ
� ��1

: (33)

Thus �̂aa�aa, 1 if �ee2=D.s=3; and an apparent subdiffusion is
observed. On the other hand, �̂aa�aa. 1 if �ee2=D,s=3 and the

particles exhibit an apparent superdiffusion in a purely

viscous fluid. Fig. 9 A illustrates these two artifacts by

showing experimentally measured mean-squared displace-

ments in the two different regimes. Note that the results for

82% glycerol (solid circles) exhibit oscillations at short lag
times. In this viscous fluid, particle displacements from one

frame to the next are much smaller than 1 pxl. Thus, the

offset between the position estimated in the odd and even

field, as described in the previous section, becomes relevant.

Furthermore, computation of the diffusive exponent from the

mean-squared displacement is altered by these oscillations.

More striking are the errors arising in the rheological

properties of the medium computed from the mean-squared

displacement of the embedded particles. Using the general-

ized Stokes-Einstein equation, the complex shear modulus

frequency spectrum G�ðvÞ ¼ G#ðvÞ1iG$ðvÞ can be eval-

uated by (Mason, 2000):

G
�ðvÞ � kBT

3pa

exp ½ipað1=vÞ=2�
ÆDx2ð1=vÞæG½11að1=vÞ�

; (34)

where G designates the G-function. If a , 1, the material

exhibits a storage modulusG#(v) 6¼ 0. Thus, when calculated

from ÆD�̂xx�xx2ðt;sÞæ in the regime where �̂aa�aa, 1; the shear

modulus of glycerol has an apparent elastic component. We

illustrate this effect in Fig. 9 B. Furthermore, Fig. 9 A shows

a third regime where the two sources of error compensate:

�ee2=D;s=3: These results suggest that more subtle mistakes

can bemade when interpreting the microrheology of complex

fluids. Because dynamic error attenuates high-frequency

elasticity, they can mask true subdiffusive behavior at short

lag times and lead to an apparent diffusive mean-squared

displacement. Several physical interpretations can arise from

the observation of the mean-squared displacement, and it is

thus essential to quantify the sources of errors to avoid any

mistakes in one’s line of reasoning.

Once the errors are quantified, corrections can be

confidently made. The static error can be evaluated by fixing

the particles on a substrate, and by performing measurements

in similar noise and signal conditions as the rest of the

experiments. The trivial subtraction of the measured static

mean-squared displacement is validated, but not sufficient to

recover the true mean-squared displacement. Further theoret-

ical studies must be done to find ways to correct for the

dynamic error. As stated earlier, corrections for this type of

error can be applied on the power spectral density of the

position by using Eq. 7, and additionally on themean-squared
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displacement if an analytic model describing its variation is

available. However, this dynamic contribution can be reduced

by ensuring s=t � 1: Nevertheless, this criterion must be

carefully verified for stiffer materials, as explained in earlier

sections. As the exposure time is reduced, the collected

illumination decreases, and thus the noise-to-signal ratio

increases. Thus, a compromise between reducing the dynamic

error or the static error follows if nonaveraged quantities are

extracted. On the other hand, if the interest is focused on

averaged properties, the shutter time should be decreased and

correction for the static error should be performed. In this

study, noise-to-signal ratios as high as 0.1 were examined. As

N/S¼ 1 represents a fundamental limit, further studies should

be performed in the range of N/S between 0.1 and 1

encountered in single-molecule tracking. On the other hand,

noise-to-signal ratios N/S ,0.03 is difficult to achieve with

standard video microscopy setup used for dynamic experi-

ments at small shutter time. Thus, the spatial resolution in the

tracks cannot be lower than 10 nm (;5 3 10�2 pxl), in

accordance with results obtained in similar conditions by

other groups (Crocker andGrier, 1996; Cheezum et al., 2001).

Also, we predict that the resolution of the mean-squared

displacement can be reduced to values between 1 nm2 and 10

nm2 after corrections, limited only by statistics, accuracy in

the estimation of �ee; and/or the position offset inherent to

pixelization that were described earlier. However, further

analysis should be performed to accurately evaluate this

effective resolution, because this study is limited to purely

viscous fluids, for which the corrections are straightforward to

apply.

We have used a video microscopy multiple-particle

tracking technique to perform the experiments. The methods

employed here for noise measurements, as well as the

relation between noise and spatial resolution are specific to

this technique. However, static and dynamic errors from

noise and finite exposure time are actually intrinsic to any

particle tracking setup without restriction to the video-

microscopy-based method. Also, the propagation formulas

are valid for any dynamics, and should be considered even in

active microrheology methods. For example, the spring

constant of the trap created by optical tweezers is sometimes

computed from the equilibrium mean-squared displacement

of the trapped bead (Lang and Block, 2003), and can be

biased by these errors. Moreover, Yasuda et al. (1996)

already suggested that the amplitude of Brownian fluctua-

tions can be underestimated when video detection is used in

optical tweezers experiments.

To conclude, we demonstrated that dynamic and static

errors can cause great deviations in the experimental results

obtained using particle tracking techniques. We provided

procedures to both quantify and correct these errors. We

show that standard video microscopy (using simply in-

dustrial grade cameras) can then be used to perform high-

resolution microrheology, and thus could become a primary

choice for such experiments. Overall, our study brings to

light the fact that great care must be taken in interpreting data

obtained from particle tracking experiments.

APPENDIX

Noise characterization

To characterize the noise in our system we used the CCD transfer method

described by Janesick et al. (1987). This technique provides a robust

FIGURE 9 Demonstration of how the errors in the mean-squared

displacement can lead to spurious rheological properties. On both plots,

solid lines are data computed from linear fit extracted from the mean-squared

displacement at small lag times, and dashed lines are data obtained after

applying corrections explained in the Discussion section. (A) Mean-squared

displacements from three experiments. For an experiment in water with

s ¼ 1/60 s and 2Ds= 3. 2�ee2; an apparent superdiffusion can be observed.

In 82% glycerol with s ¼ 1/500 s and 2Ds= 3, 2�ee2; the mean-

squared displacement exhibits apparent subdiffusion. The errors compensate

one another, 2Ds= 3; 2�ee2; in 55% glycerol with s ¼ 1/250 s. (B) Elastic
and viscous moduli computed from the mean-squared displacement using

the generalized Stokes-Einstein relation (Eq. 34). The apparent subdiffusion

observed in 82% glycerol with s ¼ 1/500 s leads to an apparent elastic

behavior at high frequencies. The scatter in the experimental data comes

from the inaccurate estimation of the diffusive exponent from the measured

mean-squared displacement with a numerical differentiation using three-

point Lagrangian interpolation.
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estimation of the different sources of noise. We observed a sample of

fluorescein to evaluate the camera response at similar wavelengths as the

beads. Regions of interest that exhibit uniform illumination were chosen on

the camera field. For a given illumination, we found that the sources of noise

characterized here are independent of the shutter time (see Fig. 10).

The random pattern-independent noise, which includes the photon shot

noise and the signal-independent readout noise, is estimated by half the

variance of the brightness distribution obtained on the image resulting from

the difference between two successive frames taken at the same illumination

(Reibel et al., 2003). When estimated over the whole dynamic range of the

camera, we found that this noise contribution is Gaussian distributed (as

expected at high-light-level detection), with a variance linearly dependent on

the illumination Stot that we estimated by the average brightness value in the

sample. Note that Stot is expressed in ADU. We designate this noise contri-

bution by Nrn and we write:

N
2

rn ¼ N
2

ro 1bps 3 Stot; (35)

where we found experimentally N2
ro ¼ 0:05ADU2 for our camera readout

noise and bps¼ 0.009 ADU for the photon shot noise coefficient of our setup

(Fig. 10).

The fixed-pattern noise, and the photo-response nonuniformity noise

estimation are evaluated in the following manner: the photo response of

individual pixel is evaluated independently for 10 different illuminations

with 100 frame-long movies being acquired for each illumination. A linear

fit of response versus signal is produced for each pixel. The fixed-pattern

noise is obtained as the variance of the intercept distribution over all the

pixels. The photo-response nonuniformity noise coefficient is given by the

variance of the slope distribution (Reibel et al., 2003). The pattern-

dependent noise Npd is then written:

N
2

pd ¼ N
2

fp 1 gnu 3 S
2

tot; (36)

where we found experimentallyN2
fp ¼ 0:05ADU2 for the fixed-pattern noise

and gnu ¼ 7 3 10�6 for the photo response nonuniformity noise coefficient

of our camera (see Fig. 10).

The total noise is the variance of the raw image brightness distribution.

Estimated at different illuminations, we found that the total noise compares

well with the sum of the random noise with the pattern-dependent noise in

the whole dynamic range of the camera, indicating that nonlinear contribu-

tions are negligible (see Fig. 10).

Another contribution to the total noise in an image can arise from uneven

autofluorescence in the sample (in cells, for example) or signal from out-of-

focus particles. We call this contribution ‘‘background noise’’ Nbg. It is

negligible in the static experiments we performed in this study, but becomes

important in dynamic studies. Finally the total noise is written:

N
2

tot ¼ N
2

bg 1N
2

ro 1N
2

fp 1bps 3 Stot 1 gnu 3 S
2

tot: (37)

The noise contributions considered here are by nature spatially white, except

for the pattern-dependent noise and the background noise that might exhibit

correlation lengths .1 pxl. The two-dimensional autocorrelation function

calculated for regions of an image that are selected by our noise extraction

procedure gives information on the distribution of noise correlation lengths.

In movie frames obtained from both static and dynamic experiments, we

found that the autocorrelation function is sharply peaked at 0 pxl with

negligible occurrence at larger lag distances (data not shown). This suggests

that a spatially white noise model, as used in the next section of this

Appendix, is a reasonable assumption. It is expected that this assumption

will hold for many microrheology experiments where a low concentration of

probes is usually used in signal-free (e.g., nonfluorescent) medium.However,

a different conclusion can be reached in other experimental scenarios,

where for example out-of-focus autofluorescence of the sample might ex-

hibit large patterns covering several pixels.

In the time domain, we characterized the CCD noise by calculating the

power spectral density of the temporal variation of the noise intensity in

a movie. We found in both static and dynamic experiments that the noise is

temporally white from the frame-rate frequency for the upper limit of our

spectrum, and at least down to a frequency of 0.1 Hz.

Relation between noise and spatial resolution

The multiple-particle tracking algorithms we use in this study have been

explained in detail elsewhere (Crocker and Grier, 1996). In this Appendix

we develop a model to relate the spatial resolution of the technique to the

noise-to-signal ratio of the data. In the method, movies of particles are

acquired using a CCD camera. Usual CCD chips contain 6403 480 pxl, and

typical trackable particles have an apparent radius â. ; 2 pxl; which is

usually different from the actual radius a of the bead. The particle position is

determined by a brightness weighted average over a circular mask of radius

w. â applied on the filtered image of the particle. As noticed by Crocker

and Grier (1996), if w, â; clipping of the particle image by the mask

deteriorates the resolution. For w. â; this clipping effect is negligible as

compared to the noise contribution, which will be the only consideration

retained in the following model. Our aim is to evaluate the position of the

particle that is determined from its filtered image. We define Stot(r, r) ¼
Stot(r � r) the ideal brightness value at a location r on the particle image

centered at the true position r ¼ (x, y) (r ¼ 0, 0 in the following). A

convenient way to account for noise is to add a spatially white offset dSr to

the ideal brightness profile:

ÆdSræ ¼ 0; (38)

ÆdSr dSr#æ ¼ N
2

totðrÞl
2

n dðr � r#Þ; (39)

where ln is the correlation length of the noise, and Ntot(r) is the noise level.

We know from the noise characterization, Eq. 37, that the noise level

depends on the brightness distribution through:

N
2

totðrÞ ¼ N
2

bg 1N
2

ro 1N
2

fp 1bps 3 StotðrÞ1 gnu 3 S
2

totðrÞ;
(40)

with N2
bg the background noise, N2

ro the readout noise, N
2
fp the fixed-pattern

noise, bps 3 StotðrÞ the photon shot noise, and gnu 3 S2totðrÞ the photo-

response nonuniformity noise. Also, usual mask sizes satisfy pw2 � l2n;

FIGURE 10 Photon transfer curve for our setup. The open symbols

designate pattern-independent noise estimation, the solid symbols are the total

noise measurements. The readout and fixed-pattern noise contributions are

signal independent, N2
fp1N2

ro ¼ 0:1ADU2; the photon shot noise is 0.0093

Stot, and the photo response nonuniformity noise follows 73 10�6 3 S2tot:The

total noise curve is the sum of the four noise contributions and compares well

with its experimental estimation, thus proving negligible effects of

nonlinearity. Note that the photon transfer curve is independent of the shutter

time.
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which justifies the use of continuous integrals rather than finite summations.

However, we find slight differences between our measurements on pixelized

images and the following model, as discussed in the Results section. Under

the continuous assumption, we can inferZ 2p

0

Z w

0

dSrrdr du ¼ 0: (41)

Depending on the spatial repartition of the noise on the particle image, the

brightness-weighted centroid x̂x of the filtered image will suffer a shift that we

can estimate by the following:

�̂xx�xx � �xx ¼
R 2p

0

R w

0
dSr r cos u rdr duR 2p

0

R w

0
½StotðrÞ � B�rdr du

; (42)

where B designates the background brightness value assumed uniform at the

scale of one particle. We then write

�ee2 ¼ Æ �̂xx�xx � �xx
� �2æ ¼ l

2

n

R 2p

0

R w

0
N

2

totðrÞr
2
cos

2
u rdr duR 2p

0

R w

0
½StotðrÞ � B�rdr du

� �2 : (43)

By assuming a Gaussian brightness distribution for the particle image,

StotðrÞ ¼ B1 S3 e�2r
2
=aâa

2

; (44)

where S is the signal level and â is the apparent radius of the particle image,

we find

�ee2

l
2

n

¼ f1ðw=âÞ3
N

S

	 
2

1 f2ðw=âÞ3
bps 1 2gnu 3B

S

1 f3ðw = âÞ3 gnu; (45)

where

N
2 ¼ N

2

bg 1N
2

ro 1N
2

fp 1bps 3B1 gnu 3B
2
; (46)

is the noise amplitude evaluated at the background level and we have

introduced the following functional forms:

f1ðxÞ ¼
1

4p

2x
2

1� e�2x
2

	 
2

; (47)

f2ðxÞ ¼
1

2p

1� ð11 2x
2Þe�2x

2

1� e
�2x

2
� �2

2
64

3
75; (48)

f3ðxÞ ¼
1

8p

1� ð11 4x2Þe�4x
2

1� e�2x
2

� �2

2
64

3
75: (49)

Note that Eq. 45 is formally equivalent, in terms of scaling, to theoretical

results obtained by Thompson et al. (2002). We can evaluate the order of

magnitude of each term for a typical mask size w ¼ 7 pxl, with typical

apparent radius â from 4 to 5 pxl; then f1*1:25; f2 ; 0.15 and f3 ; 0.04.

Also, in most cases the background level is around B ; 50 ADU. Typical

values obtained for our camera are: N2
ro ¼ 0:05ADU2; N2

fp ¼ 0:05ADU2;

bps ¼ 0:009ADU; gnu ¼ 73 10�6; and N2
bg ranging from ;0 ADU2 for

static experiments to ;2 ADU2 for dynamic experiments. We find that the

first term in Eq. 45 always dominates in the range S between 10 and 200

ADU. This justifies both our method for estimating noise in regions without

particles as well as our simulations that include only signal-independent

noise. Furthermore, we will use the following formula obtained by keeping

only the first term (in which noise is S independent) of Eq. 45:

�ee;
N

S

ln

2p
1=2

2w
2
= aâa

2

1� e
�2w

2
=aâa

2

	 

; (50)

as obtained by Crocker and Grier (1996). A Gaussian profile is usually

a good approximation for a typical particle image. However, in some cases

when the particle is close to the focal plane of the setup, its image presents

a flatter peak and sharper edges (see Fig. 1 D). It is thus interesting to

consider a flat brightness distribution,

StotðrÞ ¼ B1 S3Hðâ� jrjÞ; (51)

whereH is the Heaviside step function. In that case we find the same form to

Eq. 45 with:

f1ðxÞ ¼
x
4

4p
; (52)

f2ðxÞ ¼
1

4p
; (53)

f3ðxÞ ¼
1

4p
; (54)

for which we verify that the first term in Eq. 45 also dominates. Thus, we will

write for the hat-like spot:

�ee;
N

S

ln

2p
1=2

w
2

aâa
2 : (55)

Overall, we proved that even though the noise level increases at the particles

location due to its signal dependency, this has negligible effect on the spatial

resolution. In both cases (Eqs. 50 and 55), we find that the spatial resolution

is proportional to the noise-to-signal ratio, and the slope depends only on the

ratio of the mask area over the particle image area. It is essential at this point

to notice that this slope is sensitive to the value of â: for a typical mask size

2w1 1 ¼ 15 pxl, the slope increases by.30% as the apparent radius of the

particle increases from 4 to 5 pxl. Often video particle tracking is performed

on half-frames, as single frames are usually composed of two interlaced

fields. In that case, both the image and the mask are shrunk by a factor of 2 in

the direction perpendicular to the interlacing. It is easy to verify that the same

result is found for such elliptical masks and particles. However, we explain

in the Results section how this deinterlacing of pixelized images affects the

measured trajectory.
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